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Predictive models of the growth of foodborne organisms are commonly based on data

generated in laboratory medium. It is a crucial question how to apply the predictions

to realistic food scenarios. A simple approach is to assume that the bias factor, i.e.,

the ratio between the maximum specific growth rate in culture medium and the food in

question is constant in the region of interest of the studied environmental variables. In this

study, we investigate the validity of this assumption using two well-known link functions,

the square-root and the natural logarithm, both having advantageous properties when

modeling the variation of the maximum specific growth rate with temperature. The main

difference between the two approaches appears in terms of the respective residuals

as the temperature decreases to its minimum. The model organism was Bacillus cereus.

Three strains (B594, B596, and F4810/72) were grown in Reconstituted Infant Formulae,

while one of them (F4810/72) was grown also in culture medium to calculate the bias

factor. Their growth parameters were estimated using viable count measurements at

temperatures ranging from 12 to 25◦C. We utilized the fact that, if the bias factor is

independent of the temperature, then the minimum growth temperature parameter of the

square-root model of Ratkowsky et al. (1982) is the same for culture medium and food.

We concluded, supported also by mathematical analysis, that the Ratkowsky model

works well but its rearrangement for the natural logarithm of the specific growth rate

is more appropriate for practical regression. On the other hand, when analyzing mixed

culture data, available in the ComBase database, we observed a trend different from the

one generated by pure cultures. This suggests that the identity of the strains dominating

the growth of mixed cultures depends on the temperature. Such analysis can increase

the accuracy of predictive models, based on culture medium, to food scenarios, bringing

significant saving for the food industry.

Keywords: Bacillus cereus, predictive microbiology, bias factor, reconstituted infant formulae, Ratkowsky model

INTRODUCTION

Bacillus cereus is a Gram positive, spore-forming, facultative anaerobic, rod-shaped pathogen
(Kotiranta et al., 2000). Bacillus cereus strains are ubiquitous in the environment and can be isolated
from soil, water and vegetables (Althayer and Sutherland, 2006; El-Arabi and Griffiths, 2013). They
are commonly found in raw materials and processed foods, such as rice, milk and dairy products,

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
http://www.frontiersin.org/Microbiology/editorialboard
https://doi.org/10.3389/fmicb.2017.01799
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2017.01799&domain=pdf&date_stamp=2017-09-21
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:mariem.ellouze@rdls.nestle.com
https://doi.org/10.3389/fmicb.2017.01799
http://journal.frontiersin.org/article/10.3389/fmicb.2017.01799/abstract
http://loop.frontiersin.org/people/425907/overview
http://loop.frontiersin.org/people/429633/overview
http://loop.frontiersin.org/people/429659/overview
http://loop.frontiersin.org/people/46143/overview


Buss da Silva et al. Predicting the Growth of B. cereus

meat and meat products, pasteurized liquid egg, ready-to-eat
vegetables, and spices (Ceuppens et al., 2011). Bacillus cereus
can be responsible for food poisoning illnesses in two ways:
by heat labile, diarrhea-causing enterotoxins produced in the
small intestine, and by heat stable cereulide toxin produced
in the food before ingestion (Ceuppens et al., 2011), causing
emetic syndromes. Emetic strains are, therefore, a concern to the
food industry since it is not possible to eliminate the cereulide
once performed in the food. Growth and toxin production must
be strictly controlled, especially in food targeted to sensitive
populations.

Bacillus cereus can endure ultrahigh-temperature (UHT)
pasteurization, resist spray drying and survive in final products
(Mcauley et al., 2014). Moreover, according to a review published
by the European Food Safety Agency (EFSA, 2005), B. cereus
strains are highly variable in terms of their tolerance to high
temperatures and their ability to grow. This is mainly dependent
on their phylogenetic group (Carlin et al., 2013). Mathematical
modeling can be a valuable tool to assess and quantify this
variability. It is widely accepted that temperature is the most
important external environmental factor affecting microbial
response. Among the available predictive models, the model
of Ratkowsky et al. (1982) is commonly used to predict the
maximum specific growth rate in the suboptimal region of
temperature.

