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Engineering Mycorrhizal Symbioses
to Alter Plant Metabolism and
Improve Crop Health
Katherine E. French*

Department of Plant Sciences, University of Oxford, Oxford, United Kingdom

Creating sustainable bioeconomies for the 21st century relies on optimizing the use
of biological resources to improve agricultural productivity and create new products.
Arbuscular mycorrhizae (phylum Glomeromycota) form symbiotic relationships with
over 80% of vascular plants. In return for carbon, these fungi improve plant health
and tolerance to environmental stress. This symbiosis is over 400 million years old
and there are currently over 200 known arbuscular mycorrhizae, with dozens of new
species described annually. Metagenomic sequencing of native soil communities, from
species-rich meadows to mangroves, suggests biologically diverse habitats support a
variety of mycorrhizal species with potential agricultural, medical, and biotechnological
applications. This review looks at the effect of mycorrhizae on plant metabolism
and how we can harness this symbiosis to improve crop health. I will first describe
the mechanisms that underlie this symbiosis and what physiological, metabolic, and
environmental factors trigger these plant-fungal relationships. These include mycorrhizal
manipulation of host genetic expression, host mitochondrial and plastid proliferation,
and increased production of terpenoids and jasmonic acid by the host plant. I will
then discuss the effects of mycorrhizae on plant root and foliar secondary metabolism.
I subsequently outline how mycorrhizae induce three key benefits in crops: defense
against pathogen and herbivore attack, drought resistance, and heavy metal tolerance.
I conclude with an overview of current efforts to harness mycorrhizal diversity to improve
crop health through customized inoculum. I argue future research should embrace
synthetic biology to create mycorrhizal chasses with improved symbiotic abilities and
potentially novel functions to improve plant health. As the effects of climate change
and anthropogenic disturbance increase, the global diversity of arbuscular mycorrhizal
fungi should be monitored and protected to ensure this important agricultural and
biotechnological resource for the future.

Keywords: fungal diversity, endosymbiosis, agriculture, synthetic biology, microbial-plant communication,
bioprotectants

INTRODUCTION

Mutualistic symbiosis is the reciprocally beneficial relationship between two organisms and can
have a profound effect on organism fitness, ecology, and evolution (Wade, 2007; Gilbert et al.,
2015; Kiers and West, 2015). Symbioses abound across all forms of marine and terrestrial life,
from whales (Cetacea) and barnacles (Coronula diadema) to fig wasps (Courtella wardi) and fig
trees (Ficus carica) (Jousselin et al., 2003; Nogata and Matsumura, 2006). Some symbioses can
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also form among three partners, as seen in the exchange of
nutrients among three-toed sloths (Bradypus spp.), pyralid moths
(Cryptoses spp.), and algae (Trichophilus spp.) (Pauli et al.,
2014). However, some of the most intriguing forms of symbioses
happen in the microbial world (Keeling and Palmer, 2008).
Bacteria and fungi are capable of invading host organisms,
altering genetic and metabolic processes along the way (McFall-
Ngai et al., 2013). To date, bacterial symbioses have received
the most attention due to their complex relationships across
many species across all trophic levels, from algae to plants and
humans (McFall-Ngai and Ruby, 1991). Fungal symbioses have
received less attention despite their key role in terrestrial nutrient
exchange and recycling systems (Gadd, 2006; Emery et al.,
2015). For example, some fungi (Neocallimastix spp.) colonize
the guts of cows, helping them digest plant matter (Davies
et al., 1993). Other species (ascomycete and basidiomycetes)
form symbiotic relationships with cyanobacteria to form lichen,
a composite organism (holobiont) that degrades organic and
inorganic materials and serve as an important food-source for
herbivores (Spribille et al., 2016).

