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The maximum specific growth rates of 12 strains, pair-wise belonging to six groups of

Bacillus cereus sensu lato, were fitted against temperature by a reparametrized version

of the model of Ratkowsky et al. (1983). This way, the interpretation of the new parameter

set was similar to that of the cardinal-values-model of Rosso and Robinson (2001), both

models including the minimum, optimum and maximum temperatures for growth as

well as a fourth parameter scaling along the dependent variable. The modularity of the

reparametrized version of the Ratkowsky model was utilized to show a so-far undetected

relationship between this scaling parameter and the cardinal temperatures, which linked

even distant (e.g., mesophilic and psychotropic) strains of B. cereus. We propose that the

name “tertiary modeling” should be used for investigations like ours, as logically derived

from the concepts of “primary” and “secondary” modeling. Such tertiary models may

reveal biological relationships between kinetic parameters within a group of strains. It

can also be used to create an overarching predictive model for mixed cultures, when

different strains grow together but independently of each other.

Keywords: cardinal temperatures, Ratkowsky model, Rosso model, reparameterization, Bacillus cereus

INTRODUCTION

It is a basic problem in quantitative microbiology whether strains belonging to the same
taxonomical group also behave similarly in terms of their kinetics. We investigate this
question on Bacillus cereus sensu lato, which has a rather complex taxonomy. It is composed
of seven closely related phylogenetic groups: B. cereus sensu stricto (psychotropic and
mesophilic), B. thuringiensis, B. anthracis, B. weihenstephanensis (mainly mesophilic), B. mycoides,
B. pseudomycoides and B. cytotoxicus. While strains clustering in group I (B. pseudomycoides),
group VI (B. weihenstephanensis, and B. mycoides) and group VII (B. cytotoxicus) appear to
be different species, the strains of B. cereus, B. thuringiensis and B. anthracis are spread over
groups II, III, IV, and V without formation of clusters (Guinebretiere et al., 2010). On the other
hand, comparison of housekeeping genes with MLST (MultiLocus Sequence Typing) and MEE
(MultiLocus Enzyme Electrophoresis) suggest that B. cereus, B. thuringiensis and B. anthracis
should belong to a single species (Helgason et al., 2000). Other studies also demonstrated very
high sequence similarity of the 16S rRNA gene between them (Sacchi et al., 2002). A generic
characterisation of the temperature responses of this complex set of groups would be of special
interest since they include psychotropic as well as mesophilic strains.
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Temperature is arguably the most influential external
environmental factor that affects microbial kinetics.
Mathematical modeling for food microbiology also started
with describing the effect of temperature on the inactivation of
Clostridium botulinum in canned food (Bigelow and Esty, 1920;
Bigelow, 1921) and most of the early predictive microbiology
articles, too, were focused on the thermal inactivation of
foodborne bacteria. It was only in the 1980’s when the first
predictive models describing the effect of temperature on
the growth of foodborne micro-organisms were published
(Ratkowsky et al., 1983; Rosso et al., 1993). These authors
showed that the simplest model describing the effect of
temperature on the specific growth rates of various bacteria
requires four parameters: the minimum, optimum, maximum
temperatures and the optimum specific growth rate. These
were called the cardinal values by Rosso et al. (1993). Rosso
and Robinson (2001) also used these cardinal values for their
model, which was a sort-of “fine-tuning” of the original Rosso
model.

Corkrey et al. (2012) assumed a universal thermodynamic
constant to explain why the effect of temperature on the
specific growth rates of more than 1600 strains of various
organisms can be described by an asymmetric delta-shaped
function, determined by the above cardinal values. The question
naturally rises: is there any relationship between them that
could reveal some biological universality? If yes, that would
narrow down the parameter space, in which models of bacterial
kinetics can move, making their regression to observed data
more robust and boosting the confidence in their use for
practical predictions. Indeed, Rosso et al. (1993) showed,
over several organisms, that the cardinal (minimum, optimum
and maximum) temperatures do exhibit strong links over
several organisms. This is not surprising, considering that the
optimum/maximum temperature is expected to be higher if
the minimum temperature is higher. The authors, however, did
not find any links between the cardinal temperatures and the
optimum specific growth rate. In this paper, we continue this
line, investigating whether the latter parameter and the cardinal
temperatures can be linked within B. cereus sensu lato. For 12 of
its strains, belonging to six groups, Carlin et al. (2013) published
the maximum specific growth rates, measured at various growth
temperatures. We are looking for certain invariants, linking all
the six groups, that would explain common patterns in their
“growth rate vs. temperature” models.