However, developing and validating a new model to predict
microbial behavior during the manufacturing or the shelf life of
a food commodity require extensive experimental work. It is a
good practice to use readily available published data and models
in the literature or in user-friendly predictive microbiology
tools. For example, ComBase (http://www.combase.cc) provides
culture-medium-based predictive models for a large collection of
micro-organisms including B. cereus. To establish a “correction
factor” that could be used to predict the behavior of the organism
in food from culture-medium basedmodels would be valuable for
the food industry. To quantify the similarity between prediction
and observation, the accuracy and bias factors, Af and Bf ,
respectively, of Ross (1996) is commonly used for practical
applications. The indicators ln(Af ) and ln(Bf ) are certain average
differences between the natural logarithm of the predicted and
observed ln(µ) values of the organism in the studied range
of environmental conditions, where µ denotes the maximum
specific growth rate under a given condition. In the case of Af ,
the difference is meant as an absolute value, while in the case of
Bf it is meant with its sign. Consequently, a bias factor Bf = 1
means that, in a studied region, on average, themodel predictions
are neither over-estimating nor under-estimating the growth
rate compared to the observations. However, this could happen
in such a way, too, that the predictions are underestimations
in one part of the region while they are overestimations in
the other part. It would be desirable that, for a given food
matrix, the bias factor is independent of the environmental
conditions, primarily of the temperature, at least in the normal
physiological growth region of the organism. In this case, culture-
medium-based predictions, available from public software tools
such as ComBase, could be readily applied to the food in
question. Since culture medium broths provide optimal substrate

for the organism, the bias factor µfood/µbroth should normally
be < 1.

Themain objectives of this paper are (i) to provide a numerical
analysis for the connection between bias and the two most
frequently used transformations of the maximum specific growth
rate parameter, the square-root and the logarithm functions; and
(ii) to test whether the bias factor for B. cereus in Reconstituted
Infant Formulae (RIF) can be considered constant, at least in a
sub-optimal region of the temperature.

MATERIALS AND METHODS

Samples Preparation
In laminar flow cabinet, infant formulae milk powder was
weighted into sterile bottles, warm (∼50◦C) sterile water was
aseptically added and then mixed to dissolve, according to
manufacturer’s instructions to obtain 50 ml of RIF samples.

Strains Preparation
Three emetic strains of Bacillus cereus were used in this
study. B594 and B596 isolated from cereals and filed in
the Nestlé culture collection and F4810/72 a reference strain
from the DSMZ culture collection isolated during an outbreak
investigation and also referred to as DSMZ4312 as reported in
Carlin et al. (2013). Stock cultures were formed using subcultures
of each strain supplemented with glycerol and stored at −80◦C
until used. For each strain, one tube of frozen stock culture was
used to inoculate 10 ml of BHI (Sigma-Aldrich) and stored for 24
h at 30◦C. Then 100 µl of this culture was put into another 10
ml of BHI and incubated for 18 h at 30◦C. The subculture was
then enumerated both on selective (Bacara, BioMérieux) and a
non-selective (TSAyE, Sigma-Aldrich) media, diluted to a target
level of 106 CFU/ml before applying a thermal stress during
25 s at 72◦C. The plates were incubated for 24 h at 30◦C. The
stressed culture was also enumerated both on the selective and
non-selective media to assess the stress intensity. This protocol
allowed to mimic the processing conditions that influences the
physiological state of naturally contaminating B. cereus cells.

Experimental Design
Prior to inoculation, RIF bottles were equilibrated at the targeted
temperatures (9, 12, 15, 18, 22, 25◦C for F4810/72 strain and 9,
12, 15, 18, and 22◦C for B594 and B596 strains). Appropriate
dilution of the inoculum was then added to 50 ml of RIF to
reach an initial concentration of 2.5 log CFU/ml. Inoculated
bottles were sampled for viable counts on Bacara medium at
appropriate sampling times to describe the different phases of the
growth curves. Three independent replicates were performed for
each experiment. For the reference strain F4810/72, additional
experiments were performed in BHI following the same protocol
to calculate the bias factor. All experiments were performed with
pure culture.

Data Analysis
Primary and Secondary Modeling
For each temperature, each curve was fitted by the primary
model of Baranyi and Roberts (1994) using the DMFit Excel
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Add-in, downloadable from http://www.combase.cc/index.php/
en/tools. As a second step, the effects of the environment, history
and strain were studied and modeled on the maximum specific
growth rate (µ), duration of lag phase (λ), and the natural
logarithm of the maximum population density (ymax).

