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To estimate and predict the transmission dynamics of respiratory viruses, the estimation

of the basic reproduction number, R0, is essential. Recently, approximate Bayesian

computation methods have been used as likelihood free methods to estimate

epidemiological model parameters, particularly R0. In this paper, we explore various

machine learning approaches, the multi-layer perceptron, convolutional neural network,

and long-short term memory, to learn and estimate the parameters. Further, we

compare the accuracy of the estimates and time requirements for machine learning

and the approximate Bayesian computation methods on both simulated and real-world

epidemiological data from outbreaks of influenza A(H1N1)pdm09, mumps, and measles.

We find that the machine learning approaches can be verified and tested faster than

the approximate Bayesian computation method, but that the approximate Bayesian

computation method is more robust across different datasets.

Keywords: respiratory virus, infectious disease epidemiology, machine learning, approximate Bayesian

computation, basic reproduction number, mathematical model

INTRODUCTION

Prediction of infectious disease epidemics is essential to their control, but also a difficult process.
This is because the epidemiological dynamics, i.e., the time evolution of the number of infected
individuals, are non-linear, with the probability of a susceptible individual acquiring infection
depending on the number of infected individuals. Previous studies have constructed mathematical
models describing the transmission dynamics of infectious disease, known as the Susceptible-
Infectious-Removed (SIR) model, and fit themodel to the time series data of the number of infected
individuals (Bjrnstad et al., 2002). Conventional statistical methods, e.g., maximum likelihood
estimation, require explicit solution of the time series data of the number of infected individuals
from the SIRmodel. However, an explicit solution is difficult to obtain due to the nonlinearity of the
model. Therefore several approximations are required to fit the SIRmodel with the epidemiological
data of infectious diseases. Furthermore, the transmission of infectious disease is a stochastic event.
A mathematical model taking into account stochasticity is required to estimate parameters.

One common property of transmission dynamics is the threshold for outbreak: an outbreak
occurs only if the basic reproduction number, R0, exceeds unity. In a biological sense, R0 is the
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expected number of secondary infections by an infected
individual when a population is fully susceptible (Diekmann
et al., 1990). Estimation of R0 helps to predict the outbreak
potential, final epidemic size, timing of the epidemic peak,
and vaccination coverage required to prevent an outbreak.
To estimate R0, a common method is to fit the SIR model
to epidemiological data. The simplest SIR model has only
this one parameter, R0, by scaling the unit time in the SIR
model. In this paper, we use a Susceptible Exposed Infectious
Removed (SEIR) model, a variation of the SIR model. The SEIR
model is comprised of additional parameters and follows more
complex epidemiological dynamics, which reflect realistic disease
dynamics.

Due to the importance of estimating R0, numerous methods
have been developed (Magal and Ruan, 2014). The accuracy
of the estimates depends on both the estimation method and
the data. For example, in one approach R0 can be estimated
from the slope of the time series data of infected individuals
at the initial phase of an epidemic (Nishiura et al., 2009).
This method approximates the epidemiological dynamics at
the initial phase as an exponential growth. The accuracy of
this method is sensitive to the period of epidemiological data
available. An alternative approach estimates R0 from the final
epidemic size, i.e., the total number of infected individuals
(Vynnycky et al., 2007). Because the relationship between the
final epidemic size and R0 cannot be described explicitly, the
likelihood function of R0 with an arbitrary final epidemic
size cannot be described in an explicit form. Consequently
numerical solutions or approximations are required to construct
the likelihood function.

Recently a likelihood-free method has been proposed:
approximate Bayesian computation (ABC) (Sunnåker et al., 2013;
Saulnier et al., 2017). This method approximates the posterior
distribution using a rejection algorithm with the numerical
integration of the SEIRmodel. This method is easy to implement,
however several limitations remain. Some issues include (a)
parameter estimation takes a long time, particularly as the
epidemiological model complexity increases and (b) the ABC
method accuracy is dependent on both the summary statistic and
the accept/reject decision threshold, but there are no fixed rules
for the selection of either.

A second likelihood-free approach has recently emerged in the
form ofmachine learning (ML). The field ofmachine learning has
grown rapidly with a large expansion of theories, applications,
and algorithms. Problems can be categorized as either supervised
or unsupervised and as classification or regression (Bishop,
2006). A supervised learning problem has a dataset and an
answer, for example the pixels making up a photograph of a
number can be a dataset and the numerical representation of the
number is the answer (e.g., the number “7”). These two pieces
of information are passed to the ML model during training so
the model learns to recognize pixels of the type given as the
answers it receives. Once the model is trained, a separate, new
dataset is given which contains only the pixel information. The
model is then asked to predict the answer based on the data it
had previously seen. This example of supervised learning is also
an example of a classification problem. The number problem

can be split into 10 discrete categories (the whole numbers
“0”–“9”), and the machine learns to classify the results into these
categories. A regression problem, on the other hand, seeks to find
a continuous value answer to the input it receives. Predicting
housing prices is a common example of a regression problem,
where, given a set of information about properties, the MLmodel
can predict a continuous, numerical value estimate for the cost of
the property.

