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Long time ago, it was described the selective loss of cholinergic neurons during the devel-
opment of Alzheimer disease (AD). Recently, it has been suggested that tau protein may
play a role in that loss of cholinergic neurons through a mechanism involving the interaction
of extracellular tau with M1/M3 muscarinic receptors present in the cholinergic neurons.
This interaction between tau and muscarinic receptors may be a way, although not the only
one, to explain the spreading of tau pathology occurring in AD.
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INTRODUCTION
Alzheimer disease (AD) is characterized by the presence of two
aberrant structures in the brain of the patients, senile plaques and
neurofibrillary tangles, together with a clear loss of neurons that
results, with the development of the disease, in a decrease in brain
volume. Senile plaques are extracellular deposits of beta amyloid
peptide (Masters et al., 1985) whereas tangles are composed of
intracellular filamentous (paired helical filaments, PHFs) aggre-
gates of tau protein in phosphorylated form (Grundke-Iqbal et al.,
1986). Thus, in AD there are amyloid and tau pathologies. We will
focus on tau pathology, but first we will comment on tau protein.

TAU PROTEIN
Tau protein was first described as a brain microtubule associated
protein (Weingarten et al., 1975). cDNA tau was isolated later on
from a mouse brain library, cloned, and sequenced (Lee et al.,
1988). Studies in human brain samples showed that six different
tau isoforms are expressed in the central nervous system (CNS)
(Goedert et al., 1989, 1992a) whereas in peripheral nervous sys-
tem a characteristic big tau isoform can be found (Goedert et al.,
1992a,b).

The presence or absence of exons 2, 3, and 10 (Himmler, 1989)
determines the presence of CNS tau isoforms. Exon 2 can appear
alone in a tau isoform but exon 3 never appears independently
of exon 2 (Andreadis et al., 1995). On the other hand there are
tau isoforms with or without exon 10. The combination of all of
these features results in the appearance of six tau isoforms. Exons
2 and 3 are located at the N-terminal region whereas exon 10 is
presented close to the C-terminal end.

By comparing tau proteins from different organisms (Nelson
et al., 1996), several variations were found at the N-terminal half
of the protein whereas the C-terminal half of the molecule is well

conserved among the different tau proteins (Nelson et al., 1996;
Leon-Espinosa et al., 2013). The previous structural characteris-
tics indicated for tau proteins could be related to their functions.
These functions may be related to its subcellular localization and
their binding to other proteins. The best tau-binding protein is
tubulin, the main component of microtubules. This binding takes
place through the conserved C-terminal half of tau molecule (Lee
et al., 1988). On the other hand, tau can bind to other proteins
through its N-terminal half. Among those proteins may be those
containing SH3 domains (for a review, see Avila et al., 2004). More
recently, it has been indicated that tau sequence RTPPKSP could
bind to the SH3 domain of protein FYN (Bhaskar et al., 2010;
Ittner et al., 2010). This tau sequence could also be involved in
the interaction of tau with the protein phosphatase PP2A/B alpha
(Sontag et al., 2012).

SUBCELLULAR LOCALIZATION OF TAU PROTEIN
Tau protein is mainly located at the cytoplasm of neurons where it
binds to microtubules. The binding of tau to microtubules results
in the stabilization of the polymers (Drubin and Kirschner, 1986),
suppression of microtubule dynamics, and promotion of the for-
mation of cytoplasmic extensions (Caceres and Kosik, 1990). At
the cytoplasm, tau can bind to other proteins like kinases, phos-
phatases, acetylases, or deacetylases resulting, after those interac-
tions, in a modified protein, which determines the subsequently
binding of tau to other proteins. Other tau-binding protein is
calmodulin, a protein that could be located at the cytoplasm or
at the nucleus. Recently, it was suggested that tau could do a
partial trapping of calmodulin at the cytoplasm decreasing the
presence of calmodulin on nucleus and thus regulating, in this
way, its activity as a co-transcription factor (Barreda and Avila,
2011).
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Tau protein can also be present in the cell nucleus, although
it has not yet been identified a nuclear transport signal on tau
protein. Sometime ago, it was described that tau phosphorylation
could be required for its transport to the nucleus (Greenwood and
Johnson, 1995). Little is known about the function of nuclear tau
but we know that tau binds to DNA (Corces et al., 1980). Tau could
interact with nucleolar organizer regions of acrocentric chromo-
somes in some non-neuronal cells (Thurston et al., 1996). In vitro,
tau prevents DNA replication but not transcription (Li et al., 2005)
and it may behave like a histone-like protein. A role in neuronal
DNA protection has also been proposed (Sultan et al., 2011).