Microbial symbioses have important ecological roles and can
also be manipulated to increase the sustainability and resilience
of global agricultural systems. To date, the agricultural use
of naturally occurring symbioses has focused on promoting
symbiosis between nitrogen-fixing bacteria (rhizobia) and
legume plants to decrease inorganic nitrogen application on
arable fields, which can lead to eutrophication and decline of soil
microbial diversity over time (Matson et al., 1997). Arbuscular
mycorrhizal fungi (AMF) form an equally important symbiosis
with plants that is currently underexploited. This symbiosis is
over 400 million years old and predates the symbiotic relationship
between nitrogen-fixing bacteria and legumes. In the phylum
Glomeromycota there are currently 200 known species from
10 families and many more are likely to be discovered in
terrestrial landscapes rich in plant diversity and/or in extreme
environments (Bever et al., 2001; Öpik et al., 2010; Ohsowski
et al., 2012). In exchange for carbon, mycorrhizae provide plants
with Phosphorus (P), minerals, and other nutrients to over 80% of
vascular plants (Parniske, 2008). Major crops such as wheat and
maize form symbioses with mycorrhizal fungi. The only crops
that do not form this symbiosis are from the Brassicaceae and
Papaveraceae families (Fester and Sawers, 2011). A growing body
of greenhouse and field-scale experiments has shown the positive
effect of mycorrhizal inoculation on crop productivity and
resilience to environmental stress. In this review, I will provide an
overview of our current knowledge of how mycorrhizal symbiosis
effects plant metabolism and crop health and provide new insight
into how synthetic biology could revolutionize how we harness
this symbiosis in the future.

MYCORRHIZAL INFECTION AND HOST
METABOLIC RESPONSE

Arbuscular mycorrhizal symbiosis dramatically alters plant
primary and secondary metabolism in affected roots (Figure 1).
Upon infection, cells with arbuscules gradually emit enzymes

that degrade or stop the suppression of plant cell wall materials
(e.g., lignin) and suppress salicylic acid production (which
decreases AMF symbiosis) (Smith and Gianinazzi-Pearson,
1988). A shared, permeable membrane is created between the
arbuscule and host plant which allows for the exchange of
nutrients. This membrane is comprised of three layers: the plant-
derived periarbuscular membrane (PAM), the periarbuscular
space (PAS) composed of plant and fungal-derived elements,
and the fungal plasma membrane (Parniske, 2008). It contains
enzymes capable of generating energy gradients for active, bi-
directional transport of nutrients and compounds (Smith and
Gianinazzi-Pearson, 1988). Infection causes specific physiological
changes in host cells. The number of mitochondria increase
threefold and migrate toward the arbuscule, the nucleus increases
in size, and nuclear chromatin decondenses (allowing for
increased transcriptional activity) (Gianinazzi-Pearson, 1996;
Lohse et al., 2005). Plastids also increase in number and stromules
become more abundant; they can move toward arbuscules,
forming a net-like structure over the fungus (Buee et al., 2000;
Lohse et al., 2005).

These physiological changes trigger metabolic changes in root
cortex cells. Increased numbers of mitochondria and plastids
lead to increased energy production (from the TCA cycle)
and production of plastid metabolites (fatty acids, amino acids,
carotenoids, and terpenoids) respectively (Lohse et al., 2005; Jung
et al., 2012). In the cytosol, sugar levels increase due to increased
photosynthesis in the above-ground leaves, which favors high
efflux rates between the arbuscule and host cell (Smith and
Gianinazzi-Pearson, 1988; Berger et al., 2007; Gaude et al., 2015).
Levels of jasmonic acid (derived from linoleic acid produced
in the plastids) also increase and trigger the production of
phytoalexins (defensive compounds). Most of these defensive
compounds are nitrogen-rich alkaloids produced by plastids. As
these metabolic changes occur, phosphorus is transferred from
the mycorrhiza to the host cell in exchange for fatty acids, amino
acids, and sugars (fructose and glucose) (Smith and Gianinazzi-
Pearson, 1988). The production of anti-fungal compounds (e.g.,
gallic acid) by the host plant decreases (Gaude et al., 2015).

