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In many infectious diseases caused by either viruses or bacteria, pathogen glycoproteins
play important roles during the infection cycle, ranging from entry to successful
intracellular replication and host immune evasion. Dengue is no exception. Dengue
virus glycoproteins, envelope protein (E) and non-structural protein 1 (NS1) are two
popular sub-unit vaccine candidates. E protein on the virion surface is the major target of
neutralizing antibodies. NS1 which is secreted during DENV infection has been shown to
induce a variety of host responses through its binding to several host factors. However,
despite their critical role in disease and protection, the glycosylated variants of these
two proteins and their biological importance have remained understudied. In this review,
we seek to provide a comprehensive summary of the current knowledge on protein
glycosylation in DENV, and its role in virus biogenesis, host cell receptor interaction and
disease pathogenesis.
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DENGUE DISEASE, DENGUE VIRUS AND DENGUE INFECTION
CYCLE

Dengue
Dengue (DEN) is an emerging arthropod-borne infectious disease which is caused by DENV.
According to the World Health Organization (WHO) (2017), DEN cases have continually
increased in recent decades. An estimation of DEN infections worldwide has indicated up to
50–100 million cases per year (WHO, 2017). The virus is transmitted primarily by female Aedes
aegypti mosquitoes in tropical and subtropical regions. The spread of DEN in non-tropical areas
has been associated to the transmission by the secondary vector, A. albopictus mosquito which is
able to withstand winter temperature (Gould et al., 2010). Four serotypes of DENV (DENV1-4)
have been identified to date and co-circulation of these serotypes has been reported in Asia, Africa,
and America (Guzman et al., 2010).

Abbreviations: ADE, antibody-dependent enchancement; C, capsid; CE, capillary electrophoresis; CLEC5A, C-Type
Lectin Domain Family 5 Member A; Cryo-EM, cryoelectron microscopy; DC, dendritic cell; DC-SIGN, dendritic cell-
specific Intercellular adhesion molecule-3-Grabbing Non-intergrin; DEN, dengue; DENV, Dengue virus; DHF/DSS, dengue
hemorrhagic fever/shock syndrome; DI, domain I; DII, domain II; DIII, domain III; E, envelope; Endo H, endoglycosidase
H; ER, endothelium reticulum; HILIC, hydrophilic interaction chromatography; HIV, Human immunodeficiency virus; JEV,
Japanese encephalitis virus; LC, liquid chromatography; MALDI, Matrix Assisted Laser Desorption Ionization; MR, mannose
receptor; NS, non-structural; PNGase F, peptide:N-glycosidase; prM/M, (pre)membrane; WNV, West Nile virus.
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Most DENV infections are asymptomatic or remain as mild
febrile illness. A classical DEN fever is diagnosed when the
patient shows self-limiting high fever, headache, and muscle/joint
pain 3–14 days after a mosquito bite. A small proportion of
DEN patients may develop DEN hemorrhagic fever and/or DEN
shock syndrome (DHF/DSS) which are life-threatening. The
clinical manifestations of DHF/DSS include hemorrhagic fever,
vascular permeability and plasma leakage, thrombocytopenia and
circulatory failure in DSS. To date, there is no specific treatment
for DEN and no licensed anti-DENV drug is available. For severe
DEN cases, clinical complications are managed by supportive
therapy to avoid mortality. The progression to severe DEN
(DHF/DSS) has been linked to a phenomenon known as ADE of
infection (Halstead, 2014). The ADE hypothesis postulates that
during a secondary heterologous DENV infection, preexisting
anti-DENV antibodies bind to but fail to neutralize the virus,
and promote increased uptake of sub-neutralized virions by Fc-
gamma-receptor bearing cells such as DC, macrophages, and
monocytes (Kliks et al., 1989; Boonnak et al., 2008). In addition,
ligation of Fc receptor stimulates production of Interleukin (IL)-
10 which in turn suppresses the cellular anti-viral response
(Suhrbier and La Linn, 2003). These events lead to increased
viral loads which are believed to correlate with disease severity
(Vaughn et al., 2000).

To reduce DEN morbidity and eventually eliminate the
disease, an effective vaccine is urgently needed. However, the
development of DEN vaccine has been greatly hampered by the
potential risk of ADE. The only licensed DEN vaccine (CYD-
TDV) available is a tetravalent, recombinant, live attenuated
DEN vaccine developed by Sanofi Pasteur (Guy et al., 2015).
The vaccine has shown varied efficacy against different serotypes
and in different age groups, with safety issues in children below
9 years of age (Capeding et al., 2014; Villar et al., 2015). In
addition, large scale efficacy studies have suggested that this
vaccine works best in people with pre-existing DENV immunity
(Capeding et al., 2014). Thus, WHO recommendations have
limited the use of the CYD-TDV vaccine in geographical settings
with high DEN burden and in age group 9–45 years old (WHO,
2017). Clearly, while this first-in-human tetravalent DEN vaccine
will certainly provide a wealth of knowledge and improve our
understanding of immune correlates of protection, a better
vaccine is needed to protect the 3.9 billion people that are at
risk of DEN infection. Several promising vaccine candidates are
currently under development; some have entered the clinical
pipeline [reviewed in (Schmitz et al., 2011)]. It is hoped that they
will address the shortcomings of the CYD-TDV vaccine.

Dengue virus and Dengue Infection
Cycle
DENV belongs to the family Flaviviridae of which the members
are well known as human pathogens, including WNV, Zika virus,
Yellow fever virus, Tick-borne encephalitis virus, JEV, and Hepatitis
C virus (HVC). They are enveloped viruses with positive sense,
single stranded RNA and many of them are arthropod-borne
viruses. Among all flaviviruses, DENV has the highest impact on
global disease burden. The virus particle is about 50 nm in size
and the RNA genome (∼10.7 kb) is encapsulated by a protein

shell which consists of three structural proteins, namely capsid
(C), envelope (E), and (pre)membrane protein (prM/M) (Kuhn
et al., 2002).

In order to establish infection, DENV first binds to the
host cell receptors via E proteins on the cell surface. The
ligand-receptor interaction initiates uptake of the virion through
receptor-mediated endocytosis (Acosta et al., 2014). Inside
the acidic late endosome, membrane fusion occurs as the
virion envelope fuses with the endosomal membrane (Allison
et al., 1995; Modis et al., 2004), followed by uncoating of
the nucleocapsid and then release of the viral RNA into the
cytoplasm. The RNA genome of DENV is translated into a single
polyprotein by host ribosomes and is made of three structural (C,
E, prM/M) and seven non-structural (NS) (NS1, NS2A/B, NS3,
NS4A/B, NS5) proteins. The polyprotein is then cleaved by host
and viral proteases to release individual viral proteins (Acosta
et al., 2014).