Supervised ML models combine linear regression, gradient
descent, maximum likelihood, and least squares functions to
develop weightmatrices and comparison functions to predict and
estimate parameter outputs based on the historical knowledge
of input/output pairs (Bishop, 2006). With the expansion
of the field of ML, new models continue to be developed
and improved, connecting the building blocks of ML in new
ways to uncover hidden connections in data. Some methods,
such as convolutional neural networks (CNN) are well suited
for two-dimensional image analysis (Krizhevsky et al., 2012),
while other methods, like long-short term memory models
(LSTM), specialize in handling time series data (Hochreiter and
Schmidhuber, 1997).

In this study, we propose a ML approach to estimate the
R0 of a respiratory virus from a time series of incidences of
the disease as a supervised regression problem. Additionally,
we seek to estimate other parameters associated with the SEIR
model and time series generation. As mentioned above, R0
is highly dependent on the mathematical model. Our final
goal is a likelihood-free estimation of R0, as well as other
model parameters. The ML methods used in this study are two
separate multi-layer perceptrons (MLP), a CNN, and a LSTM
model. For reference and comparison, we also use the ABC
approach to estimate the same values using the same datasets.
We compare not only the accuracy of the two methods, with
credible and confidence intervals, but also the time required by
each approach to reach its answer. Of the four ML methods
tested, the MLP with time model was the most robust as well as
being significantly faster than the more complex CNN and LSTM
models.

MATERIALS AND METHODS

This study can be broken into five main parts. The first is the
development of an individual-based (IBM) SEIR epidemiological
model for generating data; the second is the ABC method
used for estimating parameters; the third is the learning
by MLP, CNN, and LSTM machine learning models, again
to estimate parameters; the fourth is the dataset creation
and bootstrapping of the real-world and test data to create
confidence intervals on the machine learning solutions; and
finally calculation of the time it took for each method to obtain
its estimates.

The ML models were trained on 100,000 datasets, validated
on 1,000 datasets, and tested on 1,000 datasets. ABC was run on
1,000 sample datasets and compared against a total of 100,000
comparison datasets. The ABC sample and ML test datasets
were the same and the ABC comparison and ML training
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datasets were the same. An explanation of these datasets is in
the following section. We evaluate the accuracy of estimation
by two measurements, the average error and the width of the
credible interval for ABC and confidence intervals for ML. Each
parameter range was divided into 10 subranges. The errors
among parameters in each subrange were then averaged to create
the “average error.” The average width of credible/confidence
intervals is the average difference between the lower and upper
bound of the interval.

Terminology
As the different likelihood-free methods used in this paper (ABC
and ML) each have their own standard vocabularies, we first
clarify terminology in this paper to make a direct comparison of
methods possible.

ML typically uses three datasets. The “training” set is a large
dataset which is given to theMLmodel during the learning phase.
The “test” set is a completely new and unseen dataset which the
ML method passes through the trained model to estimate the
posterior parameter values. The “validation” or “development”
dataset, like the “test” set is a new and unseen dataset used as an
interim test. That is, this dataset is used to verify the model is
learning, check accuracy of estimates, and when running trials
of different hyperparameter sets. In ABC there is no dataset
equivalent to ML’s validation set.

According to the notation used by Sunnåker et al. (2013) we
use the symbols D for the data in question, either real-world
observed data or generated “test” data, and D̂ for comparison
data. In ABC, D̂ would normally be the Markov chain Monte
Carlo generated data presented to the rejection algorithm. The
rejection algorithm takes a set of generated data and compares it
to the data in question, D. In ABC, the summary statistic is used
to calculate the distance between D̂ and D, and the parameters
are accepted or rejected if the estimated distance falls beneath
an accept/reject threshold. Our summary statistic for ABC is
the Euclidean distance between the dataset D and the simulated
dataset D̂:

√

∑

(D− D̂)2

Comparing the ML and ABC terminology, datasets comprising
D would be the test set in ML, while a dataset comprising D̂ is
given to an ML algorithm as a training set. To compare the ABC
andMLmethods we use the same pre-generated datasets for both
methods.