Tau has also been found associated with some membrane
components, like those involved in the formation of dendritic
spines (Ittner et al., 2010) or at the presynaptic density (Moreno
et al., 2011). The region of tau involved in the binding to the
neuronal plasma membrane is the aminoterminal projection
domain (Brandt et al., 1995). This tau region contains a proline
rich sequence and it was described that phosphorylation of this
sequence prevents the association of tau with plasma membrane
(Arrasate et al., 2000). In the proline rich region there is a motif,
PPXXP, that could bind to the SH3 domains present in some mem-
brane associated proteins (Avila et al., 2004) and it may explain, at
least in part, the interaction of tau protein with membrane.

TAU MODIFICATIONS
Two modifications, phosphorylation and aggregation, can regu-
late the interaction of tau with cytoplasmic, nuclear, or membrane
components and it may result toxic for a cell. The largest CNS
human tau isoform (Goedert et al., 1989) contains 79 potential
serine/threonine sites that could be phosphorylated. Only few of
those sites could be modified in normal conditions but in patholo-
gies, like AD, this number could grow significantly (Hanger et al.,
2009). Tau hyperphosphorylation could be toxic for a neuron
as indicated by using cell culture and animal models (Brandt
et al., 2005; Yoshiyama et al., 2007; Gomez de Barreda et al.,
2010).

On the other hand, hyperphosphorylated tau can induce tau
aggregation (Trojanowski and Lee, 1994; Alonso et al., 2001; Sato
et al., 2002; Perez et al., 2003). The consequences of tau aggrega-
tion are a topic that remains in the field. It is discussed whether
the presence of large tau aggregates could be toxic or beneficial for
neurons (Bretteville and Planel, 2008). It has been shown that the
number of extracellular tau aggregates (extracellular ghost tan-
gles) is inversely proportional to the number of surviving neurons
in the brain of AD patients. This observation is suggesting that
at least some of the neurons that degenerate in the disease have
previously developed tau aggregates (Bondareff et al., 1989). On
the other hand, it has been proposed that the presence of tau
aggregates could prevent the activation of cell promoting death
molecules like caspase 3 (de Calignon et al., 2010). A possible
explanation for those discrepancies could be found in the sugges-
tion that the size of tau aggregates could be important for their
toxic effect and that may be the small tau oligomers, and not large
aggregates, the toxic agents (Maeda et al., 2007).

Also, overexpression of intracellular tau could be toxic for a cell
(Andorfer et al., 2005). Since the levels of an intracellular protein
are the consequence of its synthesis, degradation, and secretion, it

was tested if an overexpression of intracellular tau could result in
its secretion into microvesicles (Simon et al., 2012).

TAU PATHOLOGY SPREADING IN THE PRESENCE OR
ABSENCE OF NEURON DEATH
Tau pathology usually starts at the entorhinal cortex and hip-
pocampal region (Braak and Braak, 1991) and it may correlate
with the loss of episodic memory occurring in the patients at
the first stages of the disease. From the hippocampal region, tau
pathology spreads to other brain areas and during the progression
of the disease neurodegeneration and neuron death take place
allowing that intracellular tau could be released to the extracel-
lular space. Thus, intracellular and extracellular tau is present in
neurodegenerative disorders like AD. Intracellular tau could be
toxic due to its hyperphosphorylation level (Avila et al., 2004)
or due to its aggregation (Bondareff et al., 1989; Gomez-Isla
et al., 1997). However, it is discussed if larger aggregates like PHF,
could be toxic (Cras et al., 1995; Avila, 2010; de Calignon et al.,
2010).

EXTRACELLULAR TAU AND MUSCARINIC RECEPTORS
About extracellular tau, it has been suggested that once it is at the
extracellular space it could become toxic for the surrounding neu-
rons (Gomez-Ramos et al., 2006). Which is the mechanism for that
toxicity will be commented below. However, an alternative way for
tau pathology spreading, involving tau, has been reported. Thus,
tau transmission from cell to cell could occur by exocytosis and
endocytosis being not necessary neuron death (Clavaguera et al.,
2009; Frost et al., 2009; de Calignon et al., 2012; Liu et al., 2012; Wu
et al., 2012; Iba et al., 2013). On the other hand, to explain that the
transmission could occur only in neurodegenerative disorders and
not in a normal situation it has been proposed that aggregated tau
is the toxic form for that spreading (Clavaguera et al., 2009; Frost
et al., 2009; Iba et al., 2013). It is not clear if the endocytosis could
take place in any cell type or if a specific cell receptor component
is required. In this way, a specific transmission through synaptic
connections has been proposed (de Calignon et al., 2012; Liu et al.,
2012).