The viral genome replication process within the host cell is
mainly driven by the NS proteins. NS1 anchors the replication
complex to the ER membrane and interacts physically with
NS4B (Youn et al., 2012; Muller and Young, 2013). NS2A is
responsible for viral RNA synthesis and virion assembly (Xie
et al., 2015). NS3 functions as a serine protease, RNA helicase and
nucleotide triphosphatase/RNA triphosphatase, and its protease
activity is dependent on the cofactor NS2B (Falgout et al., 1991).
NS4A has been reported to induce membrane rearrangement
within the host cell, thereby assisting the formation of replication
vesicles (Miller et al., 2007). NS5 is a multifunctional enzyme with
a methyltransferase (MTase superfamily) domain and a RNA-
dependent RNA polymerase domain (Acosta et al., 2014). During
virion assembly, the newly synthesized viral RNA interacts with
C proteins to form the nucleocapsid. A spiky immature virion
is formed when E and prM proteins encounter the nucleocapsid
(Yu et al., 2008; Acosta et al., 2014). The maturation process takes
place in the trans-Golgi network where prM is cleaved by host
furin to generate a smooth surfaced mature virion (Stadler et al.,
1997; Yu et al., 2008), which is released into the extracellular
environment through the secretory pathway.

PROTEIN GLYCOSYLATION

What Is Glycosylation?
Glycosylation is the post-translational modification of
biomolecules such as proteins or lipids through the enzymatic
attachment of complex oligosaccharide structures to the peptide
backbone or lipid anchor (Varki et al., 2015). Over 70% of the
eukaryotic proteome is glycosylated (Dell et al., 2010). The range
of complexity of these structures is reflected by their covalent
attachment to the protein, the monosaccharide composition
of the glycan and combinations of anomeric ring linkages
between these monosaccharides. This complexity affects the
branching, antennae and topology of the glycan structures,
which translates to the overall tertiary and quaternary structure
of the glycoprotein. There are two types of protein glycosylation
distinguished by their site of attachment on the protein backbone;
N-linked glycosylation where the glycan is covalently attached
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to the asparagine (N) (consensus motif; NxS/T except where
x is a proline); and O-linked glycosylation where the glycan
is linked to the oxygen from some serine (S) or threonine (T)
residues of the protein backbone (Chandler et al., 2013; Varki
et al., 2015). N-linked glycans share a common chitobiose core
structure. Furthermore, N-linked structures fall under three
different classes: (1) high mannose, where the non-reducing
composition of the glycans are dominated by mannose sugars
that extend from the core, (2) complex, where the branching and
extension of the glycans from the core is initiated by N-acetyl
glucosaminyl transferases; and (3) hybrid structures where the
core is extended by both high mannose arm and a complex
structure on the other arm (Chandler et al., 2013; Varki et al.,
2015) (Figure 1).

Such complexity can be found with the isomerism/anomercity
of a sugar. Whilst two glycans may have the same composition,
the differences of their isomeric linkages can affect the selectivity
of their host receptors and thus biology. For example, in the
context of avian influenza, the haemagglutinin specifically and
exclusively recognizes 2,3-linked sialic acids that are found in the
avian host. This is in contrast to 2,6 linked sialic acid normally
found in the human host receptors with very low 2,3-linked
sialic acid expressed in the lower respiratory tract. Cross reaction
between avian H5N1 and such sialic acids caused the recent
human epidemics (Shinya et al., 2006; Walther et al., 2013).

Glycosylation Pathway in Mammalian
and Insect/Mosquito Cells
Glycosylation is a highly organized process that involves a
network of glycotransferases and glycosidases in the ER-Golgi
complex that enzymatically synthesize the glycan as well as trim
down the structures so as to achieve the refined structure.

In mammalian cells, N-glycosylation takes place
predominantly within the ER. Briefly, the initial stages of
glycosylation involve the enzymatic synthesis of dolichol-
phosphate-NAcGlcNAc2Man9Glc3 which usually takes place
across the membrane of the ER. This involves firstly the
enzymatic synthesis of dolichol-P-P-GlcNAc2Man5, before this
is “flipped” across the membrane into the ER lumen where
further monosaccharides are added (Shi and Jarvis, 2007;
Dell et al., 2010). The NAcGlcNAc2Man9Glc3 is transferred
to the appropriate NxS/T motif of the protein via the
oligosaccharyltransferase as the incipient protein is being
translated. As the N-glycans transition through the ER-Golgi
complex, a series of glycosidases trim down the mannose
residues before glycotransferases present in the Golgi extend the
antennae of the glycans to produce larger hybrid or complex
structures (Varki et al., 2015). In contrast to N-glycosylation,
O-glycosylation occurs entirely in the Golgi apparatus. It does
not involve any glyco-lipid intermediates and no glycosidases
appear to be involved in their synthesis and processing.

Within the insect kingdom, glycosylation is far simpler
yet interestingly insect are able to produce elaborate protein
glycosylation in a restricted fashion compared to glycosylation
of higher eukaryotes (Rendić et al., 2008). Most our knowledge
in insect glycosylation was derived from studies performed
on Drosophila melanogaster and baculoviral-insect systems.

In fact, the bulk of mammalian glycoproteins expressed and/or
purified in insect cells have used cell lines from Spodoptera
frugiperda (sf9, sf21) or Trichoplusia ni (High five) (Rendić
et al., 2008). Glycoproteins derived from these insect cell systems
display glycans that contain predominantly high mannose type
structures. However, the long belief that these high mannose
and paucimannosidic N-linked structures are the dominant
forms in insect-cell derived glycoproteins has been recently
challenged by the advent of high resolution glyco-analytical
tools which were able to identify glyco-epitopes such as
[alpha]1-3 fucosylation (Hsu et al., 1997; Takahashi et al.,
1999; Rudd et al., 2000) and double core fucosylated structures
([alpha]1-3 and [alpha]1-6 fucosylation on the core GlcNAc)
(Staudacher et al., 1992; Rendic et al., 2006). There were
also reports of the extension of the [alpha]1,3-arm of the
chitobiose core as opposed to the [alpha]1-6 arm extension
found in most mammalian cell lines (Kubelka et al., 1993).
Higher complex N-glycans can be found in many insect-
derived N-linked glycoproteins, however, if grown in serum
free media, lysed cell extracts from sf9 and High five cells
do lack the nucleotide donors for sialic acid (CMP-NeuAc)
(Rendić et al., 2008). Further to this, the presence of a
truncated trimannosyl N-glycan with an [alpha]1,6-linked fucose
was reported (Shi and Jarvis, 2007; Rendić et al., 2008).
Extensive work has shown that such structures are the result
of the action of an endogenous hexosaminidase specific for the
NAcGlcNAc[beta]1,2-Man structure rather than low activity of
the [beta]-1, NAc2GlcNAc Transferase II responsible for the
extension of the mannose arms of complex structures (Kubelka
et al., 1994).

Studies performed with mosquito cell lines A. albopictus and
A. aegypti showed that glycoproteins produced in these cell
lines display predominantly high mannose and pauci-mannosidic
structures (Hsieh and Robbins, 1984). Interestingly, within
these initial experiments, the presence of mannosidase-resistant
structures was observed (Rhomberg et al., 2006).

Glycomics
Glycomics as a field has experienced a significant maturation
from low to high resolution analysis. In the past decades,
scientists have mostly relied on digestive enzymes (Johnson et al.,
1994; Mondotte et al., 2007; Hacker et al., 2009), chromatography
(Johnson et al., 1994), lectin-binding assay (Johnson et al.,
1994; Hacker et al., 2009) and radioactive labeling (Smith and
Wright, 1985) to study the glycan structure on glycoproteins.
Enzymatic digestion by Endo H and peptide:N-glycosidase
(PNGase F) remains the most popular method due to its
simplicity and allows the investigator to determine whether
the glycan structure is asparagine linked (N-linked). In this
approach, purified glycoprotein is subjected to specific enzymatic
digestion prior to separation on SDS-PAGE. After cleavage of
the attached oligosaccharide chains, the digested protein migrates
ahead of the undigested form due to a lower molecular weight.
Enzymatic digestion of glycoproteins reveals, however, relatively
little information on the glycan structure.