SEIR Epidemiological Model
The SEIR model is an expansion of the SIR model, which
describes the time evolution of the number of infected individuals
during a disease outbreak. The host population is classified by
their health status, susceptible (S), exposed (E), infectious (I),
and removed (R) (recovered or deceased). Transmission events
happen via contact of S and E with constant rate β . The SEIR
model can be expressed mathematically through the following
simple equations (Bjrnstad et al., 2002; Diekmann et al., 2009;

Magal and Ruan, 2014):

N = S(t)+ E(t)+ I(t)+ R(t),

dS

dt
= −βS

I

N
,

dE

dt
= βS

I

N
− ǫE,

dI

dt
= ǫE− γ I,

dR

dt
= γ I.

Here N describes the total host population size. In this model, R0
is given by:

R0 =
β

γ
.

This is a deterministic model and S, E, I, and R are continuous. To
fit the model with the data, it is required to expand this model to
a stochastic one with discrete S, E, I, and R. An individual-based
SEIR model describes the stochastic process of transmission
dynamics at the individual level. Let Hx be the health state of the
x-th individual.

Hx ∈ {S,E, I,R}

The probability of transition between each health state can be
written by:

Pr(Hx(t) = S → Hx(t + 1t) = E) = βI(t)1t,

Pr(Hx(t) = E → Hx(t + 1t) = I) = ǫ1t,

Pr(Hx(t) = I → Hx(t + 1t) = R) = γ1t.

We simulate this model to create data which can be used to learn
the different parameter sets of R0, ǫ, and γ . ǫ is the latent period,
or the rate at which exposed individuals become infectious. γ is
the recovery rate, the rate individuals move from state I to state
R. The host population size for the general study, N = 2225. For
the real-world comparisons, N = 500 for mumps (Sullivan et al.,
1985), N = 343 for measles (Mossong and Muller, 2000), and N
= 2,225 for influenza A(H1N1)pdm09 (Lessler et al., 2009). We
set S(0) = N − I(0), E(0) = 0, I(0) = 22, and R(0) = 0 as
the initial conditions, which were parameterized based on the
epidemiological data of Lessler et al. (2009). Time series data
of incidence were created by IBM model with randomly chosen
parameter sets to consist of 100,000 training, 1,000 validation,
and 1,000 test samples. Throughout this study we set 1t = 1/10
day, meaning the SEIR model parameters were updated 10 times
each day, with each change in time (1t) equal to 1/10 day.

Approximate Bayesian Computation
We use ABC to estimate the parameters R0, ǫ, and γ , the
parameter values associated with the SEIR epidemiological
model. For our ABC calculations, we used simulated datasets
for D̂, calculating the distances between each D dataset and
D̂ datasets. The Euclidean distance was used as the summary
statistic to calculate distances between datasets, and multiple
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acceptance thresholds were established. An acceptance threshold
of 60 was used for the Figures 1, 3, 4, here as it was large enough
to produce accepted posterior parameter sets for each of the D
datasets and have enough samples to create credible intervals,
but small enough to generally discriminate between similar and
dissimilar datasets.

The Euclidean distance between the dataset D and simulated
dataset D̂ is:

√

∑

(D− D̂)2

Machine Learning
Three separate machine learning models and one variation were
implemented and run with early-stopping manually executed by
comparing the loss at each epoch, stopping when the loss no
longer decreased (for 10 or 20 epochs), and using the weights
from the best epoch, i.e., the epoch with the smallest loss. The
learning rate for all models was 0.0001. The ML models in this
study were implemented in Python using Lasagne and Theano
(Bergstra et al., 2010) libraries. For all ML models, numerous
hyperparameters for the number of hidden layers, number of
hidden units, learning rate, activation functions, and number of
training samples were explored and the hyperparameters which
routinely yielded the best results were selected. For example, we
ran anMLPmodel with 2, 3, 4, 5, 6, and 7 hidden layers and found
that there was little benefit in models deeper than three hidden
layers, yet two hidden layers learned poorly. For this reason, three
hidden layers were used in the final model.

Multi-Layer Perceptron
The first model selected for this paper was a simple MLP where
the entire time series dataset was passed in as a single input array
and the parameters were estimated from learned relationships
in that dataset. Small changes in parameter values have a large
impact on the shape and behavior of the time series graph, so
it was important for the MLP to see all of the data with equal
importance, which is why the time series was passed in as a single
input.

The MLP model accepted the time series information for
the number of incidences of infection per day as created by
the IBM model as input for learning. This input was given
to the model as a single entity consisting of the number of
newly infected individuals at each timestep. It also received the

“answers” of the R0, γ , and ǫ model parameters which were
used to generate the time series data. The model was asked to
learn these answer parameters in a supervised manner given the
time series of incidences. The MLP model was created with three
hidden layers having 400 hidden units per layer. The hidden
layers used rectified linear units (Maas et al., 2013) for their
activation functions, with a linear activation function in the final
output layer.

