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Modern neuroimaging methods may provide unique insights into the mechanism and role
of sleep, as well as into particular mechanisms of brain function in general. Many of the
recent neuroimaging studies have used concurrent EEG and fMRI, which present unique
technical challenges ranging from the difficulty of inducing sleep in the MRI environment
to appropriate instrumentation and data processing methods to obtain artifact free data.
In addition, the use of EEG-fMRI during sleep leads to unique data interpretation issues,
as common approaches developed for the analysis of task-evoked activity do not apply
to sleep. Reviewed are a variety of statistical approaches that can be used to character-
ize brain activity from fMRI data acquired during sleep, with an emphasis on approaches
that investigate the presence of correlated activity between brain regions. Each of these
approaches has advantages and disadvantages that must be considered in concert with
the theoretical questions of interest. Specifically, fundamental theories of sleep control
and function should be considered when designing these studies and when choosing the
associated statistical approaches. For example, the notion that local brain activity during
sleep may be triggered by local, use-dependent activity during wakefulness may be tested
by analyzing sleep networks as statistically independent components. Alternatively, the
involvement of regions in more global processes such as arousal may be investigated with
correlation analysis.
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INTRODUCTION
Across the sleep-wake cycle, the human brain displays a wide
range of behaviors that have long intrigued scientists. Rather
than simply being a state of reduced wakefulness, sleep is now
understood as a complex state that is “by, for, and of the brain”
(Hobson, 2005) and that has a characteristic signature of neuro-
electrical and metabolic activity. What does this activity represent,
how is it orchestrated, and how does it support the functions
of sleep? Answering these questions is not only important for
sleep research but may also provide clues about brain function
in general.

Over the years, researchers have used a variety of approaches to
study the relationship between sleep and brain activity. With time,
these approaches have become increasingly sophisticated. Before
the invention of electroencephalography (EEG), researchers stud-
ied sleep by examining its behavioral characteristics (e.g., arousal
threshold). An increased arousal threshold was understood to
equate to an increased sleep “depth” and reduced brain activity.
However, determining arousal threshold had a significant limita-
tion because it required the disruption of sleep. The use of EEG
as a surrogate for the behavioral definition then gained accep-
tance because of a strong correlation between EEG slow-waves and
arousal threshold (Blake and Gerard, 1937). This was very impor-
tant for sleep researchers because they could study sleep without
disrupting it.

Nevertheless, it was soon realized that there were limitations
to the characterization of sleep based on arousal threshold and
the level of EEG slow-wave activity alone. Importantly, the dis-
covery of REM sleep in the 1950s (Aserinsky and Kleitman, 1953)
made it clear that the sleep-wake cycle was more than a gradual
variation in global (i.e., whole brain) activity that was indexed
by arousal threshold. In addition, it became increasingly apparent
that the EEG had significant limitations in capturing changes in
spatial activity patterns due to difficulties in interpretation and
poor localization.

The ability to spatially localize brain signals reflecting neural
activity improved dramatically in the 1990s with the advent of
neuroimaging techniques based on single photon emission com-
puted tomography (SPECT; Kuhl et al., 1976), positron emission
tomography (PET, Phelps et al., 1981), and Blood Oxygenation
Level Dependent functional MRI (BOLD fMRI; Kwong et al., 1992;
Ogawa et al., 1992). Early PET studies of sleep have demonstrated
regional metabolic variations across the sleep-wake cycle (e.g.,
Maquet et al., 1996; Braun et al., 1997), confirming early indi-
cations from EEG studies that sleep is more than a global change
in activity.

BOLD fMRI is the most recent neuroimaging method applied
to sleep and it has specific advantages over PET and SPECT because
it is entirely non-invasive and has superior spatial and temporal
resolution. These characteristics offer the opportunity to localize
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sleep-specific changes in brain activity and also to examine the
network dynamics associated with the functions of sleep (e.g.,
learning and memory). Thus, combined with EEG, fMRI may
be a powerful tool to characterize sleep and study its functions.
In the following, methods for concurrent EEG-fMRI will be dis-
cussed, focusing on data analysis and highlighting applications to
the study of sleep. Emphasis will be on introducing specific meth-
ods and exemplary work rather than providing a comprehensive
review.

WHAT DO EEG AND fMRI MEASURE?
It is interesting to consider that, although EEG and fMRI have
been around for decades, the origin of their signals and rela-
tionship to behavior remain poorly understood. One reason for
this is the fact that much of the exquisite detail in the spatio-
temporal patterns of the brain’s electrical activity is lost when
observed through the macroscopic measures of EEG and fMRI.
For example, the spatial resolution of these methods is at the mil-
limeters scale, equivalent to assemblies of hundreds of thousands
to millions of neurons. Considering the range of behaviors avail-
able to simple creatures such as the roundworm and the fruit fly,
whose brains have about 300 and 100,000 neurons respectively, it
becomes clear that the interpretation of EEG and fMRI is challeng-
ing and requires gross simplification of the underlying networks.
A popular simplification is to model the brain as a collection of
interconnected functional processing modules, each with a dis-
tinct function subserved by a large assembly of several classes of
neurons.

The macroscopic signals measured with BOLD fMRI are the
result of a blood flow response that overcompensates for the
increased oxygen consumption required for neural activity. A
working hypothesis is that, in most brain regions, the fMRI sig-
nal is coupled to the level of excitatory and inhibitory synaptic
transmission (Jueptner and Weiller, 1995; Attwell and Laughlin,
2001; Logothetis et al., 2001; Logothetis, 2008) and may reflect
a brain region’s level of local processing (Attwell and Iadecola,
2002). Measurements in the motor cortex suggest that the contri-
bution of inhibitory synapses to the neocortical fMRI signal may
be small (Waldvogel et al., 2000); however, this finding may not
generalize to all brain regions. Thus, in principle, increased fMRI
signal resulting from increased synaptic activity in a region may
be associated with reduced, constant, or increased spiking activ-
ity (e.g., Lauritzen, 2001). Conversely, in regions with ineffective
neurovascular control, brain activity may not lead to a significant
BOLD signal. Furthermore, depending on the local circuitry, bulk
changes in synaptic transmission that lead to fMRI signal changes
may represent a variety of processes with differing behavioral rel-
evance, including local processing and more global modulatory
effects of attention and arousal.

Although it was originally used to study task-evoked activity, an
interesting, somewhat more recent, and rapidly growing applica-
tion of fMRI is the study of spontaneous brain activity, i.e., activity
that is not evoked by explicit tasks (Biswal et al., 1995; for review
see: Auer, 2008). Such work has shown that much of the brain is
continually active with activity patterns that are highly correlated
between regions with known anatomical and implied functional
connectivity (e.g., Honey et al., 2009). Analysis of spontaneous

activity may reveal the functional connectivity of the brain, and its
potential alteration during various cognitive and behavioral states,
including sleep. Thus, the study of spontaneous brain activity with
fMRI may be a particularly attractive tool for sleep research.

The spatial resolution of fMRI is limited by instrumental and
physiological factors. The instrumental factors relate to the intrin-
sic MRI sensitivity, as increasing MRI resolution results in higher
image noise levels. This limits the resolution to about 1.5–2.0 mm
on modern 3T systems, and about 1.0 mm on 7T systems (Tri-
antafyllou et al., 2005). The physiological factors relate to the fact
that the BOLD fMRI signal is filtered by the vasculature; despite
the fact that neurovascular control may be spatially highly specific
(e.g., Duong et al., 2001; Iadecola and Nedergaard, 2007), disper-
sion of the resulting blood oxygenation change across the venous
vasculature leads to spatial and temporal blurring (Turner, 2002;
de Zwart et al., 2005). This generally limits the spatial and temporal
resolution to 1–2 mm (Shmuel et al., 2007) and 3–4 s respectively
(Turner, 2002; de Zwart et al., 2005).

A loss in spatial and temporal resolution of neuro-electrical
signals also occurs with EEG, although to a different extent
and through different mechanisms. Volume conduction and spa-
tial summation result in a loss of most neuro-electrical-based
information when measured from the scalp. Scalp signals, there-
fore, are strongly biased by neuronal architecture and primar-
ily reflect activity from large neuronal populations with a long
and highly anisotropic arrangement of dendrites (Hamalainen
et al., 1993). For this reason, the dominant signals in the EEG
are generally the lower frequency (0–30 Hz) signals, which pri-
marily reflect the modulation of large cortical areas. Typically,
EEG spatial and temporal resolutions are limited to 1 cm and
10 ms respectively. As a result, the EEG signal may relate to
neuronal activity associated with local cortical processing in a
complicated and non-stationary fashion. Higher frequency sig-
nals on the other hand may more directly reflect processing in
focal regions but are more difficult to detect due to their small
amplitude and the extensive averaging required for their mea-
surement. This is particularly the case for sources deeper in the
brain (away from the detectors on the scalp), some of which
may be invisible to the EEG. Thus, both EEG and fMRI sig-
nals are difficult to interpret and their comparison is compli-
cated by the fact that they represent different aspects of neuronal
activity.

THE EEG-fMRI EXPERIMENT
The simultaneous measurement of both EEG and fMRI signals
has potential advantages for the study of brain activity because
each method contributes unique information (e.g., Ritter and
Villringer, 2006). For sleep, this combination allows the char-
acterization of various sleep features and “stages” using classic,
EEG-based criteria, as well as correlative analysis between EEG
features and the fMRI signal. This potentially provides novel infor-
mation about sleep that is not available with each method alone.
In this section, some of the practical aspects of performing EEG
in the fMRI environment will be briefly discussed.