MATERIALS AND METHODS

To characterize the growth response of the microorganisms to
the temperature, two models have become widely used: that of
Ratkowsky et al. (1983) and that of Rosso and Robinson (2001).
They both have the shape of an asymmetric delta (Figure 1), with
the optimum generally much closer to the maximum than to
the minimum growth temperature. In fact, in this case, the two
models are hardly distinguishable, though the Ratkowsky model
is practically linear for sub-optimal temperatures, while the Rosso
model is more noticeably convex from below.

1. The Ratkowsky model is based on the observation that,
for a wide range of bacteria, at sub-optimal temperatures, the
square root of the maximum specific growth rate, denoted by
µ in what follows, linearly depends on the temperature, while it
is exponentially decreases to zero as the temperature passes its
optimal value:

√
µ = b · (T − Tmin) ·

(

1− ec (T−Tmax)
)

(1)

where T quantifies the temperature, b and c are rate constants,
Tmin, Tmax are parameters denoting “nominal” minimum and
maximum temperatures for the growth range. We call them
nominal because no reliable growth rates can be observed in their
neighborhood still they are convenient for interpretation.

2. The cardinal temperature model of Rosso and Robinson
(2001), which is a refinement of the model of Rosso et al.
(1993), also has four parameters. Generally, its shape is similar
to that of the Ratkowsky model but its algebraic form is different.
For compatibility, we put it down in a rearranged form so the
similarity and difference between the two models can easily be
seen:

√
µ = bµ · (T − Tmin) · F(T) (2a)

where

bµ =
√

µopt
(

Topt − Tmin

) (2b)

F(T) =
√

(Tmax − T)
(

Topt − Tmin

) (

Topt − T
)

+
(

Tmax − Topt

) (

T − Tmin + T − Topt

)

(2c)

Here, the minimum and maximum growth temperatures are
as above, while µopt and Topt are the location and value of
the function at optimum temperature. Understandably, the easy
microbiological interpretation of its parameters has contributed
to the popularity of the model.

Both models are interpreted for Tmin < T < Tmax

temperatures only. Besides, it is also evident from their structures
that both the b and bµ parameters control the respective slopes
around the minimum temperature, thus playing the role of
scaling along the vertical axis. The remaining terms only depend
on temperature differences. The first part of both models is
linear, which is modified by a factor that, as the temperature
increases toward its maximum, exponentially converges to zero
in Equation (1), while its equivalent, F(T), shows a square-root-
like convergence to zero in Equation (2a). The difference between
the two models becomes obvious if the optimum temperature
is close to the mid-point between the minimum and maximum
temperature. In that case, the denominator in the last factor
of the Rosso model is becoming closer and closer to zero,
which produces an increasingly pronounced convex shape at low
temperatures (Figure 1). For the exact Topt = (Tmin+Tmax)/2
case, the Rosso model is not interpretable, the denominator in
Equation (2a) becoming zero.

For most micro-organisms, the optimum is much closer
to the maximum temperature, in which case the two models
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FIGURE 1 | Simulating the Ratkowsky and Rosso models (continuous and broken lines, resp.), to describe the effect of temperature on the square-root of the

maximum specific growth rate. The minimum and maximum temperatures were chosen as 1 and 48◦C, resp.; the square root of the optimum specific growth rate is

2/h. For most microorganisms, the optimum is much closer to the maximum than to the minimum temperature (first case, Topt = 37◦C). If the optimum is

approaching to the mid-point between the minimum and maximum temperatures (second case, Topt = 25◦C), then the slope of the Rosso model, at the extreme

temperatures, converges to infinity, making the model less suitable for parameter estimation.

are very close to each other (Figure 1). However, when using
them for regression, there can be significant differences between
them in terms of robustness (i.e., sensitivity to noisy data)
and uncertainty of the parameter estimates. Such investigations
have been carried out by Ratkowsky (2003), though using the
original model of Rosso et al. (1993). It is out of the scope of
this paper to repeat his analysis using the model of Rosso and
Robinson (2001); let it suffice to note that (as a principle in
numerical analysis), estimating parameters in the denominator is
less advantageous than estimating those in the numerator. This
is one of the reasons why we chose the Ratkowsky model for
our purposes. The other reason is the modularity of Equation
(1). Its significance is that, if we have a robust, well-working
model for sub-optimal temperatures [i.e., without the last factor
in Equation (1) causing the non-linearity], then new super-
optimal temperature data can just be added to the regression so
that the already calculated b and Tmin parameters can remain
fixed. That is, we can easily ensure that the location and value
of the optimum growth rate have no effect on the former
estimates of the b and Tmin parameters. This is not the case
with the Rosso model, as shown by the formula for bµ in
Equation (2b).