Multi-Layer Perceptron With Time
A secondMLPmodel was constructed to incorporate the concept
of “time” into the time series information. In a standard MLP,
the sequence of values passed in has no connection and there
is no concept of order in the analysis and training. This second
model added a time element by creating a tuple consisting of
the day and the number of new incidences that day. This simple
method created a model which understands time as an individual
value, though unlike LSTM described later, it does not have any
kind of memory mechanism to compare previous and future
datapoints.

This MLP also had three hidden layers, though with 400, 200,
and 100 hidden units per layer, in that order. Again, the hidden
layers used rectified linear units for their activation functions
with a linear activation function in the final output layer. The
addition of the time element changed the input to themodel from
a one-dimensional array to a two-dimensional matrix.

Convolutional Neural Network
While the CNN is not a traditional choice for problems involving
time series data, it was selected in this case due to the complex
nature of the SEIR modeling data. The mathematical models
being simulated are highly non-linear, nearly chaotic at times.
As CNNs are known to be capable of modeling very complex
behavior (Krizhevsky et al., 2012), they were tested in this
problem space for comparison.

The CNN model was constructed of two one-dimensional
convolutional layers and two pooling layers, with a single dense
hidden layer prior to the output. The convolutional and hidden
layers all used rectified linear units for their activation functions,
while the output layer again used a linear activation function.

Long-Short Term Memory
A recurrent neural network (RNN) approach, LSTM models
are designed for analysis of time series data (Hochreiter and
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FIGURE 1 | Average error for ABC (solid line), CNN (long dashed line), MLP (dotted line), MLP with time (dashed line), and LSTM (dashed and dotted) estimates

against actual parameter values for an SEIR model with three parameters, on 100,000 training datasets.
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Schmidhuber, 1997), like that found in this study. The memory
aspect is built into the model using a memory cell and gates
(input, output, and forget) to control the data in themodel. These
components ensure continuity in the data of the LSTM model
and accept the time order as an important feature of the data.

The LSTM model implemented for this study consists of two
LSTM layers with 16 hidden units and gradient clipping at 100 (to
prevent exploding gradients). No activation function is applied in
the LSTM layers, however a linear activation function is applied
on the output layer.

Datasets
The datasets for this study come from two sources. The first,
generated data, is a set of SEIR epidemiological model datasets
generated using individual-based, Monte Carlo simulations, as
described in the Epidemiological Model section. The second
source comes from time series sets of incidences from published
papers by Lessler et al. (2009), Sullivan et al. (1985), andMossong
and Muller (2000). We estimate R0 for these time series datasets
and compare our estimates against the general or estimated value
from the papers.

The data in these datasets are comprised of two parts. The first
part is a time series of the number of newly infected individuals
per day over the course of an outbreak. The second piece of
information is the parameter set of R0, γ , and ǫ used in the
simulation to generate the time series. The time series is the
information the ML model trains on, while the parameter set is
the answer it is trying to achieve. In ABC, the time series is the
dataset D̂, and the parameter set is the answer it is estimating.

Bootstrap Resampling
To date, machine learning has most often been used in
classification problems with discrete correct answers and
myriad ways to determine the performance of any given
model, such as accuracy, precision/recall, F-score, and receiver
operator characteristic (ROC) (Sokolova et al., 2006). Regression
problems, by contrast, have few methods to explore the quality of
the output. To address this issue, we created a novel method to
build confidence intervals for the outputs of the ML model.

We started by creating a standard machine learning test set
of 1,000 datasets. Running this time series dataset through the
trained model gives estimates for the parameter values, but there
is no indication on the quality of the estimates—no certainty
or confidence associated with the values. Next, we created 1,000
bootstrap-resampled datasets for each test dataset, for a total of
one million tests. For bootstrap resampling of the time series data
of incidence, the time series data of incidence can be interpreted
as the set of emergence times. For example, the data when
incidence at t = 1 is 1 and incidence at t = 2 is 2 is equivalent
to a set of emergence times, {t = 1, t = 2, t = 2}. We
resampled the emergence times by bootstrap resampling from
this set of times, and converted them back into time series data
of incidence.

For the estimates returned for the 1,000 resamples of
each dataset, we calculated the mean, median, mode, and
95% confidence intervals. This method provides a measure of
credibility for each estimated output parameter.

Time Calculations
The ABC computations were conducted on a server with 2.80
GHz processors and 1 TB of memory. The computations were
run acrossmultiple CPUs and the time calculated is the combined
time to run all scripts. The ML computations were conducted on
a server with 3.50 GHz processors, 64 GBmemory, and a GeForce
GTX 1080 Ti R© graphics card for GPU processing. Typically
between four and eight processes were run simultaneously on the
graphics card.