Because of both safety and performance issues, EEG-fMRI
requires specialized, MRI-compatible EEG hardware. Specifically,
the EEG equipment that goes into the MRI scan room needs to be
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non-magnetic, and it needs to have features to either avoid signifi-
cant electric voltages being induced on the EEG leads or minimize
their associated currents. The latter may cause harm to the subject,
distort the EEG signals, and damage the EEG signal amplifiers.
Such voltages could result from the radiofrequency fields or the
switching of the gradient fields associated with MRI image acqui-
sition (e.g., Lemieux et al., 1997). Proper geometric arrangement
of the electrode leads and the use of adequately resistive elec-
trode material or built-in resistors that limit electrode currents
can minimize safety hazards.

The fMRI environment negatively impacts EEG data qual-
ity because of gradient switching artifacts and cardio-ballistic
artifacts. Both of these artifacts can be dealt with effectively in
post-processing, recovering much of the data quality of EEG
performed outside the scanner. Successful removal of gradient
artifacts requires sufficient dynamic range of the EEG amplifiers
and digitizers, and may benefit from precise synchronization of the
EEG and MRI digitizers (see below). The latter is achieved by use
of a synchronization signal derived from the MRI scan clock. To a
lesser extent, the EEG may affect MRI data quality in the form of
magnetic susceptibility artifacts resulting from disruptions of the
magnetic field by the electrodes. This effect is generally negligible.
In summary, modern technology allows concurrent measurement
of EEG and fMRI without significant loss in data quality, com-
pared to EEG or fMRI performed in isolation, while offering novel
opportunities for the study of sleep.

With regard to the study of sleep, another practical concern
with concurrent EEG-MRI, and with MRI in general, is subject
discomfort. The MRI environment is not very conducive to sleep
because there is substantial acoustic noise and the subject must lay
still in a position that generally grows uncomfortable over time.
For this reason, the study of extended periods of sleep, and of deep
sleep in particular, may require sleep depriving the subjects. Nev-
ertheless, it may be possible to facilitate sleep inside the scanner by
techniques that derive from our understanding of sleep physiol-
ogy. Subjects should be screened for even minor sleep difficulties
(e.g., sleep-initiation insomnia). Although subjects may not have
a diagnosis of a psychological disorder, they may have a subclinical
presentation of the disorder that would prevent them from falling
asleep during fMRI. Subjects should follow strict “sleep hygiene”
practices in the days or weeks preceding the study. This includes
maintaining a regular sleep schedule (a constant bedtime and wake
time) and avoiding long naps. Adherence to this schedule can be
monitored with actigraphy. These procedures would facilitate the
ability of subjects to reach slow-wave sleep and REM sleep without
sleep deprivation.

The acoustic noise inherent to MRI scanning can be mitigated
in a variety of ways that can be used in combination. First, one can
employ barrier protection (e.g., insert earplugs). Second, one can
use active noise cancelation (use of an additional noise source that
destructively interferes with the scanner noise). Outside the MRI
environment, this approach has been used successfully to reduce
the acoustic noise associated with transcranial magnetic stimula-
tion (Massimini et al., 2005), and recently, commercial systems for
use in the MRI environment have become available (e.g., Cham-
bers et al., 2007). Third, the acoustic noise associated with scanning
can be decreased by lowering the spatial resolution and decreasing

the gradient switching speed (e.g., Horovitz et al., 2009). However,
the trade-off for this approach is generally a decreased spatial res-
olution. Fourth, some investigators have gone as far as attaching a
polyurethane “acoustic hood” to the magnet bore (Fransson et al.,
2009).

ANALYSIS OF EEG-fMRI DATA
The analysis of concurrently acquired EEG and fMRI data can
proceed along various ways, depending on the research question at
hand. A schematic of the most common processing pathways and
major steps is given in the Figure 1. Common to all approaches is
pre-processing for artifact removal from both EEG and fMRI data,
as will be discussed in the following two sections. The third section
in this chapter will discuss the direct comparison of features in the
EEG signals with fMRI activity. Further analysis of fMRI data for
the study of correlation and independence between brain regions
during various stages of sleep will be discussed in the next chapter.

EEG PRE-PROCESSING
An important first step in the analysis of concurrently acquired
EEG and fMRI data is the removal of artifacts that are inherent
to the individual modalities or result from interference caused by
their combination. As indicated above, cardio-ballistic and gradi-
ent artifacts are among the strongest signals seen in EEG acquired
in the MRI environment. They result from electro-motive forces in
the conductive EEG leads, which in turn result from MRI gradient
switching and from small electrode movements due to cardiac pul-
sations (Goldman et al., 2000). Fortunately, both can be removed
almost entirely by dedicated processing methods (Laufs et al.,
2008). For example, gradient artifacts can be effectively removed
by template subtraction (Mandelkow et al., 2006; Grouiller et al.,
2007; Laufs et al., 2008; Moosmann et al., 2009), provided ampli-
fiers with sufficient dynamic range are used. Cardio-ballistic arti-
facts, on the other hand, may be better removed by independent
component analysis (Liu et al., 2002; Benar et al., 2003; Vander-
perren et al., 2010), as they may be too variable for template
subtraction methods to be adequately effective. It is possible to
do this effectively without significantly affecting the brain signals
(e.g., Liu et al., 2002).

After removal of EEG artifacts that are caused or enhanced
by the MRI environment, some additional pre-processing may be
performed including eye-blink removal, notch filtering to remove
line frequency artifacts (at 50 or 60 Hz and their harmonics), and
low-pass filtering (below about 100 Hz) to reduce the contribution
of thermal noise and instrumental drifts. Generally, EEG data are
also high-pass filtered to reduce the effects of instrumental drift
and saturation of the amplifiers. This is done either implicitly (by
the amplifier electronics) or explicitly (during pre-processing) at
1 Hz or below.

fMRI PRE-PROCESSING
MRI pre-processing includes standard fMRI-specific artifact
reduction and corrections for geometric distortion and slice tim-
ing differences. Furthermore, head motion correction is per-
formed through image registration procedures. Although these
pre-processing steps substantially improve the temporal stability
of the fMRI data, they do not fully remove the contributions of
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FIGURE 1 | Schematic overview of the analysis strategies and processing steps that are discussed in this review. Three distinct analysis approaches are
shown: investigating correlations within fMRI data from sleep stages identified with EEG, correlating EEG features with fMRI data, and correlating fMRI
features with EEG data.

non-neuronal signal sources such as head motion, the respiratory
and cardiac cycles, and instrumental instabilities that manifest as
slow signal drift.

Separating these slow, non-neurogenic signal fluctuations from
neurogenic signals can be particularly problematic for the study of
spontaneous activity during sleep as one does not have an a priori
model for the neuronal activity as is available for studies of task-
evoked activity. Additionally, task-evoked studies generally have
the flexibility to optimize the task paradigm in order to minimize
the contribution from non-neuronal signal sources. For example,
a paradigm with rapid alternation of rest and active periods facil-
itates the distinction between rapid neurogenic signals from slow
extraneous signals.

A popular way to eliminate non-neurogenic signals from sleep
data is through regression analysis. For this purpose, one or
more signals (regressors) are chosen to represent non-neuronal
sources, which can then be used with multi-linear regression
analysis and projected out of the data (see e.g., Bianciardi et al.,
2009a). Regressor signals can be derived from various sources,
including separately acquired peripheral signals representing pul-
monary and cardiac cycles (e.g., from respiration bellows and pulse
oximeters), head motion signals derived from the motion correc-
tion pre-processing, and fMRI signals in regions of interest [ROI;
e.g., cerebro-spinal fluid (CSF) or white matter] or averaged over
the entire brain. To represent instrumental drift one can further
include a range of low-order polynomials.

Although regression analysis can aid the separation of non-
neurogenic from neurogenic signals, its effectiveness is difficult

to quantify and may be quite variable. For example, the regres-
sion may inadvertently remove neurogenic signal or incompletely
remove non-neurogenic signal. The former is possible when some
of the regressors are contaminated with neurogenic signal, for
example when the CSF or white matter ROI contain signal from
venous blood draining from active regions (e.g., Bianciardi et al.,
2011). Another example is the use of the “global” brain signal as a
regressor,potentially introducing artifactual correlation in the data
(see e.g., Fox et al., 2009). Alternatively, it is possible that some neu-
rogenic signal is captured with the polynomial “drift” regressors.
Incomplete removal of non-neurogenic signal can occur when it
is not fully represented in the regressors.

COMBINED ANALYSIS OF EEG AND fMRI DATA
After pre-processing of EEG and fMRI data for artifact removal,
combined analysis can be performed by comparing certain EEG
features with fMRI data, which effectively combines the superior
spatial resolution and coverage of fMRI with the good temporal
resolution of EEG. Such an analysis can in principle be done in
various ways, and how to precisely do this (which EEG features
to select, and how to compare them with fMRI) remains an active
area of research. The fact that this issue has not been resolved
is largely due to an incomplete understanding of the underlying
signal sources and a potentially circuit- and context-specific rela-
tionship between the neuro-electric and metabolic signals (e.g.,
Maier et al., 2008). Nevertheless, the various approaches to com-
paring EEG and fMRI signals that have been used most frequently
will be briefly reviewed.
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As the raw EEG signal may be rather noisy, and its absolute
level may be prone to artifacts (e.g., motion and slow drifts), most
analysis methods perform feature extraction prior to compari-
son with fMRI. The temporal incidence of such features is then
compared to the BOLD fMRI signal on a pixel-by-pixel or region-
by-region basis. This is generally done after convolution with a
canonical hemodynamic response function (HRF), which repre-
sents the BOLD temporal response as an impulse of neuronal
activity. In the following, some of the features that can be derived
from the EEG signal will be discussed.