Over the recent decade, glycan analysis has dramatically
improved through developments in fluorescent labeling,
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FIGURE 1 | Types of N-glycans. High mannose, hybrid and complex N-linked glycans are enzymatically attached to the N-X-S/T sequence of the glycoprotein.

LC and mass spectrometry. There is an abundance of
techniques such as LC, CE and mass spectrometry which
are available for glycomic analysis. For LC and CE, the field has
benefited from labels such as 2-AB, 2-AA (LC separation) and
9-Aminopyrene-1,4,5-trisulfonic acid (CE separation), whereby
glycans are tagged at a glycan’s reducing end and the identity of
these glycans is assigned based on their retention time behavior
across a HILIC or CE, respectively (Rudd and Dwek, 1997;
Callewaert et al., 2001). Approaches coupling fluorescence with
mass spectrometry (FLR-MS) have helped increase the efficiency
of glycomic approaches. In such a platform, the retention time
and fluorescence are usually coupled with mass detection to add
further confirmation (Houel et al., 2014; Zhang et al., 2016). The
use of exoglycosidase arrays adds further confidence to a glycan’s
structure elucidation and can help to identify co-eluting glycan
species (Marino et al., 2010). The evolving development of glycan
labeling has meant that newer, faster labeling and highly sensitive
labels such as procainamide or Rapidfluor Mass Spectrometry
(RFMS) label can increase the throughput and efficiency of a
glycomic analysis.

Various modes of mass spectrometry have been applied to
the analysis of released glycans. The most common are MALDI
and electrospray ionization. MALDI is a straight-forward

method that often requires methods such as permethylation
and esterification to increase signal intensity and stabilize
labile glycans that contain sialic acids. Electrospray ionization
involves a milder desolvation technique and coupled with
LC methods and further fragmentation of the molecule,
provides high resolution techniques to qualitatively characterize
a glycome (Nguyen-Khuong et al., 2015). Detection of glycan
fragments which result from fragmentation along the glycosidic
bonds (detected in positive mode) and cross-ring (detected
in negative mode) (Harvey et al., 2004; Everest-Dass et al.,
2012) help to understand the composition and topology of
the glycan without the need to adulterate the glycan through
derivatization.

Glycoproteomics allows investigators to understand the
degree of glycosylation on various sites of the glycoprotein.
The platform is adapted from proteomics and as such
relies heavily upon mass spectrometry and substantial data
analysis. Whilst most glycoproteomic methodologies follow
similar approaches to proteomics such as trypsin digestion
and analysis, key to any glycoproteomics method is the
enrichment of glycopeptides (Mysling et al., 2010; Kolarich et al.,
2012). This is important to reduce the ion suppression from
peptide mass spectrometry signals without enrichment. This
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can be performed via HILIC chromatography, in which the
enrichment is centered upon exploiting a glycan’s hydrophilicity.
Fragmentation data is vital to glycopeptide identification and
data analysis must be able to exploit the information which
can come from fragmentation modes such as collisionally
induced dissociation (CID), high collisional dissociation or
electron transfer dissociation/electron transfer high collisional
dissociation (ETD/EtHCD) available to the investigator (Scott
et al., 2011; Thaysen-Andersen et al., 2016; Stavenhagen et al.,
2017). Depending on the strength of fragmentation, information
such as glycan composition, site of attachment and peptide
backbone are all able to be divulged from a single spectrum (Yang
et al., 2016).

Biological Importance of Glycosylation
and Role in Viral Pathogenesis
Glycans either directly or indirectly have diverse biological
functions which span but are not limited to inflammation,
immunology, infectious diseases, metabolism, embryogenesis,
cancer biology and neurodegeneration. At the protein level,
glycosylation is responsible for correct protein folding/structure,
protein trafficking and stability, receptor/ligand recognition
as well as increasing its half-life in the blood stream (Park
et al., 2005; Bork et al., 2009; Sumer-Bayraktar et al., 2011;
Hart, 2013; Palmisano et al., 2013). At the cellular level,
complex sugar structures modulate receptor functions and
thus are integral to regulate normal cell–cell, cell-substrate
communication and adhesion (Vercoutter-Edouart et al., 2008;
Varki et al., 2015). Glycosylation disorders can adversely affect
immunity and cancer development. From an immunological
perspective, all living cells are covered by a dense glycocalyx
and indeed, pathogens and foreign objects must deal with
this complex forest of cell surface glycoconjugates upon
entering the host (Pickles et al., 2000; Rodrigues et al.,
2015).

Viruses do not possess their own glycosylation machinery and
by virtue of their opportunistic nature, are heavily dependent
upon the glycosylation machinery of the host cell to glycosylate
their proteins. HIV, Influenza virus, Hendra virus, Severe acute
respiratory syndrome coronavirus (SARS-CoV), Hepatitis viruses
and WNV are examples of viruses for which glycosylation
was shown to be critical to their stability, infectivity and
antigenicity (Mir-Shekari et al., 1997; Vigerust and Shepherd,
2007; Medina et al., 2013; Doores, 2015). Firstly, glycosylation
can be involved in receptor binding. This is exemplified by
HIV and DENV which rely on high mannose type glycosylation
to bind to their MRs or DC-SIGN that are present on host
immune cells (Cambi and Figdor, 2003; Cambi et al., 2004).
Furthermore, glycosylation is required to facilitate proper protein
folding and trafficking of the viral membranes using the
host chaperones such as calnexin and/or calreticulin proteins
(Meunier et al., 1999; Land and Braakman, 2001; Slater-Handshy
et al., 2004). Importantly, glycosylation is a means to evade
immune recognition within the host by changing glycan sites
(Medina et al., 2013), which in turn can increase the diversity of
the glycosylation on the virus. In addition, the glycan structure
has been reported to mask particular antigenic sites from

recognition by neutralizing antibodies (Doores, 2015; Walls et al.,
2016).

GLYCOPROTEINS IN DENV AND OTHER
FLAVIVIRUSES

Envelope (E) Protein
The external protein shell of DEN virion consists of 180
copies of E (53–56 kDa) and prM glycoproteins whereby
only E proteins are exposed on the surface (Kuhn et al.,
2002). Extensive research over the years has revealed multiple
functions of E protein in host receptor attachment, cellular
uptake of virion and membrane fusion. E protein forms dimers
on the virion surface (Kuhn et al., 2002). The ectodomain
of each E monomer without the transmembrane domains
and membrane-associated “stem” region displays an elongated
structure under Cryo-EM, which is further defined into three
distinct domains (Domains I, II, and III) (Rey et al., 1995). The
central N-terminal DI separates the dimerization DII from the
C-terminal DIII. DIII has been proposed to be the receptor-
binding domain (Kuhn et al., 2002) whereby neutralizing
monoclonal antibodies against DIII most efficiently block virus
initial attachment to mammalian cells (Crill and Roehrig,
2001).