The time to complete each method is shown in Table 1. For
ABC, the time to verify its results by comparison of the distances
between 1,000 D datasets with 100,000 D̂ datasets was measured,
including time to split by thresholds and create credible intervals
for accepted datasets. The time for a single comparison against
100,000 D̂ datasets was then measured for the test comparison.
For the ML models, the time included the bootstrapping of the
test dataset, training of the learning model, and computation of
the confidence intervals. The test was then run by obtaining the
estimates for a single bootstrapped sample, that is, running 1,000
samples from one set of parameters through a trained ML model
and collating the results.

Experiments on Real-World Datasets
For experiments, we used an SEIR model dataset with three
parameters: R0, γ , ǫ, calculating distances with ABC and
comparing at various acceptance thresholds, and training CNN,
LSTM, and two MLP models, then running a test dataset
through the trained model. Finally, we tested our trained and
verified models against three real-world datasets: (1) an outbreak
of mumps (Sullivan et al., 1985), (2) an outbreak of measles
(Mossong and Muller, 2000), and (3) an outbreak of influenza
A(H1N1)pdm09 (Lessler et al., 2009) to see if we could accurately
estimate the parameter R0 with both our ABC and ML models.

For ABC, the time series of infectives is set as D and
compared against the D̂ generated data used throughout this
paper. The required accept/reject threshold was 300, 20, and 20
for the influenza, measles, and mumps datasets, respectively. The
accept/reject thresholds were selected where there were enough
accepted datasets for the calculation of credible intervals. The
parameters were then estimated from the accepted datasets. To
construct confidence intervals of the estimates by ML, the real-
world time series of incidence was resampled using the bootstrap
resampling method discussed in the Bootstrap Resampling
section. The set containing the original and bootstrap resampled
time series are given to the model, the parameters are estimated,

TABLE 1 | The time required to train 100,000 samples and test on a single

sample for the ABC, MLP, CNN, and LSTM methods.

Method Train (min) Test (min)

ABC 410 0.65

MLP 68 0.03

MLP with time 71 0.03

CNN 184 0.05

LSTM 364 0.06
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and finally the confidence intervals are calculated from the ML
model outputs.

RESULTS

Comparisons of Average Errors
Figure 1 shows the average errors compared to the actual
parameter values associated with each method. The average
errors of estimates made with ABC and ML are most similar
for R0. ABC and MLP with time show nearly identical patterns,
consisting of low errors when R0 is <3.0 and then increasing
with increasing values of R0. ABC has slightly lower average error
than MLP with time for all values of R0. For R0 below 2.25,
MLP performs as well as ABC and MLP with time. For R0 >2.25
the average error from MLP estimates increases greatly, until R0
reaches 5.0, at which point the error from MLP is approximately
twice the error from ABC. CNN has a nearly constant average
error of 0.2 for R0 < 3.8. For R0 > 3.8, the average error on
CNN estimates increases linearly to approximately 0.7 at R0 =

5.0. Finally, LSTM shows erratic behavior in R0 estimation. Until
R0 reaches 3.0, LSTM has the worst estimates among the methods
tested, with an error reaching nearly 0.6. From 2.8 to 3.8, the
average error by LSTM decreases, becoming smaller than all but
CNN. From R0 = 3.8 to 5.0, the error by LSTM increases again,
with behavior similar to ABC, CNN, and MLP with time for this
range of R0.

The patterns for average error for the parameters γ and ǫ are
similar to one another. ABC follows one pattern while the ML
solutions follow a different pattern. For ABC, the average error
increases with increasing values of the parameters, γ and ǫ. For

γ < 2.0 days−1 and ǫ less than about 7.5 days−1, the ABC average
error is smaller than the average error for all ML estimates. For γ

more than 2.0 days−1 and ǫ more than 7.5 days−1, the average
error for ABC is larger than the average error of all ML estimates.
When the number of training samples is increased to onemillion,
the point at which ML becomes more accurate than ABC is 1.6
days−1 for γ and approximately 6.5 days−1 for ǫ (see Figure 2).
The ML approaches maintained a nearly consistent average error
for all γ of 0.6 days−1 until γ = 3.9 days−1, when they increased
to average errors of approximately 0.6 days−1. From γ = 3.9 to
5.0 days−1, MLP increased much more quickly to approximately
1.1 days−1, the same as ABC. All four ML models behaved the
same for ǫ, with average errors decreasing with increasing ǫ until
ǫ = 11 days−1, at which point they increased with increasing ǫ at
a rate similar to ABC, but approximately 3 days−1 smaller.