The maximum population density and the h0 = µ · λ

parameters were taken as constant, as the simplest (zero-order)
model, obtained via taking the multiplicative average of their
estimates from the primary model.

The model of Ratkowsky et al. (1982),

√
µ = a+ bT (1)

in the reparameterized version

√
µ = b (T − Tmin) (2)

was fitted to the square root of the specific growth rates to
describe the effect of temperature, where a and b are constants
and Tmin =−b/a is a nominal minimum growth temperature, at
which the extrapolated maximum specific growth rate would be
zero.

We use the above well-established model in its second form,
Equation (2), so (though it leads to non-linear regression), the
important Tmin parameter and its standard error can directly
be obtained. To carry out the non-linear fitting, the method of
Levenberg–Marquardt (Press et al., 1986) was programmed in
Visual Basic for Applications assigned to MS Excel.

We also tested the Ratkowsky model in a rearranged form,
with the natural logarithm link function applied to the observed
maximum specific growth rates:

lnµ = ln b2 + ln (T − Tmin)
2 (3)

Bias Factor
A measure of the deviation between observed and predicted
growth, called the “bias factor” was introduced by Ross
(1996). As per definition, its natural logarithm, ln(Bf ) is the
average value between the observed and predicted ln(µ) values
where µ denotes the maximum specific growth rate of the
organism. It is of common sense to expect the conditions (here
the temperature), under which the µ-values were generated,
randomly distributed in the modeled region, in which case

ln(Bf ) = E[ln(µobs)− ln(µpred)] (4)

where E denotes the “expected value” operator,. Since the µpred

predictions produced by commonly used software packages are
often based on experiments carried out in culture medium
broth, while practical observations (µobs) refer to food, the above
expectation can be translated to

ln(Bf ) = E[ln(µfood)− ln(µbroth)]. (5)

In our case, the studied food matrix is RIF, for which a bias factor
can be derived via the above formula from the growth rate in
broth.

RESULTS

Primary and Secondary Modeling
Examples for fitting the primary model can be seen in Figure 1.

The parameter estimates from the primary modeling are
given in the Supplementary Information. Figure 2 shows all
specific rate estimates for the three studied strains at the different
temperatures in broth and in RIF.

The estimates for the b and Tmin parameters, when the
Ratkowsky model was fitted to the maximum specific growth
rates, are shown in Table 1. The Tmin-estimate for the strain
B594 was significantly higher than the respective estimates for the
other two strains.

The Ratkowsky model claims two major benefits: the linear
model structure for the “

√
µ vs. temperature” relationship, and

the constant variance of the measured
√

µ values, independently
of the temperature. In our case, because of biological replicates

FIGURE 1 | Growth of heat stressed B. cereus strain F4810/72, in RFI, at 9◦C
(diamond), 12◦C (cross), 15◦C (triangle), 18◦C (square), 22◦C (star), and 25◦C
(circle). The sigmoid model of Baranyi and Roberts (1994) was fitted

(continuous lines) to the log count curves at each temperature.

FIGURE 2 | Maximum specific growth rate estimates as a function of

temperature for all analyzed strains.
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TABLE 1 | Estimated parameters and their standard errors for the square root

model in RIF (3 strains) and BHI (one strain).

Strain and medium Tmin (◦C) b (h−1/2/◦C)

B594, RIF 8.43 ± 0.86 0.0643 ± 0.005

B596, RIF 6.52 ± 0.72 0.0555 ± 0.003

F4810/72, RIF 5.40 ± 0.88 0.0510 ± 0.003

F4810/72, BHI 5.13 ± 1.12 0.0601 ± 0.005

(three), it was possible to study the relative deviations of the
specific growth rates (standard deviation divided by the mean)
within the replicate curve-triplets. These showed no correlation
with the temperature (p= 0.65), see Figure 3.

This suggests that the natural logarithm could also be a
suitable link function for themaximum specific growth rate when
modeling its dependence on the temperature. This comes from
the relationships:

µobs − µ

µ
= ε (6)

µobs = µ(1+ ε) (7)

ln (µobs) = ln (µ) + ln(1+ ε) ≈ ln (µ) + ε (8)

where the approximation is accurate at least for one digit if
the relative error ε is less than 0.3. For ε -values over 0.3, the
approximation in Equation (8) would have worse than one digit
accuracy. From this, it also follows that, since our average relative
errors are less than 10%, the standard error of fit of the secondary
model for ln(µ) will be ca 0.1 (or possibly higher, if the secondary
model describes the “µ vs. T” relationship inaccurately).