A feature often extracted from the EEG signal is band-limited
power (BLP; e.g., Goldman et al., 2002; Laufs et al., 2003; Leopold
et al., 2003), which reflects instantaneous activity in a specific
frequency band. Extraction of the BLP can be done by band-
pass filtering the entire EEG recording or by performing time-
frequency analysis on relatively short time segments, not exceeding
the duration of the hemodynamic response. The rationale for this
approach is that EEG BLP should have a neuro-metabolic cor-
relate that would be reflected in the fMRI signal. A caveat with
this analysis is not all of the EEG activity is oscillatory, and there-
fore, some information is lost. Alternatively, and relevant to the
study of sleep, it is possible to extract temporal EEG graphoele-
ments, monitor their temporal incidence, and after convolution
with the HRF, correlate them with the fMRI signal. This has been
done with K-complexes (Czisch et al., 2009), slow-waves (Dang-
Vu et al., 2008), infraslow-waves (Picchioni et al., 2011), and sleep
spindles (Schabus et al., 2007; Andrade et al., 2011). The study con-
ducted by Andrade and colleagues is particularly unique because
it was designed to measure the changes in functional connectivity
as a function of spindle activity. Finally, several other physio-
logical phenomena that occur during sleep can be used as the
event onset for event-related fMRI analyses such as eye move-
ments during REM sleep (Wehrle et al., 2005; Hong et al., 2009;
Miyauchi et al., 2009). In addition, during lucid dreaming, the
onset of a predefined dreamed motor movement can be signaled
to the investigators with changes in the electro-oculogram, and
they can be used as onset markers in the fMRI analysis (Dresler
et al., 2011).

Both BLP and temporal EEG graphoelement extraction are usu-
ally performed on an electrode-by-electrode basis without taking
the scalp distribution of the EEG into account; EEG information
is derived from a single spatial location, whereas fMRI informa-
tion is spatially diverse. This means that correlations between the
two are not matched in space. One method to address this disad-
vantage is to use source localization techniques such as LORETA.
Another method to address this disadvantage is to extract so-called
“microstates” (Wackermann et al., 1993; Britz et al., 2010; Musso
et al., 2010), which are a few dominant scalp patterns that the brain
appears to generate consistently. The temporal occurrence of each
of these patterns is then correlated (again after convolving with
the HRF) with the fMRI signal, revealing reproducible fMRI pat-
terns. Lastly, the reverse is possible as well: a signal time course of
a brain region can be extracted from the fMRI data and correlated
against EEG features such as BLP or other spectral characteris-
tics. Such fMRI signals can be extracted using, e.g., seed analysis
or independent component analysis (e.g., Mantini et al., 2007;
Sadaghiani et al., 2010) as will be discussed below. The purpose

of this analysis would be to investigate which EEG characteristics
underlie the fMRI signal variations.

An advantage of combined analysis over analyzing the fMRI
and EEG signals independently would be the potential for an
improved understanding of the neuronal processes underlying the
generation of the signals in the individual modalities. For example,
comparison of the fMRI with the EEG signals aids in separating
neurogenic from non-neurogenic contributions to the fMRI data,
the latter of which would presumably be absent from the EEG sig-
nal. A caveat with this analysis is that EEG may not capture much
of the brain activity that is represented in fMRI and vice versa.
In fact, reported EEG-fMRI correlations are generally low (cor-
relation values of below about 0.3) suggesting they represent the
minority of the variance in the signals.

EXPLORING FUNCTIONAL CONNECTIONS WITH fMRI DATA
After pre-processing, the EEG data can be simply used to classify
the classical sleep stages (e.g., Rechtschaffen and Kales, 1968), after
which stage-specific features in the fMRI data can be analyzed.
Such features may include local fMRI activity levels, or fMRI spec-
tral characteristics (see e.g., He et al., 2010; He, 2011). In addition,
one can further analyze the fMRI data to identify stage-specific net-
work activity that may originate from distinct sleep processes. The
two sections in this chapter will discuss two approaches for further
fMRI data analysis: one that aims at identifying functionally con-
nected brain regions, and one that aims at identifying functionally
independent networks of brain regions.

FINDING FUNCTIONAL CONNECTIONS WITH SEED REGION
CORRELATION
During sleep, widespread changes in brain activity occur, and
many of these changes are coordinated across many cortical and
subcortical regions. At the cellular level, most brain regions see
decreases in the concentration of neurotransmitters such as sero-
tonin, norepinephrine, and acetylcholine during non-REM sleep,
with a restoration of acetylcholine only during REM sleep (Trul-
son and Jacobs, 1979; Aston-Jones and Bloom, 1981; Marrosu et al.,
1995). At the systems level, neocortical activity that supports the
conscious processing of stimuli is reduced and is thought to be
replaced by spontaneous processes that support the restorative
functions of sleep. These restorative functions may be intimately
linked to the memory consolidation attributed to sleep (Yoo et al.,
2007; van der Werf et al., 2009) and such memory consolida-
tion may coincide with a unique change in network activity. For
example, this consolidation may be effectuated by a reversal of the
hippocampo-neocortical dialog that preferentially occurs during
sleep (Buzsaki, 1998; Hasselmo, 1999). Recent EEG-PET and EEG-
fMRI studies have indeed shown a learning-dependent increase in
hippocampal (Peigneux et al., 2004) or specific cortical regions
(Rasch et al., 2007; Bergmann et al., 2012) during sleep. Therefore,
the identification of brain regions that are functionally connected
during sleep may help us further understand the process of mem-
ory consolidation. Compared to the study of activity levels during
sleep with fMRI or PET, studying functional networks during sleep
with these techniques is a new area of exploration.

A simple way to investigate functional connectivity in the brain
is to determine correlations between signals from various brain
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regions. Generally, this involves calculating the Pearson product-
moment correlation coefficient at zero lag (time-shift) between
the signals. Although the study of the lag-dependence of this cor-
relation (so-called cross-correlation analysis) is also possible (see
“Granger causality analysis” section below), it is commonly omit-
ted as it generally provides little additional information due to the
substantial temporal blurring of the neuronal signals by the slug-
gish hemodynamic response. Correlation analysis can in principle
be done on a voxel- (i.e., single MRI volume element) by-voxel
basis, but doing this for all possible voxel combinations would be
rather computational intensive and its result would be expansive
and require further summarizing and interpretation. For this rea-
son, connectivity analysis is often restricted to the calculation of
correlations between one or a few “seed” region(s) and all other
voxels in the brain. The seed region can be defined either anatom-
ically or functionally, and this can be done in native space (i.e.,
before non-linear registration to a standard brain atlas) or in stan-
dard space (i.e., after non-linear registration to a standard brain
atlas).

Defining a seed region anatomically is performed by tracing
it manually or by using standard atlas coordinates. When using
standard atlas coordinates, investigators can use the discontinu-
ous clusters that define an anatomical region or a single point
in space within that region in combination with geometrically
defined shapes (e.g., spheres). Defining a seed region functionally
is performed by collecting functional data in a separate session
with a task that is known to elicit robust activity in the region
of interest and extracting the time course of significantly acti-
vated voxels in native space. Defining the seed region anatomically
is advantageous because it provides more standardization across
studies, whereas defining the seed region functionally is advan-
tageous because the exact brain region that controls a behavior
or a cognitive activity often varies between individuals. It is also
possible to define the seed region using principal or indepen-
dent component analysis (see below). It is customary to take the
region’s averaged signal to represent the region; an alternative is
to extract one or more signals with principal component analysis
(e.g., Bianciardi et al., 2009b).

Investigators who analyzed cortico-cortical connectivity dur-
ing sleep have done so in the context of the default-mode network.
The anterior-posterior nodes of the default-mode network con-
tinue to be coupled in stage 1 and 2 sleep (Horovitz et al., 2008;
Larson-Prior et al., 2009; see Samann et al., 2011 as an exception)
but lose much of this coupling in stage 3 and 4 sleep (Horovitz
et al., 2009; Samann et al., 2011). The latter result is consistent
with data that indicated decreased neocortical connectivity using
EEG (Massimini et al., 2005). In REM sleep, the anterior-posterior
connectivity is restored with the exception of the dorsomedial pre-
frontal cortex, which may explain some of the phenomenological
characteristics of dreaming (Koike et al., 2011).

The utility of fMRI to study correlated networks during sleep
is particularly clear when one is interested in the connectivity of
subcortical regions, which are less amenable to connectivity analy-
ses with EEG data. Kaufmann et al. (2006) used a seed region in
the hypothalamus, which contains several nuclei that are critical
to sleep-wake regulation. For example, the ventrolateral preoptic
nucleus is part of the putative bistable sleep switch (McGinty and

Szymusiak, 2000; Saper et al., 2001). There was little connectivity
with the hypothalamus during wakefulness and only during sleep
did connectivity with other regions appear. This was attributed to
the emergence of sleep-active neurons in the ventrolateral preoptic
nucleus. Andrade et al. (2011) used a seed region in the hippocam-
pus. In stage 2 sleep, hippocampal connectivity with neocortical
regions increased compared to wakefulness. The authors suggest
that this may reflect an increase in hippocampo-neocortical infor-
mation transfer and that such information transfer may support
the systems consolidation of memories (Frankland and Bontempi,
2005). In stage 3 and 4 sleep, hippocampal connectivity with neo-
cortical regions decreased compared to wakefulness. The authors
suggest that this may support other types of memory consolida-
tion because the processing of memories that are stored in these
regions could take place in an isolated manner.

Many of these previous studies have implications for sleep-
dependent learning (e.g., the potential importance of cortical
isolation for memory processing); however, only one study was
designed to measure learning and correlated it with connectivity
changes during sleep (van Dongen et al., 2011). The investiga-
tors used a face-location associative memory task that is known to
depend on the fusiform gyrus and measured connectivity of the
fusiform gyrus during light sleep. It was discovered that neocor-
tical connectivity increased during sleep and these increases were
correlated with performance on the task after sleep. These inves-
tigators have fundamentally advanced the study of sleep networks
because they combined (1) the use of an established cognitive task,
(2) the administration of that task before and after sleep, (3) the
identification of a brain region on which that task is known to
depend, and (4) the measurement of changes in connectivity with
that region during an intervening period of sleep. This is a novel
approach in the study of sleep networks with fMRI.