The fusion peptide located at the tip of DII is essential for
endosomal membrane fusion and is essential for virus entry
(Allison et al., 2001; Kuhn et al., 2002; Huang et al., 2010).
Dimerization of E proteins at neutral pH positions the fusion
loop into a hydrophobic pocket formed by DI and DIII of the
adjacent E monomer. This helps to prevent premature exposure
of the fusion loop before endocytosis of the virion by a new
host cell. DI forms part of the flexible hinge region which
facilitates structural rearrangement of E protein during virion
maturation and fusion process (Zhang et al., 2004). Inside the
acidic endosome, the pH-dependent hinge at the DI-DII interface
(Allison et al., 1995; Modis et al., 2003) allows E dimer to
dissociate and rearrange into a trimeric form which serves as
a pre-fusion intermediate promoting membrane fusion (Modis
et al., 2004).

In the ER lumen of the host cell, membrane-associated E
protein is generated after co-translational processing of the
viral precursor polypeptide by host Signalase (Acosta et al.,
2014). The newly synthesized E protein rapidly heterodimerizes
with prM (Lorenz et al., 2002) and three prM-E heterodimers
further oligomerize to form a total of sixty heterotrimeric prM-
E spikes per subviral particle (Konishi and Mason, 1993; Zhang
et al., 2003). This higher-order oligomer has been proposed
to represent the preassembly complex (Wang et al., 1999).
Translocation of this complex from ER to Golgi is critical as the
transition from immature to mature virion is completed only
in the trans-Golgi network, where the spiky prM-E trimers are
rearranged into 90 flat dimers in a head-to-tail orientation on the
virion surface (Kuhn et al., 2002; Zhang et al., 2003).

In the ER, DENV E protein undergoes N-linked glycosylation
at two asparagines, N67 and N153 located in DII and DI,
respectively (Chambers et al., 1990; Johnson et al., 1994; Hacker
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et al., 2009). The N67 glycosylation site is unique to DENV
and has been proposed to interact directly with DC-SIGN,
one of the host cell receptors (Pokidysheva et al., 2006) (see
Virus Attachment to Cell Surface and Cell Entry Process).
In contrast, N153 (N154 in other flaviviruses) represents the
conserved glycosylation site in the family Flaviviridae. High
resolution crystal structure of Tick-borne encephalitis virus E
dimer shows the N154-oligosaccharide chain projected overhead
of the hydrophobic groove where the fusion loop fits in,
suggesting that it functions as an “epitope shield” over the
fusion loop to stabilize the dimer contacts (Rey et al., 1995).
Consistently, DENV2 and DENV3 mutant viruses lacking N153-
glycans due to a single point mutation within the glycosylation
motif displayed elevated fusion pH threshold compared to
their parental counterpart (Guirakhoo et al., 1993; Lee et al.,
1997). The authors proposed that the altered fusion activity
of these mutants was likely due to instability of the E
dimers.

The glycan structure on DENV E protein has been studied
using digestive enzymes (Johnson et al., 1994; Mondotte et al.,
2007; Hacker et al., 2009), chromatography (Johnson et al., 1994),
lectin-binding assay (Johnson et al., 1994; Hacker et al., 2009)
and radioactive labeling (Smith and Wright, 1985). Endo H-
and PNGase F-enzymatic digestion revealed the presence of
N-glycosylation in DENV E protein. No O-linked glycan has been
detected to date (Johnson et al., 1994). In mosquito cell-derived
virions, the N-glycans attached to E protein display heterogeneity
in structure and sugar composition where high mannose and
paucimannose with terminal mannose residues are the dominant
glycoforms (Figure 2A) (Smith and Wright, 1985; Johnson et al.,
1994; Hacker et al., 2009).

Recently mass spectroscopy has been applied to DENV
glycoprotein studies to provide a comprehensive and detailed
profile of the glycan moieties (Dubayle et al., 2015; Lei
et al., 2015). Using an integrated mass spectroscopy strategy
consisting of lectin microarray and MALDI-Time of Flight
Mass Spectrometry (MALDI TOF-MS), Lei et al. (2015) have
successfully determined the detailed composition of N-glycans
attached to the E protein from mosquito cell derived mature
DENV2. Among the 19 distinct N-glycans detected, 15 contain
terminal galactosylation while the remaining glycans were
identified as high mannose type, complex type, fucosylated and
sialylated N-glycans. In a separate study, the N-glycans from
DENV1-4 (vaccine CYD-TDV) produced in mammalian Vero
cells have been reported to consist of high mannose, complex
and hybrid glycans with complex glycans as the major glycan
species (Figure 2A) (Dubayle et al., 2015). By performing
in-gel proteolysis of E-protein, site specific N-glycans have been
determined. Sialylated complex glycans and high mannose (6–8
residues) glycans were detected at N153 in all DENV except for
DENV2. Besides, most of the complex or hybrid glycans at N153
were found fucosylated. Interestingly, fucosylated glycans were
detected only at N153 but not at N67 across all four DENV
serotypes. Since high mannose binding DC-SIGN interacts only
with N67 glycans on the viral surface (Pokidysheva et al.,
2006) and N153-glycan is dispensable for virus production in
mosquito and mammalian cells (Bryant et al., 2007), this suggests

that N153 glycans may serve a distinct function from N67
glycans in DEN pathogenesis possibly via interaction with an
unknown fucose binder or act as a viral glycan shield. For N67
specific glycans, DENV2 was reported to have a different sugar
composition from the other three DENV serotypes (Dubayle
et al., 2015) whereby a higher content of complex or hybrid
glycans was found in DENV2. High mannose glycans were
detected as the main glycan species for DENV1, 3 and 4. In
addition, sialylated N-glycan was detected only in DENV2 at
this site. The differential glycosylation pattern between DENV2
and DENV1, 3, 4 may impact on various aspects of dengue
pathogenesis including virus tropism, virus fitness, and induction
of host responses (see Role of Glycosylation in DENV Life
Cycle).

Non-structural Protein 1 (NS1)
Non-structural Protein 1 (NS1) was first identified as a non-
hemagglutinating, soluble complement-fixing antigen in the
brain and serum from DENV2-infected mice (Brandt et al.,
1970; Smith and Wright, 1985). NS1 has a molecular weight
range of 46–55 kDa depending on its glycosylation status. It
is a multifunctional glycoprotein which presents in different
oligomeric forms and locates at various cellular compartments
(Westaway and Goodman, 1987; Flamand et al., 1999).

Non-structural Protein 1 monomer consists of three structural
domains namely a β-roll dimerization domain, a wing domain
and a β-ladder domain (Akey et al., 2014). The monomer
structure is stabilized by six intramolecular disulfide bonds and
no intermolecular disulfide bond has been identified in dimeric
NS1 (Winkler et al., 1988). However, any one of the three
cysteine residues at the C-terminal has been reported to be
important for dimer formation (Pryor and Wright, 1993). The
β-roll domain and part of the extended wing domain form a
hydrophobic protrusion surface that acts as the ER membrane
and replication complex (NS4B) interacting site, which is critical
for viral RNA replication (Youn et al., 2012; Akey et al.,
2014).