In the case of neuron death, intracellular tau is released to
the extracellular space, and this extracellular tau could interact
with surrounding neuronal cells and, as consequence of that, an
increase in intracellular calcium can take place in those neurons
(Gomez-Ramos et al., 2006). This increase in calcium could be due
to calcium-permeable channels, to the activation of cell surface
receptors coupled to calcium-influx or to calcium liberation from
intracellular stores, induced by the activation of metabotropic
receptors like muscarinic receptors (Gomez-Ramos et al., 2006).
The published data have indicated that are, indeed, the muscarinic
receptors, the ones involved in the interaction with extracellular
tau and the responsible factors for raising intracellular calcium
(Gomez-Ramos et al., 2008).

Muscarinic receptors subtypes have been classified in two
groups: M1, M3, and M5, in one group, and M2 and M4 in
the other group (Felder, 1995). The activation of M1 receptor
group could activate phospholipase C, the release of inositol 1,4,5
triphosphate, and the subsequent mobilization of intracellular cal-
cium (Felder, 1995). On the other hand, activation of M2 receptor
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group results in an inhibition of the intracellular levels of cAMP
(Felder, 1995).

By using specific antagonists of either muscarinic receptors it
was found that extracellular tau binds to M1 and M3 receptors and
that it may explain the increase of intracellular calcium found in
neuronal cells upon tau-binding (Gomez-Ramos et al., 2006, 2008,
2009). The region of human tau molecule involved in the bind-
ing to muscarinic receptors was described like that comprising
residues 390–423 of the largest CNS human tau isoform (Gomez-
Ramos et al., 2008). As consequence of that binding, tau protein
could be or not endocytosed in a vesicle as M1 receptor does
(Lameh et al., 1992).

BINDING OF MODIFIED TAU TO MUSCARINIC RECEPTORS
It was indicated that the toxicity of intracellular tau could be
a consequence of its phosphorylation, or its aggregation. Thus,
we have tested the consequences of phosphorylation or aggre-
gation of extracellular tau on its interaction with muscarinic
M1/M3 receptors. It was found that tau phosphorylation pre-
vents the interaction of tau with muscarinic receptors. Also, it was
described that extracellular phosphorylated tau is dephosphory-
lated by tissue-non-specific alkaline phosphatase (TNAP) and that
this phosphatase, promotes the neurotoxic effect of extracellular
tau (Diaz-Hernandez et al., 2010). The level of this phosphatase
is increased in the brain of AD patients (Diaz-Hernandez et al.,
2010).

It should be indicated that the level of both unphosphory-
lated and phosphotau, that could arise from dead neurons, are
increased in the cerebrospinal fluid (CSF) of AD patients (Olsson
et al., 2011).

Different levels of tau aggregation have been analyzed to study
their interaction to muscarinic receptors. Thus, soluble tau con-
taining monomers and small oligomers of tau, as well as puri-
fied larger tau aggregates (PHFs) have been tested. These studies
have demonstrated that soluble tau but not PHFs interacted with
muscarinic receptors (Gomez-Ramos et al., 2006).

CONSEQUENCES OF THE INTERACTION OF TAU WITH
MUSCARINIC RECEPTORS
A consequence of that interaction is an increase in the level of
intracellular calcium as previously described. A secondary effect
of tau upon its binding to neuronal cells is to increase TNAP gene
expression (Diaz-Hernandez et al., 2010). This effect could be the
consequence of activation of DREAM, a transcription factor regu-
lated by calcium (Carrion et al., 1999). However, this transcription
factor probably is not involved in TNAP gene expression (Naranjo
et al., unpublished results) and further analysis should be done to
clarify the connection between calcium increase and TNAP gene
expression.