An advantage of the regional correlation approach is its math-
ematical and practical simplicity. On the other hand the interpre-
tation of correlation values may be confounded by the presence
of multiple signal sources within a signal region, including neu-
ronal and non-neuronal sources. For example, incomplete removal
of global (e.g., instrumental drift related) signals during pre-
processing will bias the correlation values. Component analysis,
which will be discussed in the following section, may overcome
this problem.

FINDING INDEPENDENT NETWORKS WITH COMPONENT ANALYSIS
Sleep can also be considered a local brain phenomenon. One the-
ory of sleep function suggests that neocortical brain activity during
sleep is triggered by local, use-dependent activity during wakeful-
ness (Krueger et al., 2008). Two main pieces of evidence support
this theory. First, hemispheric asymmetries in neocortical sleep
EEG oscillations can be induced by the local application of sleep
regulators (e.g., Yoshida et al., 2004). Second, if one preferentially
uses a neocortical region during wakefulness, then the sleep EEG
oscillations in that region have the highest amplitude compared
to other neocortical regions (e.g., Huber et al., 2004). This local
activity may reflect the sleep-dependent memory consolidation
associated with the task. Of course, in reality, our lives require us
to consolidate an enormous variety of tasks. If we assume that –
during sleep – learning each task depends on local brain activity
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in a variety of regions, then it would be important to use statistical
techniques such as principal component analysis to analyze this
brain activity.

An early application of principal component analysis was in
the field of psychology. It is commonly used on questionnaires
to group items according to the underlying psychological con-
structs that they are purported to measure. For example, the
Revised NEO Personality Inventory is a 240-item questionnaire
that groups items into components such as Extraversion and Con-
scientiousness. The same basic principle applies to fMRI research.
In the simplified example of fMRI data collected for a single sub-
ject, questionnaire items are replaced with voxels, questionnaire
respondents are replaced with time points, and psychological con-
structs are replaced with neuroanatomical regions. Techniques
such as principal component analysis can be thought of as multi-
variate data reduction techniques. They allow the user to reduce
a large variable set into a series of smaller variable subsets, where
the variables within each subset are correlated with each other and
the subsets are orthogonal to each other. Although this is the basic
technique, there are several choices to make when using this overall
data analysis approach.

First, the user must choose the specific technique to be
employed: factor analysis, principal component analysis, or inde-
pendent component analysis. The first two techniques are virtually
identical with the exception that factor analysis is designed to
assume that the error terms across the components are equal. In
both of these techniques, the data are assumed to be Gaussian,
whereas this is not the case for independent component analysis.
This means that when independent component analysis attempts
to fit a component to non-Gaussian data, it is better able to do
so. This is because it maximizes the independence between com-
ponents when fitting them to the data rather than maximizing
the amount of variance that each component explains. Second,
the user must choose whether to perform an exploratory analy-
sis (i.e., post hoc components) or a confirmatory analysis (i.e.,
a priori components). Confirmatory factor analysis is often per-
formed within the framework of structural equation modeling,
which is also called latent variable modeling. In this technique, the
user specifies the list of measured variables that will be grouped
under each latent variable and tests the overall model fit as well
as the fit between each measured variable with its latent vari-
able. Third, in the context of fMRI research, these techniques
are generally used to define components that are independent in
the spatial domain, although in principle, it is possible to define
components that are independent in the temporal domain. How-
ever, one needs at least n2 degrees of freedom (i.e., independent
observations or time points) to extract n independent compo-
nents; for this reason, temporal independent component analysis
is generally not feasible with fMRI data (although see Smith et al.,
2012).

Independent component analysis has been applied to fMRI data
separately as well as to combined EEG-fMRI data (for reviews see
Esposito and Goebel, 2011; Eichele et al., 2009 respectively). It
has been used to identify brain networks during various behav-
ioral conditions including wake (Smith et al., 2009), relaxation
(Demertzi et al., 2011), and sleep (Liu et al., 2008; Samann et al.,
2011). During sleep, it has been used to define the default-mode

network at the individual level with a template method to mea-
sure changes in its connectivity. These changes have been tracked
through the dynamic changes of sleep state in one subject in one
recording session using recursive independent component analysis
(Samann et al., 2011). This is a novel application of independent
component analysis that could allow the real-time monitoring of
the network changes that occur during sleep.

With a few exceptions (Fukunaga et al., 2007; Fransson et al.,
2009; as reviewed in Duyn, 2011), there have been no attempts to
characterize in an exploratory manner the unique pattern of com-
ponents that might be present during sleep. In addition, there
have been no attempts to use these techniques to understand
how the components that are present during sleep relate to the
sleep-dependent improvements in a variety of waking cognitive
tasks.

Compared to the regional correlation analysis described in the
previous section, component analysis may allow a better distinc-
tion between the multiple sources that contribute to a regions’
fMRI signal. As such it may provide a better separation of arti-
fact sources such as motion and drift from neuronal sources. On
the other hand, the identification of such artifactual sources may
be somewhat subjective. In addition, the result of independent
component analysis is to some extent dependent on the num-
ber of components one sets out to resolve. This number needs to
be estimated from the data; however, overestimating the number
of components may lead to an artifactual “splitting” of compo-
nents and complicate interpretation. These difficulties may be
largely overcome by performing the analysis over group data (with
group referring to multiple sleep epochs and or multiple subjects),
after which individual subject or epochs can be reconstructed
through dual-regression or back projection methods (for review
see Calhoun et al., 2009).

fMRI FUNCTIONAL NETWORK CHARACTERIZATION
A brain region that is part of a network can have various roles
in that network. For example, its activity can drive (or be the
result of) the activity in other networks, or alternatively, it can
modulate activity in other regions within the network. Discrim-
inating between these roles may help us understand network
function. Although the connectivity and component analyses dis-
cussed in the previous chapter allows one to identify the brain
regions that are part of a network, it does not provide any
information about the specific roles of these regions in the net-
work or address the causal relationship between activities in the
regions under study. Under certain conditions, however, the role
of regions in a network may be elucidated through a technique
called “graph analysis” or through further analysis of the regions’
signal time courses with “effective” connectivity techniques such
as Granger causality analysis and dynamic causal modeling (Fris-
ton, 1994), which address causal relationships. These techniques,
which will be discussed in the following section, allow stronger
statements regarding causality and some allow both the cogni-
tive and the neural variables to be included in a single causal
model. The latter may help us understand the causal relation-
ship between pre-sleep cognitive performance, brain connectiv-
ity during sleep in each sleep stage, and post-sleep cognitive
performance.
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GRANGER CAUSALITY ANALYSIS
One way effective connectivity between regions in a network can
be investigated is through granger causality analysis of the fMRI
signal (Goebel et al., 2003), which is designed to look for tempo-
ral precedence in the regions’ activity time courses. If activity in
a region precedes that of another region, it is considered to have
a causal effect on it. Granger causality can be determined from
lagged correlation analysis, i.e., the activity in one region is corre-
lated with the time-shifted activity of a second region. While lagged
correlation analysis has been successfully applied to electrophysi-
ological sleep data (Qin et al., 1997; Wilson and Yan, 2010; Fucke
et al., 2011), unfortunately, the application to BOLD fMRI data has
proved more challenging. The reason for this is that the temporal
information contained in the BOLD fMRI signal is rather coarse
as the neuronal signals are heavily filtered by the HRF. In addi-
tion, filter characteristics are not known a priori and vary across
the brain and across subjects. As a result, much of the fine-scale
temporal information contained in neural signals is lost in fMRI
signals, severely restricting the ability to identify causality from
temporal precedence (Smith et al., 2011). Partly because of this
reason, Granger causality methods have found limited application
in fMRI studies of brain networks.

STRUCTURAL EQUATION MODELING AND DYNAMIC CAUSAL
MODELING
Alternative ways to investigate the causal role of regions in a net-
work is through structural equation modeling and dynamic causal
modeling. In structural equation modeling, the user specifies both
the presence as well as the direction of the paths between the vari-
ables (i.e., relationships between brain activity and/or behavior)
and tests the fit between the predicted model and the observed
model (Loehlin, 2004). Statistical measures of fit can be obtained
for the overall model and the individual path coefficients. Dynamic
causal modeling (Friston et al., 2005) is somewhat different in
that it makes different assumptions regarding the inputs into the
model, which are based on the experimental task used in the fMRI
experiment. Although there are always unknown inputs into any
effective connectivity model, in structural equation modeling, all
unmeasured variables are treated as stochastic unknowns. These
variables are often called input variables or upstream variables. In
dynamic causal modeling, one set of input variables – those based
on the experimental task – are explicitly included in the model.
However, this is less relevant in fMRI measurements obtained
during sleep and other resting states as there is no simultaneous
experimental task.

Effective connectivity techniques may be quite useful in deter-
mining the causal role of regions in relatively simple networks.
However, it is not clear if this condition applies to sleep, during
which many brain regions alter their activity and may interact in a
complex fashion. A second problem with connectivity techniques
in general is our incomplete understanding of the BOLD fMRI
signal, which may represent different neural processes in different
brain regions. For example, while the fMRI signal is thought to
reflect local computation in cortical modules, its meaning in sub-
cortical regions is poorly understood and may not be the same. For
example, local synaptic activity that is thought to be responsible
for the fMRI signal may be dominated by a region’s input rather

than by local connections. Therefore, BOLD fMRI derived con-
nectivity measures need to be interpreted with caution and should
not be interpreted as a sometimes implied “path” of “information
flow.” It is clear that an improved understanding of the BOLD sig-
nal in these regions will be important for the analysis of networks
involving these regions.