Foliar secondary metabolism also changes dramatically.
Defensive compounds in foliar tissues increase. These
compounds include rutin, p-hydroxybenzoic acid, antioxidants
(flavonoids), and terpenoids (Copetta et al., 2006; Toussaint,
2007; Geneva et al., 2010; Zubek et al., 2015; Kapoor et al., 2016).
Earlier studies suggested plant secondary metabolism increased
due to increased access to nutrients (specifically, P) provided by
the mycorrhizal-endosymbiont (Gupta et al., 2002; Smith et al.,
2003). However, several recent experimental studies suggest that
increased production of specific secondary compounds does
not correlate with increased plant P content (Copetta et al.,
2006; Toussaint, 2007). Instead, hormonal changes induced
by AMF infection may trigger these metabolic changes. In
addition, changes in root chemistry may also lead to the storage
of these compounds in foliar tissues. For example, the increased
production of glandular trichomes in Ocimum basilicum L. when
inoculated by Gigaspora rosea as noted by Copetta et al. (2006)
could be due to increased production of chloroplasts in infected
roots. Potentially, sequestering additional volatiles in leaves
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FIGURE 1 | Overview of physiological and metabolic changes induced by mycorrhizal symbiosis with host plants. PAM, plant-derived periarbuscular membrane;
PAS, the periarbuscular space; aa, amino acids; P, phosphorus.

protects the mycorrhizae living within the hosts’ roots from these
bioactive compounds. Additionally, plants may circulate these
compounds to where they are most needed.

Arbuscular mycorrhizal fungi symbiosis causes both global
(species-independent) and local (species-specific) changes in
plant metabolism. Global changes include increased production
of amino acids (glutamic, aspartic, and asparagine acid);
fatty acids (palmitic and oleic); secondary metabolites (phenyl
alcohols, a linolenic acid, apocarotenoids, isoflavonoids); plant
hormones (oxylipin, cytokinins, and jasmonic acid); activation
of the oxylipin pathway; and increased sugar metabolism
(Fernández et al., 2014; Gaude et al., 2015; Rivero et al., 2015).
In contrast, levels of specific secondary compounds increase
according to plant species identity. For example, Schweiger et al.
(2014) found that inoculating Plantago lanceolata, P. major,
Veronica chamaedrys, Medicago truncatula, and Poa annua with
Rhizophagus irregularis caused 18–45% of each species core
metabolomes and increased species-specific compounds (e.g.,
sorbitol in P. lanceolata). Different mycorrhizal fungi can also
produce different metabolic effects. For example, repeated pot
experiments have shown that Funneliformis mosseae causes more
metabolic changes than R. irregularis (Rivero et al., 2015).

IMPACT ON CROP HEALTH

Arbuscular mycorrhizal fungi symbiosis can boost plant defenses
against pathogens. Previous studies have reported mycorrhizal-
induced protection against fungal (Alternaria, Fusarium,
Phytophthora, Pythium, Rhizoctonia, and Verticillium), bacterial
(Ralstonia solanacearum and Pseudomonas syringae), nematode
(Pratylenchus and Meloidogyne), and insect (Otiorhynchus
sulcatus) damage (Garcia-Garrido and Ocampo, 1989; de la
Peña et al., 2006; Fritz et al., 2006; Pozo and Azcón-Aguilar,
2007; Jung et al., 2012). A recent meta-analysis by Veresoglou
and Rillig (2012) suggest inoculation of crops with mycorrhiza
reduces fungal infections by 30–42% and nematode infestations

by 44–57%. This protection results from passive and active
activation of plant secondary metabolism by AMF. Passively,
AMF infection causes host plants to produce and store highly
potent defensive compounds (alkaloids and terpenoids). These
are stored in trichomes and vacuoles and can be released
at will (Wink, 1993; Champagne and Boutry, 2016). More
actively, external and internal fungal hyphae may sense pathogen
effectors and other secondary compounds in the surrounding
environment (soil and apoplast, respectively) and ‘warn’ host
cells by producing lipo-chitooligosaccharides (LCOs) and short
chito-oligosaccharides (Cos) (Kosuta et al., 2003; Maillet et al.,
2011; Bonfante and Genre, 2015; Zipfel and Oldroyd, 2017).
These messages may transmit through the host plant from cell to
cell through the plasmodesmata.