Comparisons of Credible/Confidence
Intervals
The credible intervals for the estimates for ABC and confidence
intervals for ML are shown in Figure 3. CNN has a constant
size confidence interval for R0. MLP and MLP with time have
a confidence interval similar in shape to ABC’s credible intervals
for R0, though their confidence intervals are larger. These three
methods start with small credible/confidence intervals for small
R0, increasing with R0 until R0 = 2.6–4.0 and then decreasing
slightly. LSTM’s confidence interval increases until R0 reaches
approximately 2.25, then decreases with increasing R0. The
credible/confidence intervals for both the ABC and ML models
decrease as γ increases. CNN has the smallest confidence interval
for γ , followed by LSTM, MLP with time, ABC, and MLP.
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FIGURE 2 | Average error for ABC (solid line), CNN (long dashed line), MLP (dotted line), MLP with time (dashed line), and LSTM (dashed and dotted) estimates

against actual parameter values for an SEIR model with three parameters, for one million training datasets.
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FIGURE 3 | Average credible/confidence interval width for ABC (solid line), CNN (long dashed line), MLP (dotted line), MLP with time (dashed line), and LSTM (dashed

and dotted) estimates against actual parameter values for an SEIR model with three parameters, on 100,000 training datasets.
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In ABC, the credible intervals for ǫ remain mostly constant

at about 16.0 day−1 for all values of ǫ. For the ML models,

the confidence intervals decrease with increasing ǫ, increasing

slightly around ǫ = 15.0 days−1 and then decreasing again.

Again, CNN has the smallest confidence interval for ǫ, followed

by LSTM, MLP with time, MLP (for ǫ > 5 days−1), and ABC.

Comparisons of Estimated and Actual
Values
Figure 4 shows the estimated parameter values compared to the
actual values for each method. ABC estimates agree closely with
the actual values for R0 < 3.0, with increasing error as R0 grows
beyond 3.0. MLP also estimates R0 close to the actual values
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FIGURE 4 | The estimated and actual parameter values from ABC, MLP, CNN, MLP with time, and LSTM.

Frontiers in Microbiology | www.frontiersin.org 7 March 2018 | Volume 9 | Article 343

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Tessmer et al. Machine Learning in Epidemiology

for R0 < 3.0. After R0 = 3.0, however, the estimate by MLP is
nearly constant at a little <3.0. CNN estimates R0 close to the
actual values while R0 is <4.0. MLP with time’s trend is similar
to ABC, with estimates near actual values for R0 < 3.0. LSTM
shows close estimation for R0 < 2.0, then overestimates from 2.0
to 4.0, then underestimates for R0 > 4.0. Overall, theMLmethods
appear to underestimate R0 values, whereas ABC shows equal
over- and underestimates. The ML methods show larger over-
and underestimation than ABC for low R0.

All ML methods generally overestimate all values for γ .
LSTM, MLP with time, and CNN estimates were close for all γ ,
while MLP again began estimating a constant, approximately 3.0
days−1 for γ > 3.0 days−1. ABC closely estimates γ values <2.0
days−1 and ǫ values <5.0 days−1. ABC, and to a lesser extent
MLP with time and LSTM, appear to estimate ǫ somewhat closely
for ǫ <5.0 days−1, but for values >5.0 days−1 the results for all
methods are nearly random.

Run Times
The time to complete each method is shown in Table 1. The ABC
method took 410 min to calculate the distances and accept/reject
1,000 test datasets from 100,000 training datasets. The time for
a single dataset to be compared against 100,000 training datasets
was 0.65 min. The fastest ML model, MLP, took 68 min to train
while the slowest, LSTM, took 364 min. MLP with time and CNN
took 71 and 184 min to train, respectively. This makes training of
the ML models between 1.1 and 6.0 times faster than the time
to verify a similar ABC method on 100,000 training datasets.
Testing on a single dataset for the ML models took 0.03, 0.03,
0.05, and 0.06 min for MLP, MLP with time, CNN, and LSTM,
respectively. These times are between 10.8 and 21.7 times faster
than the estimate calculation for a single sample via ABC. When
the size of the training set is increased from 100,000 to one
million, the time required to estimate the parameters for a single
ABC test set scales linearly with the number of comparisons,
however the estimation via machine learning remains constant
regardless of the number of samples used to train the data
(Table 2).

Application to Real-World Epidemiological
Data
We also compared ABC and ML with epidemiological data for
mumps, measles and influenza.

R0 for mumps has been estimated between 3.6 and 4.5
(Edmunds et al., 2000). Table 3 shows the comparison of ML

TABLE 2 | The time required to train one million samples and test on a single

sample for the ABC, MLP, CNN, and LSTM methods.

Method Train (min) Test (min)

ABC 3,962 4.75

MLP 420 0.03

MLP with time 531 0.03

CNN 747 0.05

LSTM 784 0.06

and ABC estimations of R0 with the typical real-world values.
MLP, MLP with time, and CNN estimated R0 at approximately
4.0 using the data from Sullivan et al. (1985) for an outbreak
in Centerville, OH, USA. ABC estimated R0 as slightly lower at
3.74, while LSTM greatly underestimated R0 at 2.71. These values
were created based on an estimation of the effective reproductive
number and the vaccine coverage of students within the school
of 72.7%.