GRAPH THEORETICAL ANALYSIS
A third class of methods that may be used to study network activity
during sleep includes graph theoretical analysis, which is a math-
ematical approach to the study of complex systems. This type of
analysis is designed to identify and characterize patterns in the con-
nections between modules in a network, for example by analyzing
the matrix of calculated signal correlations between the all module
pairs. It has been applied to the human brain based on anatomical
and functional connectivity data (e.g., Salvador et al., 2005; Power
et al., 2011; for review see Bullmore and Sporns, 2009). One of the
findings of this work is that the brain resembles a so-called “small
world” network, which minimizes the number of jumps that are
necessary to connect any two nodes in the network with an effi-
cient wiring pattern (few long-range connections) and achieves
effective long-range connectivity with a minimal number of long-
range connections (Watts and Strogatz, 1998). Alternatively, the
connection pattern in the brain can also be analyzed by measures
such as “regional homogenetity” (Zang et al., 2004) or “eigenvec-
tor centrality” (Lohmann et al., 2010), which can be analyzed on a
voxel-by-voxel basis.

An important strength of graph theoretical analysis is that
it allows the examination of the type of network underlying a
system’s function without requiring a full understanding of the
individual connections. In other words, there is more emphasis
on examining a network’s connectedness rather than on its con-
nectivity. The main disadvantage of this approach is that generally
no causal information is derived from the results, similar to the
limitation of functional connectivity methods.

In a preliminary application to sleep, graph theoretical analy-
sis has been used to examine fMRI connectivity in a network
of 90 anatomically defined brain regions by identifying connec-
tions from a functional connectivity analysis (Spoormaker et al.,
2010). Above-threshold correlations were taken as the presence of
a functional connection (note: the partial correlation analysis as
described in Salvador et al., 2005 was omitted). During stage 1
and 2 sleep, the authors found a shift from an ideal small world
network to a more “random” network (i.e., more long-range con-
nections). On the other hand, during stage 3 and 4 sleep, a shift
was found from an ideal small world network to a more “regular”
network (i.e., fewer long-range connections).

CAN THE ANSWERS TO QUESTIONS ABOUT SLEEP
NETWORKS INFORM OTHER AREAS OF NEUROSCIENCE?
There are several potential areas of crossover between studying
functional brain networks during sleep in normal subjects and
studying functional brain networks in other areas in neuroscience.
For example, the use of functional neuroimaging techniques in
sleep disorders may provide a better understanding of their patho-
physiology (Drummond et al., 2004; Nofzinger, 2005). Similarly,
EEG-fMRI may be used to study other resting states such as
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relaxation, pathological conditions such as coma (e.g., Boly et al.,
2009), and pharmacologically altered states such as general anes-
thesia (Boveroux et al., 2008). It is important to mention that
natural sleep fulfills a unique set of functions that are not fulfilled
during these other alterations in consciousness. However, there
still may be lessons to learn by comparing them. For example,
both coma and general anesthesia display decreases in thalam-
ocortical connectivity in heteromodal neocortical regions such
as the posterior cingulate/precuneus (Noirhomme et al., 2010).
Because sleep is an excellent model for natural changes in con-
sciousness, more studies on thalamocortical connectivity during
natural sleep should be conducted. It could be predicted that the
same changes in thalamocortical connectivity observed in coma
and general anesthesia would also be observed in natural sleep.
Another example is the comparison of stimulus processing dur-
ing waking and sleeping conditions (Portas et al., 2000; Born
et al., 2002; Czisch et al., 2002, 2009; Wehrle et al., 2007; Dang-
Vu et al., 2011). Other than elucidating sleep mechanisms, such

studies may shed light on the interplay between spontaneous and
evoked activity and inform on the mechanism underlying stimulus
processing.

Sleep is associated with major changes in functional brain net-
works. The fact that these changes occur naturally suggest that
if we understand them, we may also better understand a variety
of normal and pathological phenomena that are characterized by
changes in network activity. As a result, applying careful meth-
ods to study functional brain networks in sleep may also help us
understand normal waking brain function as well as pathological
states such as disorders of consciousness.

ACKNOWLEDGMENTS
This work was supported by the Intramural Program of the
National Institute of Neurological Disorders and Stroke, National
Institutes of Health. The author would like to thank Dante Pic-
chioni for the substantial number of suggestions that he provided
on this manuscript.

REFERENCES
Andrade, K. C., Spoormaker, V. I.,

Dresler, M., Wehrle, R., Holsboer,
F., Samann, P. G., and Czisch, M.
(2011). Sleep spindles and hip-
pocampal functional connectivity in
human NREM sleep. J. Neurosci. 31,
10331–10339.

Aserinsky, E., and Kleitman, N. (1953).
Regularly occurring periods of eye
motility, and concomitant phenom-
ena, during sleep. Science 118,
273–274.

Aston-Jones, G., and Bloom, F. E.
(1981). Activity of norepinephrine-
containing locus coeruleus neurons
in behaving rats anticipates fluctu-
ations in the sleep-wake cycle. J.
Neurosci. 1, 876–886.

Attwell, D., and Iadecola, C. (2002).
The neural basis of functional brain
imaging signals. Trends Neurosci. 25,
621–625.

Attwell, D., and Laughlin, S. B. (2001).
An energy budget for signaling in the
grey matter of the brain. J. Cereb.
Blood Flow Metab. 21, 1133–1145.

Auer, D. P. (2008). Spontaneous low-
frequency blood oxygenation level-
dependent fluctuations and func-
tional connectivity analysis of the
“resting” brain. Magn. Reson. Imag-
ing 26, 1055–1064.

Benar, C., Aghakhani, Y., Wang, Y.,
Izenberg, A., Al-Asmi, A., Dubeau,
F., and Gotman, J. (2003). Quality
of EEG in simultaneous EEG-fMRI
for epilepsy. Clin. Neurophysiol. 114,
569–580.

Bergmann, T. O., Molle, M., Diedrichs,
J., Born, J., and Siebner, H. R.
(2012). Sleep spindle-related reac-
tivation of category-specific cor-
tical regions after learning face-
scene associations. Neuroimage 59,
2733–2742.

Bianciardi, M., Fukunaga, M., van
Gelderen, P., de Zwart, J. A., and
Duyn, J. H. (2011). Negative BOLD-
fMRI signals in large cerebral veins.
J. Cereb. Blood Flow Metab. 31,
401–412.

Bianciardi, M., Fukunaga, M., van
Gelderen, P., Horovitz, S. G., de
Zwart, J. A., Shmueli, K., and Duyn,
J. H. (2009a). Sources of functional
magnetic resonance imaging signal
fluctuations in the human brain at
rest: a 7 T study. Magn. Reson. Imag-
ing 27, 1019–1029.

Bianciardi, M., van Gelderen, P., Duyn, J.
H., Fukunaga, M., and de Zwart, J. A.
(2009b). Making the most of fMRI
at 7 T by suppressing spontaneous
signal fluctuations. Neuroimage 44,
448–454.

Biswal, B.,Yetkin, F. Z., Haughton,V. M.,
and Hyde, J. S. (1995). Functional
connectivity in the motor cortex of
resting human brain using echo-
planar MRI. Magn. Reson. Med. 34,
537–541.

Blake, H., and Gerard, R. W. (1937).
Brain potentials during sleep. Am. J.
Physiol. 119, 692–703.

Boly, M., Tshibanda, L., Vanhau-
denhuyse, A., Noirhomme, Q.,
Schnakers, C., Ledoux, D., Bover-
oux, P., Garweg, C., Lambermont,
B., Phillips, C., Luxen, A., Moo-
nen, G., Bassetti, C., Maquet, P.,
and Laureys, S. (2009). Functional
connectivity in the default network
during resting state is preserved in
a vegetative but not in a brain
dead patient. Hum. Brain Mapp. 30,
2393–2400.

Born, A. P., Law, I., Lund, T. E., Ros-
trup, E., Hanson, L. G., Wilds-
chiodtz, G., Lou, H. C., and Paul-
son, O. B. (2002). Cortical deactiva-
tion induced by visual stimulation in

human slow-wave sleep. Neuroimage
17, 1325–1335.

Boveroux, P., Bonhomme, V., Boly, M.,
Vanhaudenhuyse, A., Maquet, P.,
and Laureys, S. (2008). Brain func-
tion in physiologically, pharmaco-
logically, and pathologically altered
states of consciousness. Int. Anesthe-
siol. Clin. 46, 131–146.

Braun, A. R., Balkin, T. J., Wesenten, N.
J., Carson, R. E., Varga, M., Baldwin,
P., Selbie, S., Belenky, G., and Her-
scovitch, P. (1997). Regional cerebral
blood flow throughout the sleep-
wake cycle. An H2[15]O PET study.
Brain 120, 1173–1197.

Britz, J., Van De Ville, D., and Michel, C.
M. (2010). BOLD correlates of EEG
topography reveal rapid resting-
state network dynamics. Neuroimage
52, 1162–1170.

Bullmore, E., and Sporns, O. (2009).
Complex brain networks: graph the-
oretical analysis of structural and
functional systems. Nat. Rev. Neu-
rosci. 10, 186–198.

Buzsaki, G. (1998). Memory consolida-
tion during sleep: a neurophysiolog-
ical perspective. J. Sleep Res. 7(Suppl.
1), 17–23.

Calhoun, V. D., Liu, J., and Adali, T.
(2009). A review of group ICA for
fMRI data and ICA for joint infer-
ence of imaging, genetic, and ERP
data. Neuroimage 45, S163–S172.

Chambers, J., Bullock, D., Kahana, Y.,
Kots, A., and Palmer, A. (2007).
Developments in active noise con-
trol sound systems for magnetic res-
onance imaging. Appl. Acoust. 68,
281–295.