Further increasing the comparability of the two models, we
can make sure, by some numerical techniques (see below and
the Implicit function problem in the Supplementary Material),
that the parameter interpretation of the Ratkowsky is equivalent
to that of the Rosso model. Take the derivative, according to
the temperature, of the right-hand side of the Ratkowsky model.
It should be zero for the Topt optimum temperature, from
which:

c(Tmax − Topt) = ln[1+ c(Topt − Tmin)],

where c > 0 and Tmin < Topt < Tmax (3)

From this formula, an R function and its inverse can be
constructed by a numerical algorithm, so that

c = R(Topt;Tmin,Tmax) and Topt = R−1(c;Tmin,Tmax) (4)

Apart from the c= 0 trivial solution, these functions are uniquely
defined under the condition that Topt–Tmin > Tmax–Topt , i.e., the
sub-optimal temperature range is greater than the super-optimal.

In the Supplementary Material, we also provide a short and
robust algorithm in Visual Basic to calculate the R and R−1

functions. Thus, the Ratkowskymodel can be written in the form,

√
µ = b (T − Tmin) ·

(

1− eR(Topt , Tmin , Tmax)· (T−Tmax)
)

(5)

In this arrangement of the Ratkowsky model, the reparametrized
coefficient c = R(Topt , Tmin, Tmax) contains the cardinal
temperature values, just as the F(T) factor in Rosso’s model
(Equation 2a). As mentioned, the role of the coefficient b is
analogous to that of bµ in the Rosso model; both are just scaling
the remaining, temperature-dependent part of the respective
equations. Therefore, the formulation of the Ratkowsky model
by Equation (5) is as much analogous as possible with that of the
Rosso model, the computational benefits of which was utilized
when creating Figure 1.

Carlin et al. (2013) studied two different strains from each of
the six groups of B. cereus. We analyzed the datasets, available
for each strain in the Supplementary Material, in two steps. First,
we fitted the

√
µ values for a suboptimal temperature region (T

≤ 30◦C) by the first, linear module of Equation (5), what we
will call the “truncated” Ratkowsky model. The result will be
called the “Ratkowsky-lines.” The reason for carrying out this
first step, only using the truncated Ratkowsky model, is that the
super-optimal temperature data aremuchmore erratic and fitting
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them simultaneously can corrupt the estimates of the Tmin, b
parameters, which can be accurately estimated even by just using
the much less noisy sub-optimal data. In the second step, we fixed
theTmin and b parameters obtained in the first step and fitted only
the remaining Toptand Tmax parameters of Equation (5). Then
we studied whether links can be detected between the obtained
strain-specific parameter estimates. The importance of such links
is not only that they might reflect genome-level similarities but
that they can also be used, for example, to develop overarching
models for mixed cultures.

RESULTS

Table 1 shows the estimates and their standard errors obtained
from the procedure above. Figure 2 shows the square-root
values of the maximum specific growth rates published in the
Supplementary Information of Carlin et al. (2013), as well as
the fitted Ratkowsky lines and the full models for each of
the 12 strains, divided into the six groups of B. cereus. The
b-slopes of the Ratkowsky-lines show a surprisingly strong linear
dependence on the Tmin temperatures (Figure 3). In fact, the

b = β(Tmin − T0) (6)

linear model (R2 = 0.97), that we will call B-line in what follows,
is supported by data from psychotropic as well as mesophilic
strains.

It is vital to see that Equation (6) describes a biological
relationship and not a regression-related correlation between the
b and Tmin parameters. The latter one would indicate that the
numerical estimation procedure for one parameter influences
the estimation of the other one. This could be a result of over-
parametrisation and could be demonstrated by simulating noisy
measurements around the model for a single strain. However,
what we observe here could not be detected based on one or
two strains. Our finding is a relationship between the parameters
detected when considering several strains of B. cereus sensu lato.
In other words, the four kinetic parameters of a strain do not

scatter arbitrarily in the 4D-space. This is evident for the cardinal
temperatures, but has so far been unknown for the b parameter
(hence for the optimum growth rate, too).