Drought tolerance also increases under inoculation with AMF.
This may be due to increased production and accumulation
of the sugar trehalose in affected plant cells. Trehalose forms
a gel-like substance that attaches to cellular compartments
and stabilizes lipid bilayers (Müller et al., 1995; Richards
et al., 2002; Lunn et al., 2014). During desiccation organelles
remain intact and can spring back to life under favorable
environmental conditions (Wingler, 2002). For example, Adams
et al. (1990) showed that Selaginella lepidophylla’s ability to
withstand long-term desiccation was due to high levels of
trehalose which formed 12.5% of plant body mass. As many
high plants do not produce trehalose, this sugar may potentially
be supplied by fungal endosymbionts. Trehalose has been
detected in the roots of trees and vascular plants inoculated
with ectomycorrhizal and arbuscular mycorrhiza (Müller et al.,
1995). Increased trehalose production alters plant carbohydrate
metabolism by decreasing sugar and starch levels (Wagner et al.,
1986). Providing this benefit to host plants thus comes at a
cost to mycorrhizae and emphasizes the mutualism of this
symbiosis.

Arbuscular mycorrhizal fungi can also increase tolerance to
heavy metals in crops. The reasons for this are still unclear.
Potentially, the chitin and melanin found in the cell walls of
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AMF hyphae may bind metals in the surrounding soil and/or
in the host plant (Morley and Gadd, 1995; Ruscitti et al.,
2011; Eisenman and Casadevall, 2012). Melanin in particular
is well-known for its ability to protect fungi from a variety
of harsh environmental conditions, including nuclear radiation
(Zhdanova et al., 2000). Non-mycorrhizal fungi (primarily
Aspergillus, Phanerochaete chrys, and Trichoderma) have been
shown to absorb and incorporate into their cell walls up to 90% of
metal ions from soil contaminated with cadmium (Mohsenzadeh
and Shahrokhi, 2014), silver (Aksu, 2001), uranium (Wang and
Zhou, 2005), and lead (Jianlong et al., 2001). Fungi also use
chelating proteins (e.g., phytochelatins and metallothioneins)
and metabolites (e.g., oxalate) to deactivate the toxicity of metals
(Tomsett, 1993; Sayer and Gadd, 1997). This absorption often
triggers changes in fungal metabolism and can cause fungi to
change color (e.g., orange and black) as new compounds are
produced (Baldrian, 2003). In ectomycorrhiza, Blaudez et al.
(2000) have shown that metal ions are deposited throughout
the cell wall (50%), cytoplasm (30%), and vacuole (20%). This
highlights that multiple mechanisms may be used by mycorrhiza
to immobilize metal toxins. The hyphae of ectomycorrhizae
exposed to heavy metals also seem to proliferate (Darlington
and Rauser, 1988) suggesting they may confer some fitness
advantage to fungi. Mycorrhizae may also alter host metabolism
to respond to metal toxicity. Shabani et al. (2016) have shown that
inoculation of Festuca arundinacea with Funneliformis mosseae
increased the transcription of host metallothioneins and ABC
transporters (which aid in the excretion of toxins) in nickel-
contaminated soil.

INOCULUM, SYNTHETIC BIOLOGY AND
THE DEVELOPMENT OF FUNGAL
CHASSES

Over the past 20 years most attempts to harness AMF diversity
to improve crop health have focused on increasing fungal
diversity by encouraging plant species diversity (in native habitats
like grasslands). In addition, a number of initiatives have
sought to create AMF inoculum optimized to increase plant
growth. This inoculum often comprises of soil taken from
(presumably, fungal-rich) habitats and transferred to arable
fields. Although the species-composition of native mycorrhizal
communities may vary globally depending on local vegetation,
elevation, climate, and soil chemistry, most AMF have low
host-specificity (Lee et al., 2013; Veresoglou and Rillig, 2014;
Peay et al., 2016). Since AMF readily form symbiosis with
multiple plant species, mycorrhizae isolated from one location
have the potentially to successfully colonize plants at other
sites. Stahl et al.’s (1988) research established that native strains
of AMF from non-disturbed sagebrush grasslands increased
the biomass and tissue phosphorus content of vegetation
planted on reclaimed coal pits in Wyoming. Native soil
inocula rich in mycorrhizae have increased the productivity
and vegetation cover of American prairies (Richter and Stutz,
2002), Belgian species-rich grasslands (Torrez et al., 2016), and
land reclaimed from Mercury mining in California (Emam,