Czisch, M., Wehrle, R., Stiegler, A.,
Peters, H., Andrade, K., Holsboer,
F., and Samann, P. G. (2009).
Acoustic oddball during NREM
sleep: a combined EEG/fMRI

study. PLoS ONE 4, e6749.
doi:10.1371/journal.pone.0006749

Czisch, M., Wetter, T. C., Kaufmann,
C., Pollmacher, T., Holsboer, F., and
Auer, D. P. (2002). Altered pro-
cessing of acoustic stimuli during
sleep: reduced auditory activation
and visual deactivation detected by
a combined fMRI/EEG study. Neu-
roimage 16, 251–258.

Dang-Vu, T. T., Bonjean, M., Sch-
abus, M., Boly, M., Darsaud, A.,
Desseilles, M., Degueldre, C., Bal-
teau, E., Phillips, C., Luxen, A.,
Sejnowski, T. J., and Maquet, P.
(2011). Interplay between sponta-
neous and induced brain activity
during human non-rapid eye move-
ment sleep. Proc. Natl. Acad. Sci.
U.S.A. 108, 15438–15443.

Dang-Vu, T. T., Schabus, M., Desseilles,
M., Albouy, G., Boly, M., Darsaud,
A., Gais, S., Rauchs, G., Sterpenich,
V., Vandewalle, G., Carrier, J., Moo-
nen, G., Balteau, E., Degueldre, C.,
Luxen, A., Phillips, C., and Maquet,
P. (2008). Spontaneous neural activ-
ity during human slow wave sleep.
Proc. Natl. Acad. Sci. U.S.A. 105,
15160–15165.

de Zwart, J. A., Silva,A. C., van Gelderen,
P., Kellman, P., Fukunaga, M., Chu,
R., Koretsky, A. P., Frank, J. A.,
and Duyn, J. H. (2005). Tempo-
ral dynamics of the BOLD fMRI
impulse response. Neuroimage 24,
667–677.

Demertzi, A., Soddu, A., Faymonville,
M. E., Bahri, M. A., Gosseries, O.,
Vanhaudenhuyse, A., Phillips, C.,
Maquet, P., Noirhomme, Q., Luxen,
A., and Laureys, S. (2011). Hypnotic
modulation of resting state fMRI
default mode and extrinsic network
connectivity. Prog. Brain Res. 193,
309–322.

www.frontiersin.org July 2012 | Volume 3 | Article 100 | 9

http://dx.doi.org/10.1371/journal.pone.0006749
http://www.frontiersin.org
http://www.frontiersin.org/Sleep_and_Chronobiology/archive


Duyn EEG-fMRI methods for sleep research

Dresler, M., Koch, S. P., Wehrle, R.,
Spoormaker, V. I., Holsboer, F.,
Steiger, A., Samann, P. G., Obrig,
H., and Czisch, M. (2011). Dreamed
movement elicits activation in the
sensorimotor cortex. Curr. Biol. 21,
1833–1837.

Drummond, S. P., Smith, M. T., Orff,
H. J., Chengazi, V., and Perlis, M.
L. (2004). Functional imaging of
the sleeping brain: review of find-
ings and implications for the study
of insomnia. Sleep Med. Rev. 8,
227–242.

Duong, T. Q., Kim, D. S., Ugurbil,
K., and Kim, S. G. (2001). Local-
ized cerebral blood flow response
at submillimeter columnar resolu-
tion. Proc. Natl. Acad. Sci. U.S.A. 98,
10904–10909.

Duyn, J. (2011). Spontaneous fMRI
activity during resting wakefulness
and sleep. Prog. Brain Res. 193,
295–305.

Eichele, T., Calhoun,V. D., and Debener,
S. (2009). Mining EEG-fMRI using
independent component analysis.
Int. J. Psychophysiol. 73, 53–61.

Esposito, F., and Goebel, R. (2011).
Extracting functional networks with
spatial independent component
analysis: the role of dimensionality,
reliability and aggregation scheme.
Curr. Opin. Neurol. 24, 378–385.

Fox, M. D., Zhang, D., Snyder, A. Z.,
and Raichle, M. E. (2009). The global
signal and observed anticorrelated
resting state brain networks. J. Neu-
rophysiol. 101, 3270–3283.

Frankland, P. W., and Bontempi, B.
(2005). The organization of recent
and remote memories. Nat. Rev.
Neurosci. 6, 119–130.

Fransson, P., Skiold, B., Engstrom, M.,
Hallberg, B., Mosskin, M., Aden, U.,
Lagercrantz, H., and Blennow, M.
(2009). Spontaneous brain activity
in the newborn brain during nat-
ural sleep – an fMRI study in infants
born at full term. Pediatr. Res. 66,
301–305.

Friston, K. J. (1994). Functional and
effective connectivity in neuroimag-
ing: a synthesis. Hum. Brain Mapp.
2, 56–78.

Friston, K. J., Penny, W., and David, O.
(2005). Modeling brain responses.
Int. Rev. Neurobiol. 66, 89–124.

Fucke, T., Suchanek, D., Nawrot, M. P.,
Seamari, Y., Heck, D. H., Aertsen,
A., and Boucsein, C. (2011). Stereo-
typical spatiotemporal activity pat-
terns during slow-wave activity in
the neocortex. J. Neurophysiol. 106,
3035–3044.

Fukunaga, M., Horovitz, S., Carr, W.,
Picchioni, D., de Zwart, J., van
Gelderen, P., Balkin, T., Braun, A.,

and Duyn, J. (2007).“Spatially struc-
tured BOLD fMRI activity during
deep sleep,” in Poster presented at
the meeting of the Organization for
Human Brain Mapping, Chicago, IL.

Goebel, R., Roebroeck, A., Kim, D. S.,
and Formisano, E. (2003). Inves-
tigating directed cortical interac-
tions in time-resolved fMRI data
using vector autoregressive mod-
eling and Granger causality map-
ping. Magn. Reson. Imaging 21,
1251–1261.

Goldman, R. I., Stern, J. M., Engel, J.
Jr., and Cohen, M. S. (2000). Acquir-
ing simultaneous EEG and func-
tional MRI. Clin. Neurophysiol. 111,
1974–1980.

Goldman, R. I., Stern, J. M., Engel, J. Jr.,
and Cohen, M. S. (2002). Simulta-
neous EEG and fMRI of the alpha
rhythm. Neuroreport 13, 2487–2492.

Grouiller, F., Vercueil, L., Krainik, A.,
Segebarth, C., Kahane, P., and David,
O. (2007). A comparative study
of different artefact removal algo-
rithms for EEG signals acquired dur-
ing functional MRI. Neuroimage 38,
124–137.

Hamalainen, M., Hari, R., Ilmoniemi,
R., Knuutila, J., and Lounasmaa,
O. V. (1993). Magnetoencephalogra-
phy – theory, instrumentation, and
applications to noninvasive studies
of the working human brain. Rev.
Mod. Phys. 65, 413–497.

Hasselmo, M. E. (1999). Neuromod-
ulation: acetylcholine and mem-
ory consolidation. Trends Cogn. Sci.
(Regul. Ed.) 3, 351–359.

He, B. J. (2011). Scale-free properties of
the functional magnetic resonance
imaging signal during rest and task.
J. Neurosci. 31, 13786–13795.

He, B. J., Zempel, J. M., Snyder, A. Z.,
and Raichle, M. E. (2010). The tem-
poral structures and functional sig-
nificance of scale-free brain activity.
Neuron 66, 353–369.

Hobson, J. A. (2005). Sleep is of the
brain, by the brain and for the brain.
Nature 437, 1254–1256.

Honey, C. J., Sporns, O., Cammoun, L.,
Gigandet, X., Thiran, J. P., Meuli, R.,
and Hagmann, P. (2009). Predicting
human resting-state functional con-
nectivity from structural connectiv-
ity. Proc. Natl. Acad. Sci. U.S.A. 106,
2035–2040.

Hong, C. C., Harris, J. C., Pearlson, G.
D., Kim, J. S., Calhoun, V. D., Fallon,
J. H., Golay, X., Gillen, J. S., Sim-
monds, D. J., van Zijl, P. C., Zee, D. S.,
and Pekar, J. J. (2009). fMRI evidence
for multisensory recruitment asso-
ciated with rapid eye movements
during sleep. Hum. Brain Mapp. 30,
1705–1722.

Horovitz, S. G., Braun, A. R., Carr, W.
S., Picchioni, D., Balkin, T. J., Fuku-
naga, M., and Duyn, J. H. (2009).
Decoupling of the brain’s default
mode network during deep sleep.
Proc. Natl. Acad. Sci. U.S.A. 106,
11376–11381.

Horovitz, S. G., Fukunaga, M., de Zwart,
J. A., van Gelderen, P., Fulton, S.
C., Balkin, T. J., and Duyn, J. H.
(2008). Low frequency BOLD fluc-
tuations during resting wakefulness
and light sleep: a simultaneous EEG-
fMRI study. Hum. Brain Mapp. 29,
671–682.

Huber, R., Ghilardi, M. F., Massimini,
M., and Tononi, G. (2004). Local
sleep and learning. Nature 430,
78–81.

Iadecola, C., and Nedergaard, M.
(2007). Glial regulation of the cere-
bral microvasculature. Nat. Neu-
rosci. 10, 1369–1376.

Jueptner, M., and Weiller, C. (1995).
Review: does measurement of
regional cerebral blood flow reflect
synaptic activity? Implications for
PET and fMRI. Neuroimage 2,
148–156.