Notice that, bymeans of the B-line, a tangent-trajectory for the
Ratkowsky-lines can be calculated as follows:

At each T = T1 point of the f= f (T) trajectory, the tangent has
the value of f ’, which is, according to the B-line, a linear function
of the intercept of the tangent with the horizontal axis (Figure 4).
Therefore,

f ′ = β · (Tmin–T0) = β ·
(

T − f /f ′–T0

)

(7)

This is an ordinary differential equation (ODE) for the f(T)
tangent trajectory, where the dependence of f ’(T) on f(T) is given
in an implicit form. It could be expressed for f ’ but the structure
of the obtained ODE would be rather complicated to solve in an
algebraic way. However, remember that the parabola is known to
have such proportionality properties therefore it is worth testing
a parabolic solution. Indeed, as can be checked by substitution,
the parabola,

f (T) =
β

4
· (T − T0)

2 (8)

satisfies the ODE with the f(T0) = 0 initial value (which
requirement can be readily seen). This is the equation for the
parabola shown in Figure 4. It can be used to create a generic
model that represents the maximum specific growth rate of the
dominant strain of a mixed culture, useful to produce a safe
prediction when the identity of the B. cereus strains is not known
(Figure 5). At low temperatures (T < T1 = 10◦C), this strain is
from Group 6; at higher but still suboptimal temperatures (24◦C
= T2 < T < T3 = 37◦C), it is from Group 4. For 10◦C = T1 <

T < T2 = 24◦C, the above parabola describes a tangent trajectory
in the region, where practically any strains from Group 2–6 can
be dominant (Figures 4, 5). Above T3 = 37◦C, the Group 7 takes
over the role of the dominant strain.

The from-below-concave (and not linear) trend observed
at sub-optimal temperatures can are compared to data from

TABLE 1 | Fitting the reparametrized Ratkowsky-model to the data generated for 12 strains of six groups of B. cereus, published in the Supplementary Information of

Carlin et al. (2013).

Tmin and std. err. b and std. err. Topt and std. err. Tmax and std. err.

(◦C) (1/
√
h)/◦C (◦C) (◦C)

G.–II. RIVM-BC120 1.59 0.696 0.0489 0.00211 37.79 0.517 41.08 0.083

NVH-0860-01 4.11 1.371 0.0524 0.00516 34.83 0.576 40.96 0.142

G.–III. F4810/72 6.94 0.854 0.0642 0.00404 39.41 0.420 48.28 0.252

F837/76 6.97 1.334 0.0647 0.00636 39.13 0.448 48.20 0.266

G.–IV. F4430/73 7.95 0.943 0.0639 0.00474 39.09 0.414 48.20 0.255

ATCC-14579 5.76 1.085 0.0571 0.00423 38.38 0.470 48.40 0.343

G.–V. F2769/77 4.40 1.147 0.0527 0.00420 37.60 0.546 41.13 0.104

NVH-141/1-01 5.17 1.080 0.0576 0.00452 37.15 0.644 41.08 0.120

G.–VI. KBA-B4 0.10 0.714 0.0416 0.00171 31.64 0.590 41.43 0.310

I-21 3.90 0.463 0.0523 0.00172 33.55 1.128 41.83 0.709

G.–VII. NVH-391/98 12.9 1.969 0.0870 0.01710 43.59 0.484 55.48 0.538

NVH-883/00 17.28 0.468 0.1080 0.00707 41.11 0.416 56.14 0.955
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FIGURE 2 | Modular fitting of the Ratkowsky model to the
√

µ vs. temperature data of six groups of B. cerus; see Carlin et al. (2013), as in Table 1. In the first step,

the linear module of Equation (1) was fitted to the less erratic, sub-optimal data (≤ 30◦C). The obtained Tmin and b parameters of the resultant linear model

(continuous straight lines) were then fixed and only the Topt, Tmax parameters were determined in the second step.

FIGURE 3 | B-line: The estimated b and Tmin values (represented with their

standard errors here) are in a strong linear relationship across the six groups.