For an outbreak of measles at Wincrange, Luxembourg
(Mossong and Muller, 2000), the effective reproductive number
was estimated as 1.5 (95% CI: 0.9, 2.2). Table 4 shows the
comparison of ML and ABC estimations with the effective
reproductive number estimated for the outbreak. All five of our
methods underestimated the effective reproductive number of
measles, but their estimates fell within the 95% CI estimated by
the previous study.

The estimated R0 of an outbreak of influenza at a high school
in New York during the 2009 influenza pandemic was 1.23
(Lessler et al., 2009). Table 5 shows the comparison of ML and
ABC estimations of R0 with the effective reproductive number
estimated for the outbreak. ABC estimated R0 nearly exactly at
1.24. MLP with time slightly underestimated the value at 1.06
(95% CI: 0.86, 1.30). Standard MLP greatly underestimated R0 at
0.40, while CNN and LSTM greatly overestimated the R0 at 2.84
and 1.84, respectively.

Based on the general analysis for various R0 values shown in
Figures 1–3, most of the results above agree. For the mumps
outbreak, the effective reproductive numbers were estimated
around 1.0–1.2. At this low range of R0, based on Figure 1, the

TABLE 3 | The estimation results for R0 from previous published research on

mumps and ABC, two MLP, CNN, and LSTM models.

Methods R0 for mumps

Previous study 3.6–4.5 (Edmunds et al., 2000)

ABC 3.74 (1.21, 12.09)

MLP 4.07 (1.10, 9.08)

MLP with time 3.92 (3.41, 4.25)

CNN 4.21 (2.53, 4.76)

LSTM 2.71 (1.83, 4.54)

Estimates shown include the 95% credible/confidence intervals.

TABLE 4 | The estimation results for effective reproduction number from previous

published research on measles and ABC, two MLP, CNN, and LSTM models.

Methods Effective reproduction number of measles

Previous study 1.5 (Mossong and Muller, 2000)

ABC 1.16 (0.59, 4.88)

MLP 1.00 (0.63, 1.88)

MLP with time 0.91 (0.69, 1.07)

CNN 0.96 (0.19, 1.26)

LSTM 1.08 (0.80, 1.52)

Estimates shown include the 95% credible/confidence intervals.
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TABLE 5 | The estimation results for R0 from previous published research on

influenza and ABC, two MLP, CNN, and LSTM models.

Methods R0 for influenza

Previous study 1.23 (Lessler et al., 2009)

ABC 1.24 (0.96, 1.74)

MLP 0.40 (0.00, 0.79)

MLP with time 1.06 (0.86, 1.30)

CNN 2.84 (2.08, 3.35)

LSTM 1.84 (1.38, 3.54)

Estimates shown include the 95% credible/confidence intervals.

average error for all methods is relatively low, though LSTM
and ABC have higher average errors than the other methods
and also exhibit a small tendency to underestimate R0 for values
near 1.0. All five methods also underestimated the effective
reproduction number for measles, which was estimated at 1.5.
With the exception of MLP with time, the methods contained
1.5 in their 95% CI intervals. However, the estimates for all five
methods were within the 95% CI of the previous study. Finally,
for the flu estimates, CNN and LSTM greatly overestimate R0 as
2.84 and 1.84, respectively. LSTM both over- and underestimates
values around R0 = 1.2. The estimation of 2.84 by CNN is
not robust with expected values, as though CNN does tend to
overestimate more than underestimate at R0 = 1.2, an R0 of 2.84
is outside its average error window.

DISCUSSION

In this study we applied ML methods to estimate the
epidemiological parameters of infectious diseases, and compared
their accuracy and speed with ABC. In general, the width
of confidence intervals estimated by ML are smaller than the
credible intervals estimated by ABC. The average error of ML
estimates are similar to ABC for R0, and larger for small values,
but smaller for large values of γ and ǫ. Furthermore, the ML
models were faster to train than ABC.

ABC was more robust to changes in the data, as shown
in Tables 3–5. MLP with time was the most robust of the
ML methods, with a tendency to underestimate R0. Given the
difference in calculation times between ABC and MLP with
time (410 min for ABC compared to 71 min for MLP to train
100,000 samples and 3,962 min for ABC compared to 531 min
for MLP on one million samples), it is worth exploring methods
which can reduce the underestimation of R0 in the MLP with
time solution. Possibilities include increasing the amount of
training data, hyperparameter tuning, increasing the depth of
the model, and other general ML tuning methods which may be
applied (Bishop, 2006). The ML methods estimated γ well, but
with an obvious overestimation bias which can be observed in
Figure 4, which may also be corrected by applying the previously
mentioned approaches.