It can be readily seen that if the ε random error in the
Equations (6–8) is constant, independently of the temperature,
then the same cannot hold for the square-root model and vice
versa. Revisiting Equation (7), one can obtain, by first order
approximation:

√
µobs =

√
µ ·

√

(1+ ε) ≈
√

µ +
√

µ

2
· ε (9)

This means that, if the natural logarithm transformation makes
the deviation of the observed specific rates constant, then the
deviation generated by the square-root function should tend
to be smaller with temperature decreasing to Tmin. That is,
the absolute residuals should show a decreasing trend with the
temperature (and, therefore, with the µ-values) - as indeed we
will see it later. On the other hand, if the square-root was
the correct transformation to stabilize the variance still the
natural logarithm of the µ-values is regressed in the secondary
model, then the residuals should show increasing trend as the
temperature decreases to Tmin:

√
µobs =

√
µ + δ (10)

lnµobs ≈ lnµ + ln

(

1+
δ

√
µ

)2

(11)

FIGURE 3 | Relative deviations (standard deviation divided by the mean) of

replicate specific growth rate estimates, in RIF, at the studied temperatures.

There is no correlation (p = 0.65) between the relative errors and the

temperature.

Bias Factor
The maximum specific growth rate of the strain F4810/72
was measured in both RIF and BHI, providing a good
opportunity to investigate the bias factor. Notice that, if this
is independent of the temperature, then the secondary model
for ln(µ) for the two media (Equation 3) differ only by
an additive constant (Equation 5). This is equivalent to the
assumption that the Tmin parameter is the same for the BHI
and RIF. Our investigations showed that the Tmin of this
same strain in BHI was 5.13 ± 1.12 which is not significantly
different (p = 0.35) from the Tmin-value in RIF 5.40 ± 0.88
(Table 1).

Then we use the formulae

√
µbroth = bbroth (T − Tmin) (12)
√

µfood = bfood (T − Tmin) (13)

from which the ratio Bf = (bfood/bbroth)
2 is constant, so the

secondarymodels for ln(µ), for broth and food, should be parallel
and differ from each other by the

ln(Bf ) = 2ln(bFood/bBroth) (14)

constant additive term. The opposite direction of this conclusion
can be proven similarly, therefore, the assumption that Tmin

is the same for culture medium and food is equivalent to the
one that the ratio between maximum specific growth rates
in culture medium broth and food is constant, independently
of the temperature. In our situation, we showed, by F-test,
that the strain F4810/72 has the same Tmin = 5.26 value
for BHI and RIF (p= 0.35). Therefore, their model can be
written as

√
µRIF = 0.050 (T − 5.26)

√
µBHI = 0.061 (T − 5.26)
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Substituting the coefficients above in Equation (14), it
can be calculated that, for this strain, the ratio between
the maximum specific growth rates in RIF and culture
medium broth is Bf = (0.050/0.061)2 = 0.67. That is,
this strain grows at one third slower in RIF compared
to BHI.

Figure 4 demonstrates well the equivalence between the
two assumptions: common Tmin-value for the square-root and
parallel models for the logarithm link functions. The model (3)
fitted to the ln(µ) values of the strain F4810/72 in BHI and RIF
are parallel because they have similar Tmin estimates. As follows
fromEquation (9), the deviation from the parallel behavior would
be apparent at low temperatures only.

The shown equivalence is independent of the question
whether the square-root or the logarithm transformation
stabilizes the variance of the µ-values. According to the
Equations (7) and (9), both cannot be valid at the same
time. Comparing the absolute residuals for both the square-
root and logarithm link function, on all the data, the Figure 5

emerges.
The residuals with the square-root link function show a

decreasing trend as the temperature decreases to Tmin (p =
0.004), while in the case of logarithm link function, it does not
show correlation with the temperature (p = 0.37). Therefore,
based on our data, while the Ratkowsky model accurately
describes how the maximum specific growth rate depends on
temperature, the logarithm link function is more suitable to be
applied to the observed maximum specific growth rates when
regressing them against temperature. The difficulty is that this
difference between the two link functions can be detected at low
temperatures only, where it is not easy to keep the environment
constant for the required long time to reach the stationary
phase, therefore, the environmental effects (e.g., pH decrease
in the medium) rather than biological ones (linked to strain
variability for example) can dominate the variability of the
observed maximum specific growth rates.