The b= β·(T-T0) equation (R2 = 0.97), with β = 0.0038 ± 0.0002 (1/
√
h/◦C2)

and T0 = −9.9 ± 0.5 (◦C), holds from psychotropic to mesophilic strains.

the ComBase database (www.combase.cc–Figure 5). There, the
records with keys starting B284 and B224 (sources: FSA_FMBRA
and FSA_IFR) contain growth curves of B. cereus strains
measured by plate count methods as described by Sutherland
et al. (1996). We selected those records where the specific
growth rates were generated in culture medium, at optimal pH
(6.8 < pH < 7.2) and water activity (added NaCl < 1.5%).

As described in the respective “details” field in the database,
apart from the temperature, the measurements of mixed cultures
of B. cereus were carried out in optimal conditions. The
square root values of the specific growth rates were plotted on
Figure 5, which validated our predicted trajectory. The from-
below-concave pattern is the result of the fact that the identity
of the dominant organism in a mixed culture depends on the
temperature. This explains why sometimes the expected linear
trend of Ratkowsky is not observable with mixed cultures, when
plotting the square root of measured maximum specific growth
rates against temperature.

Figure 5 also demonstrates how the cardinal temperatures of
the studied B. cereus models can be grouped. The optimum and
maximum temperatures of Groups 2, 5, and 6 form one cluster,
the Groups 3 and 4 do another one. Group 7 grows at high
temperatures and it is further away from the other two clusters.
In some way, it is surprising that the minimum temperatures did
not follow this clustering, except for Group 7, for which both the
minimum and maximum temperatures were high.

DISCUSSION

Here first we showed analogies as well as differences between
the Ratkowsky and Rosso models. Equation (5) showed that
the Ratkowsky model can also be arranged to have the cardinal
values. We pointed out that, for the common case, when the
optimum is much closer to the maximum than to the minimum
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FIGURE 4 | Construction and solution of the ordinary differential equation (ODE) described by Equation 7. It is part of the envelope representing the square root of the

maximum specific growth rate of the fastest strain as a function of the temperature. The ODE describes a curve in the (T1 T2), interval to which each Ratkowsky-line

is a tangent. The relationship between the f (T ) value and the f’(T ) slope (T = T1 in the figure) can be written up by means of the obtained linear relationship (the B-line)

between the two parameters of the linear (truncated) Ratkowsky model. The solution is the parabola b = (β/4)·(T-T0)2, represented by a broken red curve inside and

outside the (T1, T2) interval. The T1, T2 values are those where two tangents (black continuous straight lines), one with the lowest and one with the highest slope,

respectively, touch the parabola. These two tangents also serve as smooth continuations of the parabola for T < T1 and T > T2 values, thus becoming part of the

wanted envelope (see Figure 5).

temperature, both models perform well, in terms of goodness of
fit, but the Ratkowsky model also has an embedded, linear sub-
model, that is useful for regressing data at lower temperatures.
Note that Buss da Silva et al. (2017) used this sub-model, too, to
describe the effect of sub-optimal temperatures on the maximum
specific growth rates of B. cereus grown in Reconstituted Infant
Formulae, but with the logarithm (instead of the square root) link
function for the growth rate. The modularity of the Ratkowsky
model was utilized to point out a relationship between the b and
Tmin parameters of 12 strains belonging to B. cereus sensu lato.

Our study raises a need to clarify the use of the term “tertiary
model” in predictive microbiology. The focus of the discipline
is how a certain measure (cell and/or metabolite concentration,
etc.) of an organism can be predicted, for a given nutrient
source (laboratory medium or food). Primary models describe
the time-variation of the response assuming everything else
(organism, nutrient source, temperature, etc.) is fixed. Secondary
models describe the effect of the environmental variables, such
as temperature, on the primary model parameters, assuming
the nutrient source and the organism are fixed. Following this
logic, the name “tertiary model” should be used for patterns in
the parameters of the secondary models as a function of the
organism and the nutrient source. Unfortunately, the term was
introduced differently (Buchanan, 1993), for the composite of
the previous two kinds of models, when implementing them

for computer applications. Hereby we propose to use it in the
logical way described above. For example, Buss da Silva et al.
(2017) carried out systematic experiments showing that there is
a constant ratio (the so-called bias factor) between the maximum
specific growth rates in culture medium and in a specific food
(Reconstituted Infant Formulae), if all other conditions are the
same. The constant bias factor is a simple “tertiary” model meant
in the above sense, inasmuch it describes a relationship between
culture-medium-based and food-based secondary models.