2016). Some mycorrhizae have more beneficial traits than others
and in the future inoculum containing these species could be
developed. For example, three AMF with hyphae 10x longer
than usual mycorrhiza are Acaulospora laevis (10.55 cm), Glomus
calospora (12.3 cm), and Glomus tenue (14.2 cm) (Smith and
Gianinazzi-Pearson, 1988). Longer hyphae could increase fungal
phosphorus uptake and transfer to plant hosts, increasing the
production of beneficial phytoalexins and plant growth. In
addition, metagenomic research on the microbial communities
of biodiverse and/or extreme environments suggests there are
many other AMF species which could be exploited further. For
example, three new species of AMF (Diversispora omaniana,
Septoglomus nakheelum, and Rhizophagus arabicus spp. nov.)
were identified in 2014 from environmental samples in the
Arabian desert and could be propagated as inoculum for crops
grown in arid regions in other parts of the world (Symanczik
et al., 2014).

Synthetic biology could draw upon arbuscular mycorrhizal
diversity to increase the effect of AMF on plant health (Figure 2).
Synthetic biology can increase the expression of native host
genes by altering transcription rates or by inserting new genes
from foreign organisms (Khalil and Collins, 2010). In addition,
specific traits could be selected for and expressed in modified
fungal chasses. To date, synthetic biology initiatives have focused
on using filamentous fungi to produce high value compounds
(anti-tumor and antibiotics mainly) (Mattern et al., 2015; Xiao
and Zhong, 2016). Currently, the biosynthetic pathways of 197
compounds linked to 779 nucleotide records from 174 fugal
species are known and can be accessed via a public database1

(Li et al., 2016). The majority of these genes (98%) come
from the Ascomycota family and there is a strong bias toward
Aspergillus.

Currently, there is little to no research on the use of
mycorrhizae in synthetic biology, either to improve crop
health or to perform advanced biological functions (e.g.,
mycoremediation). To initiate this process R. irregularis
(formerly Glomus intraradices) could serve as an initial chassis
because it is the only mycorrhizae with a fully sequenced genome
(Franz Lang and Hijri, 2009; Tisserant et al., 2013). This extensive
knowledge of this mycorrhizal host genome could overcome the
challenges bioengineering fungi face including (1) the location
of biosynthetic gene clusters (BGCs) on multiple loci and (2)
the control of BGCs by shared cis-regulatory elements (van der
Lee and Medema, 2016). Promoters and other regulators of gene
expression (e.g., transcription factors) currently developed for
use in Aspergillus niger and Penicillium chrysogenum could be
trialed out in these mycorrhizae (Polli et al., 2016; Wanka et al.,
2016). Potential genetic targets in R. irregularis for manipulation
are listed in Table 1.

Potential applications of synthetically modified mycorrhizae
include increased phosphorus uptake, increased production of
economically valuable terpenoids (e.g., antibiotic monoterpenes
such as carvacrol) in host plants, and potentially even nitrogen-
fixation. The latter could be achieved by modifying AMF
metabolism or by engineering N-fixing bacteria to engage in

1http://mibig.secondarymetabolites.org/
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FIGURE 2 | Mycorrhizal symbiosis can be harnessed for agriculture by optimizing soil inocula and through synthetic biology. Image credits (left to right): spores of
Glomus spp. (IVAM); tree and root image (modified) (CC0 Public Domain); metallothionein from sea urchin (Strongylocentrotus purpuratus) (PDB ID 1QJK; Riek et al.,
1999); carvacrol (PubChem). All other images belong to the author.

TABLE 1 | Genetic targets in Rhizophagus irregularis.