OTHER CONSEQUENCES OF TAU-BINDING TO MUSCARINIC
RECEPTORS
As previously indicated, upon interaction of tau with muscarinic
M1/M3 receptors an increase in intracellular calcium takes place
and some consequences of an increase in intracellular calcium
could be an increase in secreted compounds. Preliminary experi-
ments suggest an increase in the secretion of vesicles (containing

flotilin) upon activation of M1/M3 receptors induced by tau pro-
tein, being that increase prevented by calcium chelators (Simon
et al., unpublished results). Also, it has been described different
affinities of tau and acetylcholine for M1/M3 receptors (Gomez-
Ramos et al., 2009) and differences in the increase of intracellular
calcium induced by ACh or tau protein through M1/M3 mus-
carinic receptors. Thus, for cell expressing M3 receptor, a mini-
mum tau concentration of 50 pM was needed to find an increase
in intracellular calcium while 5 nM ACh was required to have a
similar effect (Gomez-Ramos et al., 2009). It was also found that
a continuous increase in calcium level due to the presence of tau
may result in cell death (Gomez-Ramos et al., 2009). Thus, it can
be proposed that extracellular tau may promote cell death and
it will result in the release of intracellular tau to the extracellu-
lar space and this new extracellular tau could again interact with
other cells and, in this way, propagate neuron degeneration. This
manner to propagate tau pathology may occur in AD or in other
related pathologies (tauopathies). Little is known about how an
increase of calcium mediated by the interaction of tau with mus-
carinic receptors could result in cell death. M1 and M3 receptors
are coupled with Gq/G11 proteins leading to activation of phos-
pholipase C and an increase in the level of intracellular calcium.
This calcium increase could activate some protein kinases, and
these kinases could modify tau protein doing the protein toxic.
In any case, further studies focused in the consequences of tau
phosphorylation on neuron degeneration should be done.

TAU PATHOLOGY PROGRESSION IN ALZHEIMER DISEASE
Tau pathology spreading could involve (Gomez-Ramos et al.,
2006), or not (Frost et al., 2009), neuronal death. It has been
described that neuronal death and the presence of extracellular
tau could be linked in some cases (Gomez-Ramos et al., 2006). In
this way, an inverse correlation can be found between the num-
ber of extracellular tangles and the number of living neurons in
the hippocampus (Bondareff et al., 1989). Also, extracellular tau is
present in CSF of AD patients, suggesting neuronal death. As pre-
viously indicated, extracellular tau can have two different origins;
one raised by exocytosis without cell death being this tau present,
at least in part, in membrane vesicles and the other one, from
neuronal death present in a naked form. The presence of both
tau populations has been found in the CSF of AD patients. Tau
present in vesicle particles was mainly found at the first stages of
the disease whereas the amount of uncoated tau, in CSF, increases
with the development of the disease (Saman et al., 2012).

We suggest that tau pathology spreading in cell culture, or
in vivo, has a first step in which, probably, small tau oligomers
specifically interact with neuron specific receptors. These recep-
tors could be the M1/M3 muscarinic receptors although we cannot
exclude other possibilities as an unspecific endocytosis pathway
for tau internalization (Wu et al., 2012). Once tau is bound to
the cell receptor, it could be endocytosed in a vesicle, a mecha-
nism that occurs with ligands of M1/M3 receptors (Lameh et al.,
1992), or simply, tau could promote the increase of intracellu-
lar calcium level and the appearance of second messengers or
toxic compounds that will result in neuron death without being
internalized. In the first case, the endocyted tau may interact
with some cellular components, including tau itself, and it could
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be secreted uncoated or in a membrane vesicle (Lameh et al.,
1992; Saman et al., 2012; Simon et al., 2012). These secreted vesi-
cles could interact with other cells and be endocytosed in an
unspecific way. In an alternative way, during the secretion, vesi-
cles and cell membrane can be fused and uncoated tau protein
(in aggregated or unaggregated form) could be released to the
extracellular space where it can be toxic, upon interaction with
muscarinic cell receptor. On the other hand, in other works have
been reported that extracellular tau can induce intracellular tau

aggregation and afterward the spreading of aggregated tau may
occur in a prion-like manner (Clavaguera et al., 2009; Iba et al.,
2013).

In summary, there are, at the present, different alternatives to
explain tau pathology spreading in tauopathies like AD, a disease
that long time ago was associated with severe loss of cholinergic
markers in the brain (Davies and Maloney, 1976), and that such
loss may be due to the toxic interaction of tau with muscarinic
receptors.
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