NS1 dimer is formed when two β-roll domains dimerize
at the center and these dimers tend to trimerize resulting
in hexameric NS1 (Flamand et al., 1999; Gutsche et al.,
2011; Muller et al., 2012). The NS1 hexamer crystal structure
revealed a barrel-shaped oligomer with a central open channel.
Three dimers are arranged symmetrically in a way such
that the β-roll domains are entirely facing inwards and the
channel interior is lined by the hydrophobic protrusion surface
contributed by each dimeric component (Akey et al., 2014).
The hydrophobic lining allows the NS1 hexamer to be secreted
as a lipoprotein whereby the lipid cargo is loaded into the
central channel (Gutsche et al., 2011). In contrast to the β-roll
domains, glycosylation sites and most of the linear epitopes
of NS1 identified are facing outward, representing the most
accessible parts of NS1 hexamer by host antibodies (Akey et al.,
2014).

Intracellular NS1 is predominantly in dimeric form whereas
secreted NS1 is mainly in hexameric form (Figure 2B) (Flamand
et al., 1999). During protein synthesis, NS1 is cleaved from
the viral polypeptide and translocated into the ER lumen.
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FIGURE 2 | Continued
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FIGURE 2 | Glycosylation of DENV E (A) and NS1 (B) proteins in mammalian cells and mosquito cells. (A) In ER, newly synthesized E protein is glycosylated and
heterodimerizes with prM protein to form a higher order oligomeric preassembly complex. The immature virus particle with prM-E spikes is formed when the
nucleocapsid associates with prM-E-rich membranes which buds into the ER lumen (1). The glycans remain of high mannose type on the immature virus particle as
it is translocated to Golgi apparatus along the secretory pathway (2). The conformational rearrangement of prM-E spikes and cleavage of prM by host protease furin
occurs in the Golgi to produce a mature, smooth virus particle. In mammalian cells, the glycans are further processed and modified into complex glycans before the
virus particle is released to the extracellular milieu (route 2a). In mosquito cells, majority of the glycans are high mannose or galactosylated due to the different
glycosylation enzymes expressed in insect cells (route 2b). High mannose glycan on the E protein, particularly the N67-glycan facilitates DC-SIGN(+) cell infection
and virus propagation. The function of complex glycan on E protein is currently unknown. The glycosylated pr peptides are bound to E protein after furin cleavage
and only dissociate at neutral pH in the extracellular milieu. (B) Monomeric NS1 protein is glycosylated with high mannose glycans at N130 and N207. The monomer
rapidly dimerizes in the ER and membrane-associated NS1 dimers (1) are involved in virus RNA replication. Three NS1 dimers form a soluble hexameric NS1 but the
exact location of hexamer formation remains unknown (2). In mammalian cells, the N130 glycans are modified into complex glycans before the soluble NS1 hexamer
is secreted out of the cells (route 2a). In mosquito cells, generation of complex glycans doesn’t happen and the lack of complex glycans (N130) on NS1 hexamer
affects hexamer stability and greatly reduces its secretion (route 2b). A subset of dimeric NS1 are found on the infected cell surface but the trafficking pathway has
yet to be determined (route 2c). High-mannose glycan at N207 stabilizes NS1 dimer.

The soluble monomer undergoes dimerization to gain partial
hydrophobicity (Flamand et al., 1999), allowing membrane
association of NS1 dimer in the absence of a transmembrane
domain (Winkler et al., 1989). The exact mechanism of NS1
hexamer formation remains unclear and two possible locations
have been proposed including along the Golgi secretory pathway,
or immediately after dimerization at the ER (Muller and Young,
2013).

The functions of NS1 are closely associated to its cellular
location throughout the virus replication cycle. ER membrane-
associated dimeric NS1 has been found to co-localize with
viral dsRNA (Mackenzie et al., 1996). Circulating hexameric
NS1 is able to bind to the plasma membrane of mammalian
cells via the interaction between its N-glycans and cell surface
glycosaminoglycans, heparin sulfate and chondroitin sulfate
E (Avirutnan et al., 2007). Recently, it has been reported
that hexameric NS1 contributes to disease pathogenesis of
severe DEN (Beatty et al., 2015; Modhiran et al., 2015).
The soluble protein acts as a viral toxin that induces
pro-inflammatory cytokine response and vascular leakage
via Toll-like receptor 4 expressed on immune cells and
endothelial cells (Modhiran et al., 2015). Beatty et al. (2015)
showed that NS1 vaccination protects mice from NS1-induced
vascular leakage which was independent of complement
components.

Glycosylation of DENV NS1 occurs right after its cleavage
in the ER (Winkler et al., 1988) at two asparagines, N130
and N207 (Putnak et al., 1988; Winkler et al., 1989; Flamand
et al., 1999). These two N-glycosylation sites are conserved in
the family Flaviviridae. Recently, a less conserved glycosylation
site at N175 has been reported in WNV, St. Louis encephalitis
virus and Murray Valley encephalitis virus but is absent in all
four serotypes of DENV (Akey et al., 2014). Intracellular and
extracellular DENV NS1 display different types of N-glycans as
the oligosaccharides undergo modification during the maturation
process (Winkler et al., 1989; Pryor and Wright, 1994; Flamand
et al., 1999). Intracellular dimeric NS1 N-glycans are of
high mannose composition regardless of the host cell type
(mammalian or mosquito cell) (Mason, 1989). On the other
hand, in extracellular hexameric NS1, the N130-glycans consist
of complex oligosaccharides whereas the N207-glycans are
made of high mannose type sugar chains (Mason, 1989; Pryor
and Wright, 1994; Flamand et al., 1999). As dimeric NS1

passes through the Golgi apparatus, two N130-glycans are
further modified into the Endo H-resistant, multi-branched
complex type before the protein is released (Winkler et al.,
1989). The differential modification at these two sites is
due to the inaccessibility of N207-glycan by Golgi-resident
enzymes after the dimerization of NS1 (Flamand et al.,
1999).

PrM/M Protein
In the DENV replication cycle, prM interacts with E protein
and acts as a chaperone to ensure proper E protein folding
(Lorenz et al., 2002) and to prevent premature fusion of the
virus particle along the secretory pathway by concealing the
E fusion loop (Li et al., 2008; Yu et al., 2009). Glycosylation
of the prM/M glycoprotein in DENV has not been extensively
studied. The protein is glycosylated at N69 (Table 1) with
circumstantial evidence for N-linked glycosylation at sites 7, 31,
and 52 (Courageot et al., 2000). It was found that α-glucosidase
inhibitor reduced the amount of prM-E heterodimer, suggesting
the N-glycans are required for productive folding pathway of
these glycoproteins (Courageot et al., 2000). Triglucosylated
N-glycan at N68 of DENV1 affects the folding of prM by causing
a delayed formation of prM-E heterodimer (Courageot et al.,
2000).

ROLE OF GLYCOSYLATION IN DENV
LIFE CYCLE

N-glycosylation on both E and NS1 proteins has been shown to
play important roles throughout the DENV infection cycle from
virion attachment, entry, maturation, assembly to secretion.

Virus Attachment to Cell Surface and
Cell Entry Process
Carbohydrate chains on the DENV E proteins play a critical role
in host cell infection at the early step of host receptor binding.
Indeed, virus attachment and penetration into mammalian and
mosquito cells were blocked by pre-incubation of virus with
Concanavalin A, a plant lectin that binds to alpha-linked terminal
mannose of high mannose or hybrid glycans (Hung, 1999).
Lectins are a group of proteins that recognize carbohydrates
through a carbohydrate recognition domain [reviewed in
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TABLE 1 | Glycosylation of DENV proteins.