Potential Use UniProt Entry Protein name Gene name Length Mass (Da)

Drought tolerance A4QMP6 Trehalase (EC 3.2.1.28) (Alpha-trehalose glucohydrolase) NTH1 740 86,029

Drought tolerance A4QMP8 Trehalose-6-phosphatase (Fragment) TPS2 179 19,765

Heavy metal tolerance B0AZW1 Metallothionein 1 ntMT1 71 7,202

Nitrogen uptake D7P896 Nitrate transporter (Fragment) 329 35,823

Nutrient exchange C8YXI2 Aquaporin 1 AQP1 253 27,190

Phosphorus uptake G0Z6L2 Phosphate transporter (Fragment) PT 81 8,573

Phosphorus uptake Q8X1F6 Phosphate transporter 521 58,478

Plant defense Q9C0Q8 Chitin synthase (EC 2.4.1.16) (Fragment) CHS 205 23,115

Symbiosis B5U322 Germinating spore putative ATP-sulfurylase (Fragment) 82 9,191

Symbiosis C7EXJ7 Elongation factor 1-alpha (Fragment) EF1-alpha 255 27,925

Symbiosis Q9UV76 MYC2 (Fragment) myc2 286 33,156

Symbiosis Q2V9G7 Elongation factor 1-alpha (Fragment) EF1-alpha 306 33,228

Symbiosis Q659Q9 Elongation factor 1-alpha (Fragment) tef1a 110 12,346

Symbiosis Q9UV77 MYC1 (Fragment) myc1 370 41,872

The table lists the potential agricultural use of the gene, the UniProt entry, gene name, and protein name, length, and mass.

symbiosis with specific AMF strains (Manchanda and Garg,
2007). Burkholderia spp. engage with Gigaspora and Scutellospora
with as many as 250,000 bacteria per spore (Bianciotto et al.,
2000; Artursson et al., 2006), indicating that mycorrhiza have a
natural capacity to engage in symbiosis with bacteria. In addition,
introducing metallothioneins from other fungi, bacteria, or
even higher eukaryotes such as sea urchins into mycorrhiza
could improve their ability to protect host plants from metal-
contaminated soils. As mycorrhizae do not sexually reproduce,
there is little chance these genetic changes would enter into
native mycorrhizal gene pools (Pawlowska, 2005). These steps
could usher in a revolution in the use of mycorrhiza in synthetic
biology.

CONCLUSION

Arbuscular mycorrhizal symbioses with plants hold immense
promise for the development of more sustainable agricultural
systems (Gosling et al., 2006; Garg and Chandel, 2010). Fungi are
already extensively used in biotechnology to produce antibiotics,
anti-cancer drugs, pigments, bioethanol, and biomaterials
(Bennett, 1998; Adrio and Demain, 2003; Cragg et al., 2015;
Haneef et al., 2017). To date, arbuscular mycorrhizae have
received less attention, despite their dramatic effect on plant
metabolism and host resilience to environmental stresses. This
fusion of plant and fungal endophyte increases the production
of specific plant secondary metabolism products (e.g., fatty
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acids and terpenoids) and redirects the products of plant
primary metabolism (e.g., fructose and glucose) to the fungal
partner. This symbiosis also appears to increase the tolerance
of crops to pathogen, water, and heavy metal stresses through
a variety of mechanisms. Advances in metagenomic sequencing
will allow us to promote native AMF diversity while boosting
crop fitness (Lumini et al., 2011). The tools and techniques
provided by synthetic biology may also lead to new innovations
in how these symbioses function and the benefits provided
to host plants. Future research should focus on identifying
key mycorrhizal genes that affect plant growth and begin
experimenting with genetic modification of potential chasses

AMF, specifically R. irregularis. Rising climate change and
anthropogenic disturbance of native ecosystems may harm the
diversity and functioning of AMF across the world (Fitter et al.,
2000; Antoninka et al., 2009; Classen et al., 2015; French et al.,
2017). Conservation efforts must now extend below the soil if
we are to ensure the preservation of this resource for the future
(Bodelier, 2011).
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