Our study is also a tertiarymodeling step, in this sense: how do
the secondary model parameters depend on the strain belonging
to a defined set of organisms? At the first instance the question
looks odd, since the identity of the strain is a category (not
continuous) variable. Namely, going back to the original ideas,
the primary and secondary modeling are based on an important
physical property of the considered variables: that their variation
is quantified by continuous metrics, therefore if two values (like
two timepoints) or are close to each other, then the values of
the modeled variable are also expected to be close to each other.
This was true for the bias factor as “tertiary modeling,” too: if the
medium changes a little than the response (a secondary model
parameter) should change a little only.

For our case, the taxonomical links between the strains can
define the needed “closeness” concept and it does make sense
to ask how the secondary model parameters depend on the
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FIGURE 5 | An over-arching envelope (in red) for the “square root of the

maximum specific growth rate vs. the temperature” models for all the studied

strains. The relationship between the Tmin and b-values were used to create a

tangent trajectory (a parabola, see Figure 4) for the Ratkowsky-lines of all the

studied strains in the (10◦C = T1 < T < T2 = 24◦C) region of temperature.

Outside this interval, the Ratkowsky lines for Group 6 (T < T1 = 10◦C), for
Group 4 (24◦C = T2 < T < T3 = 36◦C) and the model for Group 7 (T >

36◦C) form a generic model (thick red curve) for the dominant strain for any

temperature point. Stars are independent data from ComBase.

strains, for which taxonomy metrics have been defined. Our “B-
line” is a simple “tertiary” model, according to the definition
above (in which sense also we will use the term). For example,
Baranyi et al. (1996) also reported on a tertiary model, a strong
link between the secondary model coefficients of four different
members of a mold, the genus Aspergillus. There, the authors
showed that the effect of water activity on the radial growth
rate was well described by a triplet of parameters for the studied
four species (A. flavus, A. oryzae, A. parasiticus, and A. nomius);
however, these triplets were not scattered in their 3D space
but lied along a straight line there, reducing their total degree

of freedom by 2. The coefficients of this straight line in the

3D space are, according to our use of the term, tertiary model
parameters. The comprehensive study of Corkrey et al. (2012),
was also tertiary modeling, where the authors claim that a
universal thermodynamic constant can explain whymanymicro-
organisms has secondary models of the same asymmetric delta
shape. Such tertiary models can be used not only to create over-
arching predictive models for mixed cultures, but also to predict
kinetic properties of possible new strains to be detected in the
future.

Whether our tertiary model for B. cereus has a deeper,
genome-level bases, and what other organisms may be suitable
for such study, are open questions. It is not easy to find
appropriate data, because it would need a systematically designed
series of experiments using strains of the same species whose
cardinal temperatures are relatively far from each other. Since
we are not aware of such publicly available datasets, it remains
to be seen whether our findings are specific to B. cereus only, or
characteristic to other species, too.

AUTHOR CONTRIBUTIONS

JB: Conception, Execution,Writing up. NB: Conception,Writing
up. ME: Writing up.

ACKNOWLEDGMENTS

The CAPES/Brazil support is thankfully acknowledged for the
PhD scholarship to NB. The authors thank Frederic Carlin for
making the original data of Carlin et al. (2013) available, and Tom
Ross for helpful discussions. The authors wish to express their
gratitude to one of the referees, who put lots of efforts to improve
the manuscript and whose advice significantly contributed to its
final form.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fmicb.
2017.01890/full#supplementary-material

REFERENCES

Baranyi, J., Gibson, A. M., Pitt, I., Eyles, M. J., and Roberts, T. A.

(1996). Predictive models as means of measuring the relatedness of some

Aspergillus species. Food Microbiol. 14, 347–351. doi: 10.1006/fmic.1996.

0096

Bigelow,W. D. (1921). The logarithm nature of thermal death time curves. J. Infect.

Dis. 29, 528–536. doi: 10.1093/infdis/29.5.528

Bigelow,W. D., and Esty, J. R. (1920). The thermal death point in relation to typical

thermophilic organism. J. Infect. Dis. 27, 602–617. doi: 10.1093/infdis/27.6.602

Buchanan, R. L. (1993). Predictive food microbiology. Trends Food Sci. Techn. 4,

6–11. doi: 10.1016/S0924-2244(05)80004-4

Buss da Silva, N., Baranyi, J., Carciofi, B. A. M., and Ellouze, M. (2017).