Serotypes∗ DENV 1 DENV 2 DENV 3 DENV 4

C NA NA NA NA

PrM± N64-69

E N67 and N153 N67 and N153 N67 and N153 N67 and N153

NS1 N130 and N207 N130 and N207 N130 and N207 N130 and N207

NS2A Va Va Va Va

NS2B NA NA NA NA

NS3 Va Va Va Va

NS4A Va Va Va Va

NS4B Va Va Va Va

NS5 Va Va Va Va

NA, not applicable (NxT/S motif is not identified).
Va, the presence and number of NxT/S motifs vary among serotypes.
∗DENV 1 strain Nauru/West Pac/1974 (Accession no:U88535) or strain 45AZ5 (Accession no: NC_001477), DENV 2 strain SG/D2Y98P-PP1/2009 (Accession no:
JF327392), DENV 3 strain GZ/10476/2012 (Accession no: KC261634) and DENV 4 isolate GZ30 (Accession no: JQ822247) are aligned against protein entries from
Conserved Domain Database (CDD) or UniProt using BLAST (Basic Local Alignment Search Tool).
±The N-glycosylation site is located at residue 64 to 69 depending on the serotype.

(Zelensky and Gready, 2005)]. To date, various lectin families
such as C-type, P-type, L-type, Galectin and Calnexin have been
shown to interact with viral components (Liu et al., 2015). C-type
lectins are particularly important for DENV infection as they
have been shown to be involved in host cell attachment and
disease pathogenesis (see Disease Pathogenesis).

The cell membrane-anchored C-type lectin DC-SIGN has
been identified as host cell receptor for many viruses (Liu
et al., 2015), among which DENV infects DC and monocyte
via DC-SIGN (Navarro-Sanchez et al., 2003; Tassaneetrithep
et al., 2003). The interaction between DC-SIGN and DENV can
be inhibited by the addition of mannose and mannan (Chen
et al., 2008) and has been further examined at the molecular
level by structural analysis. Cryo-EM data of DENV/DC-
SIGN complexes reveals that the carbohydrate recognition
domain of DC-SIGN interacts directly with the N67-glycan
of E dimers (Pokidysheva et al., 2006). Consistently, lectin
(HHA)-resistant DENV which lacks both N-glycosylation sites
on E protein failed to infect DC-SIGN(+) DC, in contrast
to productive infection and replication in DC-SIGN(−) and
carbohydrate-independent cells such as Vero, Huh7, C6/36
and Baby Hamster Kidney fibroblasts (BHK-21) (Alen et al.,
2012). The presence of N67-glycan on E protein also allows
DENV to infect endothelial cells in liver and lymph node via
DC-SIGN-related proteins known as DC-SIGNR and L-SIGN,
the close homologues of DC-SIGN (Tassaneetrithep et al.,
2003; Alen et al., 2012). In addition to DC-SIGN, MR has
been identified as another C-type lectin utilized by all four
serotypes of DENV to infect macrophages and DC (Miller
et al., 2008). Both MR and DC-SIGN bind to DENV E
protein with high affinity (KD in the sub-nanomolar range)
(Lo et al., 2016), despite a different ligand specificity for
these two host receptors (Miller et al., 2008). MR shows
a preferential binding to terminal mannose, fucose and
N-acetyl glucosamine while DC-SIGN binds to high-mannose
oligosaccharides (Miller et al., 2008). As DC-SIGN and MR
have been proposed to be the primary host receptors for
DENV during infection (Lo et al., 2016), the engagement

to these C-type lectin receptors with diverse glycoforms of
E protein may allow DENV to infect a wide range of host
cells.

In contrast and interestingly, N67 deglycosylated (N67−)
DENV1 and DENV2 were found to display enhanced infectivity
in mosquito cells (C6/36) compared to wild type (WT) (Ishak
et al., 2001; Lee et al., 2010; Alen et al., 2012). For mosquito
cells, the entry mode employed by Flavivirus (DENV and JEV)
was shown to involve membrane fusion instead of receptor-
mediated endocytosis (Hase et al., 1989a,b). Hence, it is possible
that absence of the N67-glycans from the virion surface
reduces steric hindrance and therefore promotes cell membrane
attachment and membrane fusion. Finally, N153 deglycosylated
(N153−) DENV mutant displayed reduced infectivity (10-fold
lower) in both mammalian and mosquito cells compared to
WT, possibly due to impaired virus entry process (Lee et al.,
1997; Hacker et al., 2009), whereby loss of the N153-glycan
affected the conformational stability of E proteins and led
to premature exposure of the fusion peptide (Yoshii et al.,
2013).

Production of Infectious Virus Particles
E Protein Glycosylation
Early studies on DENV E protein showed that N-glycosylation
is not essential for virus replication in mosquito cells (Bryant
et al., 2007; Mondotte et al., 2007). Instead, loss of the N67-
glycosylation site through site directed mutagenesis (N67Q) in
E protein was sufficient to render DENV2 (strain 16681) growth
defective in BHK-21 cells, a DC-SIGN(−) cell line (Bryant et al.,
2007). Direct transfection of N67Q mutant RNA into BHK-21
cells neither produced intracellular viral antigen nor released
new virus progeny. The lack of virion release may be due to
impaired virion secretion along the ER-Golgi secretory pathway
in the absence of N67-glycan tag on E protein. However, the same
mutant replicated and grew comparably to WT counterpart in
C6/36 mosquito cells in vitro and in A. aegypti mosquito in vivo
(Bryant et al., 2007), thus supporting that N-glycosylation of E
protein at position N67 is essential for productive infection in
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mammalian cells only, consistent with earlier studies (Bryant
et al., 2007; Mondotte et al., 2007).

Further investigation on the importance of the
N-glycosylation motif was done by Lee et al. (2010) through
extensive point mutation within the conserved N-x-T/S motif of
DENV2 (strains PUO-218 and NGC), whereby the conserved
residue T69 was replaced with residues of different side
chain propensity. Replacement of T69 by a larger and more
hydrophobic residue (leucine and valine) either by molecular
cloning (Lee et al., 2010) or by passaging the virus under selection
pressure (Alen et al., 2012) generated viable virus that retained
efficient growth in BHK-21 and Vero cells in the absence of N67
glycan. In addition, N67Q/D mutant virus generated in strain
PUO-218 propagated in mammalian cells at reduced growth
rate, which is inconsistent with previous studies carried out with
DENV2 strain 16681 (Bryant et al., 2007; Mondotte et al., 2007).
The differential and virus strain-dependent outcome led to the
hypothesis that in the absence of N67 glycosylation, the amino-
acid composition of the DII region determines virus survival in
mammalian cells (Lee et al., 2010). Multiple sequence alignment
showed indeed that strain 16681 differed from strains PUO-218
and NGC at two positions, arginine (R)120 in DII and T170 in
DI (Figure 3). Uncharged polar threonine replaces charged R120
and hydrophobic isoleucine (I) replaces T170 in strains PUO-218
and NGC. It is possible that the presence of hydrophobic
residues facilitates protein folding even without the glycan tag for
chaperone-assisted folding and followed by productive protein
secretion. Nevertheless, structural comparison of the WT strains
and their respective mutants needs to be carried out to confirm
this hypothesis.