Kaufmann, C., Wehrle, R., Wetter, T.
C., Holsboer, F., Auer, D. P., Poll-
macher, T., and Czisch, M. (2006).
Brain activation and hypothala-
mic functional connectivity during
human non-rapid eye movement
sleep: an EEG/fMRI study. Brain 129,
655–667.

Koike, T., Kan, S., Misaki, M., and
Miyauchi, S. (2011). Connectiv-
ity pattern changes in default-
mode network with deep non-REM
and REM sleep. Neurosci. Res. 69,
322–330.

Krueger, J. M., Rector, D. M., Roy, S.,
Van Dongen, H. P., Belenky, G., and
Panksepp, J. (2008). Sleep as a funda-
mental property of neuronal assem-
blies. Nat. Rev. Neurosci. 9, 910–919.

Kuhl, D. E., Edwards, R. Q., Ricci, A.
R., Yacob, R. J., Mich, T. J., and
Alavi,A. (1976). The Mark IV system
for radionuclide computed tomog-
raphy of the brain. Radiology 121,
405–413.

Kwong, K. K., Belliveau, J. W., Chesler,
D. A., Goldberg, I. E., Weisskoff, R.
M., Poncelet, B. P., Kennedy, D. N.,
Hoppel, B. E., Cohen, M. S., Turner,
R., Cheng, H., Brady, T. J., and
Rosen, B. R. (1992). Dynamic mag-
netic resonance imaging of human
brain activity during primary sen-
sory stimulation. Proc. Natl. Acad.
Sci. U.S.A. 89, 5675–5679.

Larson-Prior, L. J., Zempel, J. M., Nolan,
T. S., Prior, F. W., Snyder, A. Z., and
Raichle, M. E. (2009). Cortical net-
work functional connectivity in the

descent to sleep. Proc. Natl. Acad. Sci.
U.S.A. 106, 4489–4494.

Laufs, H., Daunizeau, J., Carmichael,
D. W., and Kleinschmidt, A. (2008).
Recent advances in recording elec-
trophysiological data simultane-
ously with magnetic resonance
imaging. Neuroimage 40, 515–528.

Laufs, H., Kleinschmidt, A., Bey-
erle, A., Eger, E., Salek-Haddadi,
A., Preibisch, C., and Krakow, K.
(2003). EEG-correlated fMRI of
human alpha activity. Neuroimage
19, 1463–1476.

Lauritzen, M. (2001). Relationship of
spikes, synaptic activity, and local
changes of cerebral blood flow.
J. Cereb. Blood Flow Metab. 21,
1367–1383.

Lemieux, L., Allen, P. J., Franconi, F.,
Symms, M. R., and Fish, D. R.
(1997). Recording of EEG during
fMRI experiments: patient safety.
Magn. Reson. Med. 38, 943–952.

Leopold, D. A., Murayama,Y., and Logo-
thetis, N. K. (2003). Very slow activ-
ity fluctuations in monkey visual
cortex: implications for functional
brain imaging. Cereb. Cortex 13,
422–433.

Liu, W. C., Flax, J. F., Guise, K. G.,
Sukul,V., and Benasich, A. A. (2008).
Functional connectivity of the sen-
sorimotor area in naturally sleeping
infants. Brain Res. 1223, 42–49.

Liu, Z., de Zwart, J. A., van Gelderen,
P., Kuo, L. W., and Duyn, J. H.
(2002). Statistical feature extraction
for artifact removal from concurrent
fMRI-EEG recordings. Neuroimage
59, 2073–2087.

Loehlin, J. C. (2004). Latent Variable
Models: An Introduction to Factor,
Path, and Structural Equation Analy-
sis, 4th Edn. Mahwah, NJ: Lawrence
Erlbaum Associates.

Logothetis, N. K. (2008). What we can
do and what we cannot do with
fMRI. Nature 453, 869–878.

Logothetis, N. K., Pauls, J., Augath,
M., Trinath, T., and Oeltermann, A.
(2001). Neurophysiological investi-
gation of the basis of the fMRI signal.
Nature 412, 150–157.

Lohmann, G., Margulies, D. S.,
Horstmann, A., Pleger, B., Lep-
sien, J., Goldhahn, D., Schloegl,
H., Stumvoll, M., Villringer, A.,
and Turner, R. (2010). Eigen-
vector centrality mapping for
analyzing connectivity patterns
in fMRI data of the human
brain. PLoS ONE 5, e10232.
doi:10.1371/journal.pone.0010232

Maier, A., Wilke, M., Aura, C., Zhu, C.,
Ye, F. Q., and Leopold, D. A. (2008).
Divergence of fMRI and neural
signals in V1 during perceptual

Frontiers in Neurology | Sleep and Chronobiology July 2012 | Volume 3 | Article 100 | 10

http://dx.doi.org/10.1371/journal.pone.0010232
http://www.frontiersin.org/Sleep_and_Chronobiology
http://www.frontiersin.org/Neurology
http://www.frontiersin.org/Sleep_and_Chronobiology/archive


Duyn EEG-fMRI methods for sleep research

suppression in the awake monkey.
Nat. Neurosci. 11, 1193–1200.

Mandelkow, H., Halder, P., Boe-
siger, P., and Brandeis, D. (2006).
Synchronization facilitates removal
of MRI artefacts from concur-
rent EEG recordings and increases
usable bandwidth. Neuroimage 32,
1120–1126.

Mantini, D., Perrucci, M. G., Del Gratta,
C., Romani, G. L., and Corbetta, M.
(2007). Electrophysiological signa-
tures of resting state networks in the
human brain. Proc. Natl. Acad. Sci.
U.S.A. 104, 13170–13175.

Maquet, P., Peters, J., Aerts, J., Delfiore,
G., Degueldre, C., Luxen, A., and
Franck, G. (1996). Functional neu-
roanatomy of human rapid-eye-
movement sleep and dreaming.
Nature 383, 163–166.

Marrosu, F., Portas, C., Mascia, M. S.,
Casu, M. A., Fa, M., Giagheddu,
M., Imperato, A., and Gessa, G. L.
(1995). Microdialysis measurement
of cortical and hippocampal acetyl-
choline release during sleep-wake
cycle in freely moving cats. Brain Res.
671, 329–332.

Massimini, M., Ferrarelli, F., Huber, R.,
Esser, S. K., Singh, H., and Tononi,
G. (2005). Breakdown of cortical
effective connectivity during sleep.
Science 309, 2228–2232.

McGinty, D., and Szymusiak, R. (2000).
The sleep-wake switch: a neuronal
alarm clock. Nat. Med. 6, 510–511.

Miyauchi, S., Misaki, M., Kan, S., Fuku-
naga, T., and Koike, T. (2009).
Human brain activity time-locked to
rapid eye movements during REM
sleep. Exp. Brain Res. 192, 657–667.

Moosmann, M., Schonfelder, V. H.,
Specht, K., Scheeringa, R., Nordby,
H., and Hugdahl, K. (2009). Realign-
ment parameter-informed artefact
correction for simultaneous EEG-
fMRI recordings. Neuroimage 45,
1144–1150.

Musso, F., Brinkmeyer, J., Mobascher,
A., Warbrick, T., and Winterer, G.
(2010). Spontaneous brain activ-
ity and EEG microstates. A novel
EEG/fMRI analysis approach to
explore resting-state networks. Neu-
roimage 52, 1149–1161.

Nofzinger, E. A. (2005). Neuroimaging
and sleep medicine. Sleep Med. Rev.
9, 157–172.

Noirhomme, Q., Soddu, A., Lehem-
bre, R., Vanhaudenhuyse, A., Bover-
oux, P., Boly, M., and Laureys,
S. (2010). Brain connectivity in
pathological and pharmacological
coma. Front. Syst. Neurosci. 4:160.
doi:10.3389/fnsys.2010.00160

Ogawa, S., Tank, D. W., Menon, R., Eller-
mann, J. M., Kim, S. G., Merkle, H.,

and Ugurbil, K. (1992). Intrinsic sig-
nal changes accompanying sensory
stimulation: functional brain map-
ping with magnetic resonance imag-
ing. Proc. Natl. Acad. Sci. U.S.A. 89,
5951–5955.

Peigneux, P., Laureys, S., Fuchs, S.,
Collette, F., Perrin, F., Reggers, J.,
Phillips, C., Degueldre, C., Del Fiore,
G., Aerts, J., Luxen, A., and Maquet,
P. (2004). Are spatial memories
strengthened in the human hip-
pocampus during slow wave sleep?
Neuron 44, 535–545.

Phelps, M. E., Kuhl, D. E., and Mazziota,
J. C. (1981). Metabolic mapping of
the brain’s response to visual stim-
ulation: studies in humans. Science
211, 1445–1448.

Picchioni, D., Horovitz, S. G., Fuku-
naga, M., Carr, W. S., Meltzer,
J. A., Balkin, T. J., Duyn, J. H.,
and Braun, A. R. (2011). Infra-
slow EEG oscillations organize large
scale cortical-subcortical interac-
tions during sleep: a combined
EEG/fMRI study. Brain Res. 1374,
63–72.

Portas, C. M., Krakow, K., Allen, P.,
Josephs, O., Armony, J. L., and Frith,
C. D. (2000). Auditory processing
across the sleep-wake cycle: simul-
taneous EEG and fMRI monitoring
in humans. Neuron 28, 991–999.

Power, J. D., Cohen, A. L., Nelson, S. M.,
Wig, G. S., Barnes, K. A., Church,
J. A., Vogel, A. C., Laumann, T. O.,
Miezin, F. M., Schlaggar, B. L., and
Petersen, S. E. (2011). Functional
network organization of the human
brain. Neuron 72, 665–678.

Qin,Y. L.,McNaughton,B. L.,Skaggs,W.
E., and Barnes, C. A. (1997). Mem-
ory reprocessing in corticocortical
and hippocampocortical neuronal
ensembles. Philos. Trans. R. Soc.
Lond. B Biol. Sci. 352, 1525–1533.