From culture-medium-based models to applications to food: predicting the

growth of B. cereus in reconstituted infant formulae. Front. Microbiol. 8:1799.

doi: 10.3389/fmicb.2017.01799

Carlin, F., Albagnac, C., Rida, A., Guinebretière, M. H., Couvert, O., and Nguyen-

The, C. (2013). Variation of cardinal growth parameters and growth limits

according to phylogenetic affiliation in the Bacillus cereus group. Consequences

for risk assessment. Food Microbiol. 33, 69–76. doi: 10.1016/j.fm.2012.08.014

Corkrey, R., Olley, J., Ratkowsky, D., McMeekin, T., and Ross, T. (2012).

Universality of thermodynamic constants governing biological growth rates.

PLoS ONE 7:e32003. doi: 10.1371/journal.pone.0032003

Guinebretiere, M. H., Velge, P., Couvert, O., Carlin, F., Debuyser, M. L.,

and Nguyen-The, C. (2010). Ability of Bacillus cereus group strains to

cause food poisoning varies according to phylogenetic affiliation (groups

I to VII) rather than species affiliation. J. Clin. Microbiol. 48, 3388–3391.

doi: 10.1128/JCM.00921-10

Helgason, E., Okstad, O. A., Caugant, D. A., Johansen, H. A., Fouet, A., Mock,

M., et al. (2000). Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis–

one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66,

2627–2630. doi: 10.1128/AEM.66.6.2627-2630.2000

Frontiers in Microbiology | www.frontiersin.org 7 September 2017 | Volume 8 | Article 1890

http://journal.frontiersin.org/article/10.3389/fmicb.2017.01890/full#supplementary-material
https://doi.org/10.1006/fmic.1996.0096
https://doi.org/10.1093/infdis/29.5.528
https://doi.org/10.1093/infdis/27.6.602
https://doi.org/10.1016/S0924-2244(05)80004-4
https://doi.org/10.3389/fmicb.2017.01799
https://doi.org/10.1016/j.fm.2012.08.014
https://doi.org/10.1371/journal.pone.0032003
https://doi.org/10.1128/JCM.00921-10
https://doi.org/10.1128/AEM.66.6.2627-2630.2000
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Baranyi et al. Bacillus Cereus Growth Models

Ratkowsky, D. A. (2003). “Model fitting and uncertainty,” in Modelling Microbial

Responses in Foods, eds R. C McKellar and X. Lu (Boca Raton, FL: CRC Press),

151–170.

Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N., and Chandler, R. E.

(1983). Model for bacterial culture growth rate throughout the entire biokinetic

temperature range. Int. J. Bacteriol. 153, 1222–1226.

Rosso, L., Lobry, J. R., and Flandrois, J. P. (1993). An unexpected correlation

between cardinal temperatures of microbial growth highlighted by a new

model. J. Theor. Biol. 162, 447–463. doi: 10.1006/jtbi.1993.1099

Rosso, L., and Robinson, T. P. (2001). A cardinal model to describe the effect of

water activity on the growth of moulds. Int. J. Food Microbiol. 63, 265–273.

doi: 10.1016/S0168-1605(00)00469-4

Sacchi, C. T., Whitney, A. M., Mayer, L. W., Morey, R., Steigerwalt, A.,

Boras, A., et al. (2002). Sequencing of 16S rRNA gene: a rapid tool

for identification of Bacillus anthracis. Emerg. Infect. Dis. 8, 1117–1123.

doi: 10.3201/eid0810.020391

Sutherland, J. P., Aherne, A., and Beaumont, A. L. (1996). Preparation and

validation of a growth model for Bacillus cereus: the effects of temperature,

pH, sodium chloride and carbon dioxide. Int. J. Food Microbiol. 30, 359–372.

doi: 10.1016/0168-1605(96)00962-2

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Baranyi, Buss da Silva and Ellouze. This is an open-access

article distributed under the terms of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Microbiology | www.frontiersin.org 8 September 2017 | Volume 8 | Article 1890

https://doi.org/10.1006/jtbi.1993.1099
https://doi.org/10.1016/S0168-1605(00)00469-4
https://doi.org/10.3201/eid0810.020391
https://doi.org/10.1016/0168-1605(96)00962-2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive

	Rethinking Tertiary Models: Relationships between Growth Parameters of Bacillus cereus Strains
	Introduction
	Materials and Methods
	Results
	Discussion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