In contrast to the varying outcomes obtained with N67 mutant
viruses and their ability to grow in mammalian cells, it has been
consistently reported that these virus variants replicate, propagate
in mosquito cells but produce lower virus titers compared to WT
(Bryant et al., 2007; Mondotte et al., 2007; Lee et al., 2010).

N153-glycan on E protein is important but not essential for
DENV survival in mosquito cells. Successive passages (as low
as two passages) of DENV in C6/36 cells in vitro resulted in
mutation at T155 which ablates the N153-glycosylation motif;
however, the non-glycosylated variant was able to propagate in
mosquito cells (Lee et al., 1997). N153− DENV grows in both
mammalian cells and C6/36 cells and produce lower virus titer
than its WT counterpart (Bryant et al., 2007; Lee et al., 2010),
which could be due to defective virus budding. Consistently, in
a study using transmission electron microscopy, it was shown
that virus budding of WT WNV occurs at the plasma membrane
while the mature progeny of N154− mutant scatters at the
smooth membrane vesicle within swollen ER lumen without
budding (Li et al., 2006).

NS1 Protein Glycosylation
N130A NS1 mutant virus of DENV1 (Tajima et al., 2008) and
DENV2 (NGC) (Pryor et al., 1998) failed to generate viable virus
in both mammalian and mosquito cells. Mutation at N130 in
DENV4 NS1 caused reduced viral growth in mammalian cells
and C6/36 cells (Pletnev et al., 1993). However, N130Q NS1
mutant of DENV2 (16681) produced infectious virus with a

similar titer as the WT virus in mammalian cells but with a
reduced titer in C6/36 cells (Crabtree et al., 2004). Removal of
glycan from N207 in DENV1 and DENV2 (16681) NS1 protein
produced similar growth and virus titers compared to WT in
mammalian cells despite a delayed cytopathic effect (Crabtree
et al., 2004; Tajima et al., 2008), which is not consistent with
the observation on DENV2 (NGC) (Pryor et al., 1998). Double
mutation attempts (N130Q/N207Q and T132N/T209N) failed
to generate genetically stable mutant viruses (Crabtree et al.,
2004). Taken together, the findings suggest that at least one of
the two N-glycosylation sites (probably N130) in NS1 protein is
essential to produce viable virus. Similar to E protein, the impact
of deglycosylation at this site varies depending on the virus strain
and amino acid residue used for replacement.

NS1 Protein Secretion
In DENV, N130-glycosylation is important but not essential
for NS1 secretion in mammalian cells (Despres et al., 1991;
Jacobs et al., 1992; Pryor and Wright, 1994; Crabtree et al.,
2004). Single and double NS1 mutant proteins are secreted
from infected cells even though a reduced secretion yield has
been observed (Crabtree et al., 2004; Somnuke et al., 2011).
The impact of deglycosylation on secretion is thought to be
associated with the stability of the NS1 oligomer. Mutation
of N130 or N207 does not affect dimerization of the protein
but compromises the stability of the dimer (Winkler et al.,
1989; Pryor and Wright, 1994). The dimer appeared more
heat sensitive when the N-glycan was removed from the
protein especially for N207A mutant. The use of tunicamycin,
an enzyme targeting the host glycosylation enzymes, allowed
confirm that absence of N-glycan was solely responsible for
the instability of NS1 oligomers instead of changes in the
polypeptide backbone in the genetically deglycosylated mutants
(Pryor and Wright, 1994; Flamand et al., 1999). Furthermore,
the secretion of NS1 was reduced when complex glycans
maturation was blocked by glycosylation inhibitors Swainsonine
and 1-deoxymannojirimycin (Flamand et al., 1999). Consistently,
low levels of NS1 with solely high mannose glycan are secreted
from infected mosquito cells, which lack the enzymes to
generate complex type glycans. These findings support the
proposal that N-glycosylation and complex glycan are important
for NS1 secretion (Hsieh and Robbins, 1984; Mason, 1989;
Thiemmeca et al., 2016). In addition, the majority of the
secreted WT and N207Q NS1 proteins are hexamers (Somnuke
et al., 2011), whereas secreted N130Q and N130/N207Q NS1
proteins showed reduced hexamer population and increase in
higher order oligomer (>675 kDa) population. As compared
to mammalian cell-secreted NS1, mosquito cell-secreted NS1
is less stable and undergoes degradation more rapidly at body
temperature (Thiemmeca et al., 2016). Hence, the presence of
complex glycan at N130 is critical for both NS1 secretion and
NS1 hexamer stability (Flamand et al., 1999; Somnuke et al.,
2011).

Similarly, it has been proposed that high-mannose glycans
at N207 stabilizes NS1 dimer (Pryor et al., 1998; Flamand
et al., 1999; Somnuke et al., 2011). Reduced levels of DENV
4 N207Q and N130Q/N207Q NS1 proteins were observed
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FIGURE 3 | Alignment of E protein sequences from multiple DENV 2 strains. N67 and N153 glycosylation motifs are highlighted in yellow. Strain 16681 differs from
strain NGC and PUO-218 at position 120 and 170 (in red). Asterisk indicates positions which have a single, fully conserved residue; colon indicates conservation
between groups of strongly similar properties.

in culture supernatant (Somnuke et al., 2011) which could
be explained by two possible scenari: (1) Stability of the
secreted mutant forms is compromised due to a different
protein conformation (Somnuke et al., 2011). The misfolding
of the protein may lead to a less effective secretion of
functional hexamer. (2) Transport of the protein from the
perinuclear region is affected which in turn compromises
the maturation and secretion of the protein (Crabtree et al.,
2004).

Virulence and immunogenicity
Deglycosylated NS1 mutant viruses (N130−) are less
neurovirulent as evidenced by the reduced mortality observed
with mice infected intracranially with the DENV2 and DENV4
mutants (Pletnev et al., 1993; Crabtree et al., 2004). The reduced
neurovirulence of these viruses which lack the complex type
glycans may be linked to the reduced levels of extracellular
hexameric NS1 (Crabtree et al., 2004). The virulence phenotypes
observed with N207− mutant viruses varied depending on
the DENV strain. DENV2 N207− mutant displayed decreased
virulence (Pryor et al., 1998; Crabtree et al., 2004), whereas the
DENV4 N207− mutant showed enhanced virulence in mice
(Pletnev et al., 1993). The low to undetectable levels of NS1
specific antibodies in mice infected with the DENV4 N207−
mutant suggests that the enhanced neurovirulence could be
attributed to the reduced immunogenicity of the virus (Pletnev
et al., 1993).

Complement Activation
The complement cascade is the central defense mechanism of
innate immunity which triggers the immune effector function
to remove infectious pathogens and modified self cells upon
activation. The activation and amplification of the complement
pathway involves a series of sequential events and the whole
process is tightly regulated. Complement can be activated
through three major pathways, namely the classical, lectin and
alternative pathways [reviewed in (Ricklin et al., 2016)]. The
classical pathway is triggered by antibody-antigen complexes
whereas the lectin pathway is activated by carbohydrate moieties
on the microbial surface. The alternative pathway is activated
through direct binding of C3b at the surface of pathogens, which
results from the constitutive basal cleavage of C3 (Ricklin et al.,
2016).