Rasch, B., Buchel, C., Gais, S., and
Born, J. (2007). Odor cues during
slow-wave sleep prompt declarative
memory consolidation. Science 315,
1426–1429.

Rechtschaffen, A., and Kales, A. (1968).
A Manual of Standardized Termi-
nology, Techniques, and Scoring Sys-
tem for Sleep Stages of Human Sub-
jects. Los Angeles: Brain Research
Institute.

Ritter, P., and Villringer, A. (2006).
Simultaneous EEG-fMRI. Neurosci.
Biobehav. Rev. 30, 823–838.

Sadaghiani, S., Scheeringa, R., Lehon-
gre, K., Morillon, B., Giraud, A. L.,
and Kleinschmidt, A. (2010). Intrin-
sic connectivity networks, alpha
oscillations, and tonic alertness: a
simultaneous electroencephalogra-
phy/functional magnetic resonance

imaging study. J. Neurosci. 30,
10243–10250.

Salvador, R., Suckling, J., Coleman,
M. R., Pickard, J. D., Menon, D.,
and Bullmore, E. (2005). Neuro-
physiological architecture of func-
tional magnetic resonance images
of human brain. Cereb. Cortex 15,
1332–1342.

Samann, P. G., Wehrle, R., Hoehn, D.,
Spoormaker, V. I., Peters, H., Tully,
C., Holsboer, F., and Czisch, M.
(2011). Development of the brain’s
default mode network from wakeful-
ness to slow wave sleep. Cereb. Cortex
21, 2082–2093.

Saper, C. B., Chou, T. C., and Scam-
mell, T. E. (2001). The sleep switch:
hypothalamic control of sleep and
wakefulness. Trends Neurosci. 24,
726–731.

Schabus, M., Dang-Vu, T. T., Albouy,
G., Balteau, E., Boly, M., Carrier,
J., Darsaud, A., Degueldre, C., Des-
seilles, M., Gais, S., Phillips, C.,
Rauchs, G., Schnakers, C., Ster-
penich, V., Vandewalle, G., Luxen,
A., and Maquet, P. (2007). Hemo-
dynamic cerebral correlates of sleep
spindles during human non-rapid
eye movement sleep. Proc. Natl.
Acad. Sci. U.S.A. 104, 13164–13169.

Shmuel, A., Yacoub, E., Chaimow, D.,
Logothetis, N. K., and Ugurbil,
K. (2007). Spatio-temporal point-
spread function of fMRI signal in
human gray matter at 7 Tesla. Neu-
roimage 35, 539–552.

Smith, S. M., Fox, P. T., Miller, K. L.,
Glahn, D. C., Fox, P. M., MacKay,
C. E., Filippini, N., Watkins, K. E.,
Toro, R., Laird, A. R., and Beckmann,
C. F. (2009). Correspondence of the
brain’s functional architecture dur-
ing activation and rest. Proc. Natl.
Acad. Sci. U.S.A. 106, 13040–13045.

Smith, S. M., Miller, K. L., Moeller,
S., Xu, J., Auerbach, E. J., Wool-
rich, M. W., Beckmann, C. F., Jenk-
inson, M., Andersson, J., Glasser,
M. F., Van Essen, D. C., Feinberg,
D. A., Yacoub, E. S., and Ugurbil,
K. (2012).Temporally-independent
functional modes of spontaneous
brain activity. Proc. Natl. Acad. Sci.
U.S.A. 109, 3131–3136.

Smith, S. M., Miller, K. L., Salimi-
Khorshidi, G., Webster, M., Beck-
mann, C. F., Nichols, T. E., Ramsey, J.
D., and Woolrich, M. W. (2011). Net-
work modelling methods for fMRI.
Neuroimage 54, 875–891.

Spoormaker, V. I., Schroter, M. S.,
Gleiser, P. M., Andrade, K. C.,
Dresler, M., Wehrle, R., Samann,
P. G., and Czisch, M. (2010).
Development of a large-scale func-
tional brain network during human

non-rapid eye movement sleep. J.
Neurosci. 30, 11379–11387.

Triantafyllou, C., Hoge, R. D., Krueger,
G., Wiggins, C. J., Potthast, A., Wig-
gins, G. C., and Wald, L. L. (2005).
Comparison of physiological noise
at 1.5 T, 3 T and 7 T and optimiza-
tion of fMRI acquisition parameters.
Neuroimage 26, 243–250.

Trulson, M. E., and Jacobs, B. L. (1979).
Raphe unit activity in freely mov-
ing cats: correlations with level of
behavioral arousal. Brain Res. 163,
135–150.

Turner, R. (2002). How much cortex
can a vein drain? Downstream dilu-
tion of activation-related cerebral
blood oxygenation changes. Neu-
roimage 16, 1062–1067.

van der Werf, Y. D., Altena, E.,
Schoonheim, M. M., Sanz-Arigita, E.
J., Vis, J. C., De Rijke, W., and van
Someren, E. J. (2009). Sleep benefits
subsequent hippocampal function-
ing. Nat. Neurosci. 12, 122–123.

van Dongen, E. V., Takashima, A.,
Barth, M., and Fernandez, G. (2011).
Functional connectivity during light
sleep is correlated with memory per-
formance for face-location associa-
tions. Neuroimage 57, 262–270.

Vanderperren, K., De Vos, M., Ramau-
tar, J. R., Novitskiy, N., Mennes, M.,
Assecondi, S., Vanrumste, B., Stiers,
P., Van den Bergh, B. R., Wage-
mans, J., Lagae, L., Sunaert, S., and
Van Huffel, S. (2010). Removal of
BCG artifacts from EEG record-
ings inside the MR scanner: a
comparison of methodological and
validation-related aspects. Neuroim-
age 50, 920–934.

Wackermann, J., Lehmann, D., Michel,
C. M., and Strik, W. K. (1993). Adap-
tive segmentation of spontaneous
EEG map series into spatially defined
microstates. Int. J. Psychophysiol. 14,
269–283.

Waldvogel, D., van Gelderen, P., Muell-
bacher,W., Ziemann, U., Immisch, I.,
and Hallett, M. (2000). The relative
metabolic demand of inhibition and
excitation. Nature 406, 995–998.

Watts, D. J., and Strogatz, S. H.
(1998). Collective dynamics of
“small-world”networks. Nature 393,
440–442.

Wehrle, R., Czisch, M., Kaufmann, C.,
Wetter, T. C., Holsboer, F., Auer, D.
P., and Pollmacher, T. (2005). Rapid
eye movement-related brain activa-
tion in human sleep: a functional
magnetic resonance imaging study.
Neuroreport 16, 853–857.

Wehrle, R., Kaufmann, C., Wetter,
T. C., Holsboer, F., Auer, D.
P., Pollmacher, T., and Czisch,
M. (2007). Functional microstates

www.frontiersin.org July 2012 | Volume 3 | Article 100 | 11

http://dx.doi.org/10.3389/fnsys.2010.00160
http://www.frontiersin.org
http://www.frontiersin.org/Sleep_and_Chronobiology/archive


Duyn EEG-fMRI methods for sleep research

within human REM sleep: first evi-
dence from fMRI of a thalamo-
cortical network specific for phasic
REM periods. Eur. J. Neurosci. 25,
863–871.

Wilson, D. A., and Yan, X. (2010).
Sleep-like states modulate func-
tional connectivity in the rat olfac-
tory system. J. Neurophysiol. 104,
3231–3239.

Yoo, S. S., Hu, P. T., Gujar, N., Jolesz, F.
A., and Walker, M. P. (2007). A deficit
in the ability to form new human

memories without sleep. Nat. Neu-
rosci. 10, 385–392.

Yoshida, H., Peterfi, Z., García-Garcia,
F., Kirkpatrick, R., Yasuda, T., and
Krueger, J. M. (2004). State-specific
asymmetries in EEG slow wave
activity induced by local applica-
tion of TNFalpha. Brain Res. 1009,
129–136.

Zang, Y., Jiang, T., Lu, Y., He, Y., and
Tian, L. (2004).Regional homogene-
ity approach to fMRI data analysis.
Neuroimage 22, 394–400.

Conflict of Interest Statement: The
author declares that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 14 December 2011; accepted:
01 June 2012; published online: 02 July
2012.
Citation: Duyn JH (2012) EEG-fMRI
methods for the study of brain networks

during sleep. Front. Neur. 3:100. doi:
10.3389/fneur.2012.00100
This article was submitted to Frontiers in
Sleep and Chronobiology, a specialty of
Frontiers in Neurology.
Copyright © 2012 Duyn. This is an
open-access article distributed under the
terms of the Creative Commons Attribu-
tion Non Commercial License, which per-
mits non-commercial use, distribution,
and reproduction in other forums, pro-
vided the original authors and source are
credited.

Frontiers in Neurology | Sleep and Chronobiology July 2012 | Volume 3 | Article 100 | 12

http://dx.doi.org/10.3389/fneur.2012.00100
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/Sleep_and_Chronobiology
http://www.frontiersin.org/Neurology
http://www.frontiersin.org/Sleep_and_Chronobiology/archive

	EEG-fMRI methods for the study of brain networks during sleep
	Introduction
	What do EEG and fMRI measure?
	The EEG-fMRI experiment
	Analysis of EEG-fMRI data
	EEG pre-processing
	fMRI pre-processing
	Combined analysis of EEG and fMRI data

	Exploring Functional Connections with fMRI data
	Finding functional connections with seed region correlation
	Finding independent networks with component analysis

	fMRI functional network characterization
	Granger causality analysis
	Structural equation modeling and dynamic causal modeling
	Graph theoretical analysis

	Can the answers to questions about sleep networks inform other areas of neuroscience?
	Acknowledgments
	References