Interestingly, the point at which ABC is better than ML shifts
with increasing sample size for γ and ǫ. When trained on one
million datasets, this point decreased from <2.0 to 1.6 days−1

for γ and from <7.5 to 6.5 days−1 for ǫ. CNN and MLP with
time showed similar estimation capability with ABC for R0, with
average errors around 0.2 for R0 < 3.0 and increasing with
increasing R0. The MLP and LSTM approaches showed poor
estimation ability for R0.

While the ML models were faster to train than ABC was
to verify, it should be noted that ABC verification of varying
parameter values is not required, but ML training on all
parameter values is necessary (Palmer and Chakravarty, 2014).
That is, an ABC test estimate can be made in approximately
<1 min without thorough verification of the general efficacy of
the method, while the ML models must be fully trained before
calculating a test estimate. However, once trained, theMLmodels
do not need to be retrained unless there is a large amount of new
data or some other reason arises to retrain the model (Bishop,
2006).

The problem of parameter estimation explored in this paper
can be classified as a ML regression problem where the values of
the estimates are continuous. The vast majority of ML research is
on classification problems with discrete solutions and therefore
“right” and “wrong” answers (Dreiseitl and Ohno-Machado,
2002). In bioinformatics andmedicine, another characteristic of a
large amount of ML solutions is the use of 2-dimensional images,
again typically for classification, for example identifying breast
cancer or analyzing MRIs (Sahiner et al., 1996; Chaplot et al.,
2006; Krizhevsky et al., 2012). One example of ML being used
for regression comes from the European Space Agency (ESA)
(Verrelst et al., 2012; Caicedo et al., 2014), where neural networks
and regression methods were explored for use in analyzing the
large quantity of data being returned by the Sentinal-2 and
Sentinel-3 satellites searching for life on far planets. Overall,
the application of ML methods on regression problems requires
further analysis to improve accuracy.

Note that the R0 value of 1.2 cited from the paper by Lessler
et al. (2009) is the estimate made over the entire course of
the outbreak. This value agrees with existing genetic analysis of
the virus, as well as additional epidemiological studies which
estimated the R0 value of influenza A(H1N1)pdm09 between 1.4
and 1.6 (Fraser et al., 2009).

Several disadvantages of ML for estimation of epidemiological
parameters were found. First, ML approaches are highly sensitive
to the size of parameter ranges (Ma et al., 1994). As parameter
ranges increase, accuracy of the estimates decreases. In additional
tests, we used normalization and standardization to try to reduce
the impact of range size on model estimatibility, with limited
success (Ioffe and Szegedy, 2015). Moreover, ML is not robust
to changes in the initial condition of the model (Kolen and
Pollack, 1991), even outside the parameters of interest, though
ABC, too, showed sensitivity to initial conditions. This sensitivity
may be reducible with larger datasets, deeper models, or the
introduction of pruning algorithms and may be explored in later
papers (Berthold and Hand, 2003).

In this paper, we have explored a single set of continuous time
data, capturing parameters as constant values in a mathematical
model. The transmission process of infectious disease does not
strictly follow mathematical models and parameters can change
values over time. Two approaches for future work which would
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partially address these issues are (1) a “discrete time analysis”
to observe changes in parameter values over time and (2)
testing the robustness of our estimates by checking values from
different epidemiological models. “Discrete time analysis” is a
discretization of the time component of our model with the
assumption that the parameter values are constant between time
intervals to observe changes in parameter values over time. To
check the robustness of our estimates, but still using simulated
data, we could create multiple datasets from the Susceptible-
Exposed-Infectious-Removed-Susceptible (SEIRS) (Cooke and
van den Driessche, 1996) epidemiological model and use this
much more complex data to test a model trained from simpler
SIR or SEIR model data. This would check the robustness of
the systems to changes in unknown parameters and allow us to
observe and estimate the sensitivity of our systems. Furthermore,
using an SEIRS data model for data generation would allow for
analysis of longer and recurring epidemics (Cooke and van den
Driessche, 1996) and the efficacy of ML and ABC in estimating
more complex disease dynamics.

In conclusion, we have confirmed that both ABC and ML
can estimate SEIR model parameters, with ABC and MLP with
time being the most robust methods for different SEIR models
and parameters. ML models learn more quickly than ABC can

be verified, however ABC verification is highly parallelizable, i.e.,
the problem can be broken into several processes and estimated
concurrently, while the learning time for ML models is more
difficult to reduce. A key benefit of ML is the speed with which
new datasets can be analyzed. A single, new sample can be
analyzed in a few seconds, compared to several minutes by ABC,
and is constant regardless of the number of datasets used for
training. This means a trained ML model would be helpful when
estimating large batches of new data.
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