Mannose binding lectin (MBL) in the lectin pathway triggers
antibody-independent activation of complement (Thielens
et al., 2002). The proposed MBL-mediated virus elimination
mechanisms include (1) direct virus neutralization, (2) C3/C4
deposition on virus surface and (3) interference of host cell
lectin receptor binding (Liu et al., 2015). MBL differentiates
self- from non-self-antigens based on a sugar density-dependent
recognition mechanism (Dam and Brewer, 2010), and the micro
pattern of the oligosaccharides structure in addition to the
spatial geometry of the macro sugar pattern (Takahashi and
Ezekowitz, 2005). It was proposed that the additional N67-glycan
in DENV (which is absent in other flaviviruses) could promote
a more efficient recognition and binding by MBL (Avirutnan
et al., 2011). This hypothesis is supported by improved MBL
binding and in vivo virus clearance of a genetically engineered
WNV with additional N67-glycosylation site (Fuchs et al., 2010).
MBL is reactive to high mannose oligosaccharides and thus
can efficiently recognize insect cell-derived DENV with high
mannose glycans present on its E proteins. Hence, the change
of N-glycan profile of E protein after one round of replication
in mammalian host cells may provide an opportunity to the
virus to escape from effective MBL recognition (Fuchs et al.,
2011). However, mammalian cell-derived DENV was found to
be effectively inhibited and neutralized by mouse MBL (Fuchs
et al., 2010). A separate study instead reported preferential
binding of recombinant human MBL to insect cell-derived
DENV2, whereas virions produced in monocyte-derived DC
were not neutralized by human MBL (Avirutnan et al., 2011).
It therefore remains unclear whether MBL-mediated virus
clearance is optimally engaged during DENV infection in
humans.

Furthermore, studies have shown that NS1 interferes with
the complement pathway through binding to a number of its
components (Muller and Young, 2013). N130Q NS1 was found
to bind to C1s proenzyme, C1, C4, and C4b with reduced
affinity compared to WT and N207Q NS1 (Somnuke et al.,
2011), indicating that the N-glycan is required for effective
interaction with complement components. The role of NS1
glycosylation in the ability of the protein to interfere with
the complement activation, however, has been largely ignored.
The N-glycans were proposed to be involved in NS1 binding
to C4 (Avirutnan et al., 2010) although direct experimental
evidence has been missing. A recent study reported that
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secreted NS1 binds directly to C4BP, a major inhibitor of
the C4b component (Thiemmeca et al., 2016). This binding
leads to the recruitment of C4BP on cell surface via NS1 and
inactivates C4b thereby interfering with the formation of the
membrane attack complex (MAC). Furthermore, the work has
demonstrated a competitive binding of NS1 to MBL, which
prevents MBL-mediated DENV destruction. The presence of
secreted NS1 in the saliva of Aedes mosquito suggests that
secreted NS1 protein could help DENV to escape the host innate
immune surveillance during virus transmission (Thiemmeca
et al., 2016).

Disease Pathogenesis
Severe DEN (DHF/DSS) is characterized by increased
vascular permeability and plasma leakage, thrombocytopenia,
hemorrhagic fever and circulatory failure in DSS (WHO,
2017). The current paradigm proposes that viral-induced pro-
inflammatory cytokine storm drives the disease progression
to DHF/DSS (Pang et al., 2007). Direct interaction between
DENV and CLEC5A expressed on macrophages indicates
that virus glycosylation plays a role in DEN pathogenesis
(Chen et al., 2008; Wu et al., 2013). Similar to the engagement
to DC-SIGN, DENV binding to CLEC5A relies on sugar
moieties and can be inhibited by exogenous fucose and
mannose (Chen et al., 2008). However, CLEC5A binding
does not mediate viral entry into the host cell, instead it
serves as a cooperative signaling receptor to MR/DC-SIGN
that activates macrophage inflammasome and triggers the
production of pro-inflammatory cytokines (Chen et al., 2008;
Wu et al., 2013; Lo et al., 2016). Consistently, anti-CLEC5A
monoclonal antibody reduced DENV-induced vascular leakage
in a mouse model (Chen et al., 2008), which further supports
that targeting the viral glycoprotein-host lectin receptor
interactions represents a potential therapeutic approach to
counteract the excessive inflammatory responses involved in
severe DEN.

FUTURE PERSPECTIVES AND
CONCLUSION

Glycosylation is a post-translational modification which
significantly affects the conformation of a protein. It is a
heterogeneous process that is highly host-cell specific. Viruses
have evolved to utilize their host’s glycosylation machinery so as
to optimize their fitness, infectivity, replication and virulence.

The role of glycosylation and glycan structures in DENV
virulence has yet to be reported with evidence of attenuated
phenotypes in symptomatic mouse models. Given the impact of
glycosylation in virus entry and virus fitness in mammalian cells,
it is highly likely that deglycosylated DENV mutants will display
reduced virulence in vivo. The ability of Celgosivir treatment, a
bicyclic iminosugar that inhibits glycosylation through negatively
binding to ER [alpha]-glucosidase II, to protect mice from a
lethal DENV challenge indirectly demonstrates the importance of
glycosylation in DENV virulence (Perry et al., 2013; Sayce et al.,
2016; Warfield et al., 2016).

To date, out of the eight DENV potential glycoproteins
(Table 1), only E and NS1 proteins have been characterized
from a glycosylation standpoint and not across all the DENV
serotypes. Despite the biological importance of these structures
being recognized, efforts to characterize the nature of the
glycan structures in DENV have remained timid. There is
for example little understanding of how glycosylation impacts
DENV cell tropism where different glycan variants may
influence binding of DENV to various host cell receptors
and subsequent cell infection. Characterization of DENV
glycoforms has been mainly performed in the mammalian
cell line BHK-21 but no study has been conducted in more
relevant primary mammalian cell types including Langerhans
cells, monocytes, hepatocytes, and endothelial cells. Furthermore,
in-depth characterization of the glycan structures using the
latest glycomics technologies has yet to be reported for
DENV. Associating the contribution of these glycans to the
structure and ultimately function of the virion glycoproteins
indeed requires glycomics and glycoproteomics. Such data
need to be modeled using computational approaches as
methods for crystallizing glycoproteins remains a complicated
feat.

Furthermore, the role of glycosylation is also very important
to recognize in biotherapeutic strategies. While substantial efforts
have been devoted to developing neutralizing antibodies against
DENV, the potency of these antibodies is largely dictated by
the accessibility of the epitope that they target which can be
influenced by the glycosylated status of the protein (Smith
et al., 2013). Consistently, E protein glycosylation site has been
reported to modulate the binding of neutralizing antibodies
against a highly conserved, serotype cross-reactive epitope
(Dejnirattisai et al., 2015). These challenges have prompted
substantial investment into elucidating the three-dimensional
conformation of the protein-antibody complexes and more
importantly how glycosylation contributes to the tertiary and
quaternary arrangements of the different glycoproteins on
the virion. This approach is critical for the development
of new therapeutics with broader activity and increased
efficacy.

In conclusion, the DEN field as a whole would benefit
greatly from in-depth understanding and characterization of the
glycosylation patterns of DEN virions. With the recent technical
advances in the fields of glycomics and glycoproteomics, this
has become possible and will depend on productive interactions
between glycobiologists and DEN virologists.
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