DISCUSSION

The paper of Carlin et al. (2013) gives an opportunity to compare
the kinetic parameters of the reference strain F4810/72 in broth as
shown in Figure 4. Fitting the square-root model to the 12–25◦C
data for the same strain in that paper, the estimated parameters
were not different at 5% significance level (p= 0.12).

In the same way, we can validate our rate estimates by the
ComBase Predictor available from http://www.combase.cc. In
Figure 6, the square root values of our specific growth rates can
be compared with results from ComBase Predictor, in broth and
milk, assuming a bias factor of Bf = 0.67 for the food scenario.

The validation plot in Figure 6 is a convincing proof of the
diversity of the kinetic behavior of B. cereus strains. The ComBase
Predictor is based on growth curves generated by a cocktail of six
strains (Sutherland et al., 1996). A plausible explanation for the
seemingly unexpected non-linear behavior of the

√
µ predictions

is that different strains were the dominant ones at different
temperatures, while the same parameter of a pure culture show
a consistent linear pattern with temperature.

For quantitative validation, we made an extensive use of
the Bias and Accuracy factors of Ross (1996). We point out
here that while acknowledging the useful applicability of these
indicators, their definition needs some refinement, in agreement
with Baranyi et al. (1999). When the average of the ln(µfood)
- ln(µpred) values is taken, it is implicitly assumed that the
probability distribution of this difference is independent of the
temperature and possibly other environmental factors (Gill and
Phillips, 1985; Buchanan and Bagi, 1997; Neumeyer et al., 1997;
Mellefont et al., 2003). The constant bias-factor is a reasonable
assumption in case of the temperature, with the rationale that
all affecting biochemical reactions speed up or slow dow when
temperature changes. It is less obvious with other environmental
factors, like pH or water activity; nonetheless the assumption
provides a convenient approximation that is easy to build in
predictive packages.

FIGURE 4 | Model of Ratkowsky et al. (1982) with two different link functions: (A) Square-root; and (B) natural logarithm. The model describes the effect of

temperature on the maximum specific growth rate of the strain F4810/72 in RIF (circles) and in BHI (crosses). The (B) plot also shows data from Carlin et al. (2013)

(stars) for the same strain in broth.
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FIGURE 5 | Absolute residuals vs. temperature for (A) the square-root and (B) natural logarithm link functions.

FIGURE 6 | Square root of maximum specific growth rates of B. cereus vs.

temperature from different sources: Our B594, B596, and F4810/72 strains in

RIF (open diamond, circle and triangle, resp.); Our data for F4810/72 in broth

(plus sign); and ComBase Predictor results (continuous line). The dashed line

below the ComBase Predictor curve is the prediction obtained by using the Bf
= 0.67 bias factor.

The assumption of the temperature-independent bias factor is
equivalent to the existence of a minimum growth temperature
that is the same for the model and for the food matrix on
which the model is tested. Indeed, this latter condition has
been assumed by quite a few authors (Miles et al., 1997; Carlin
et al., 2013; Aryani et al., 2015, 2016), and was observed in
our situation, too, when comparing the temperature-dependent
maximum specific growth rates in RIF and culture medium. The
ComBase database (http://www.combase.cc) also provides a good
opportunity to check how much the temperature-independence
of the Bias factor is tenable.

In conclusion, we agree with many authors (Bernaerts et al.,
2000; Ross et al., 2003; Powell et al., 2015; Den Besten et al., 2017)
that, at sub-optimal temperatures, the Ratkowskymodel is a good

representation of the effect of temperature on the maximum
specific growth rate measured in a pure culture, in both
laboratory medium and food. However, the constant variance
assumption does not necessarily hold at low temperatures.
Besides, we established that the minimum growth temperature
can be taken as the same Tmin value for culture medium and
food, therefore, the bias factor is, indeed, independent of the
temperature. In mixed cultures, however none of the above
holds, and more complex developments (data and mathematical
considerations) are needed for an accurate model; see Baranyi
et al. (2017), which is, in a sense, a continuation of this
paper.
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