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A significant proportion of the military personnel returning from Iraq and Afghanistan con-
flicts have suffered from both mild traumatic brain injury (mTBI) and post-traumatic stress
disorder.The mechanisms are unknown. We used a rat model of repeated stress and mTBI
to examine brain activity and behavioral function. Adult male Sprague-Dawley rats were
divided into four groups: Naïve; 3 days repeated tail-shock stress; lateral fluid percussion
mTBI; and repeated stress followed by mTBI (S-mTBI). Open field activity, sensorimotor
responses, and acoustic startle responses (ASRs) were measured at various time points
after mTBI.The protein expression of mitochondrial electron transport chain (ETC) complex
subunits (CI-V) and pyruvate dehydrogenase (PDHE1α1) were determined in four brain
regions at day 7-post mTBI. Compared to Naïves, repeated stress decreased horizontal
activity; repeated stress and mTBI both decreased vertical activity; and the mTBI and
S-mTBI groups were impaired in sensorimotor and ASRs. Repeated stress significantly
increased CI, CII, and CIII protein levels in the prefrontal cortex (PFC), but decreased
PDHE1α1 protein in the PFC and cerebellum, and decreased CIV protein in the hippocam-
pus. The mTBI treatment decreased CV protein levels in the ipsilateral hippocampus. The
S-mTBI treatment resulted in increased CII, CIII, CIV, and CV protein levels in the PFC,
increased CI level in the cerebellum, and increased CIII and CV levels in the cerebral cortex,
but decreased CI, CII, CIV, and PDHE1α1 protein levels in the hippocampus.Thus, repeated
stress or mTBI alone differentially altered ETC expression in heterogeneous brain regions.
Repeated stress followed by mTBI had synergistic effects on brain ETC expression, and
resulted in more severe behavioral deficits. These results suggest that repeated stress
could have contributed to the high incidence of long-term neurologic and neuropsychiatric
morbidity in military personnel with or without mTBI.

Keywords: oxidative phosphorylation, mitochondria, electron transport chain, behavior change,TBI, PTSD

INTRODUCTION
Estimates as high as 24% of U.S. military personnel returning
from Iraq and Afghanistan battlefields have suffered from a mild
traumatic brain injury (mTBI) and/or post-traumatic stress dis-
order (PTSD) (1–5). Comorbidity of mTBI and PTSD are also
high among this sub-population (3). Despite the numbers of cases,
dedicated resources and research, and marked concern about these
conditions, minimal progress has been made toward understand-
ing the biological mechanisms producing these pathologies.

The brain is the organ of glucose metabolism and adenosine
triphosphate (ATP) utilization, which expresses our essence, our
nature, and is solely responsible for our behavioral and psycho-
logical functions to help define who we are. Dysregulated brain
energy metabolism (i.e., acute hyperglycemia during the early
phase of TBI and subsequent hypoglycemia during the chronic

phase of TBI) is a metabolic characteristic of TBI that is associated
with symptom severity and poor prognosis for functional recovery
from TBI (6–9).

Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme
that irreversibly transfers the glycolysis product pyruvate into
acetyl-coenzyme A (CoA) for efficient production of nicotinamide
adenine dinucleotide (NADH) and ATP through mitochondr-
ial tricarboxylic acid (TCA) cycle and oxidative phosphorylation
pathway (OXPHOS). OXPHOS is mediated by mitochondrial elec-
tron transport chain (ETC) complex subunits (CI, CII, CIII, CIV,
and CV).

Mitochondrial ETC generate ATP by coupling electron transfer
between electron donors (i.e., NADH) and the electron accep-
tor (O2) with the transfer of protons (H+) across the membrane
to generate energy in the form of ATP. Complex I (CI, NADH
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dehydrogenase) and Complex II (CII, succinate dehydrogenase
flavoprotein) accept and transfer electrons to coenzyme Q which
sequentially transfers electrons to Complex III (CIII, cytochrome
reductase), cytochrome c, and Complex IV (CIV, cytochrome oxi-
dase), where oxygen is the terminal acceptor. Complex V (CV)
couples proton gradients to ATP synthesis, allowing proton flow
from inter-membrane space to the matrix via a special enzyme,
converting ADP to ATP.

We previously reported that the PDH pathway is altered in ani-
mal models of TBI (10–13). Complex abnormalities in ETC have
also been found in many neurological diseases (14–16), yet its
potential involvement in combined TBI and stress is unknown.
Because aberrant ETC complex activities are the primary source
of intracellular reactive oxygen species (ROS), alterations in ETC
complexes could lead to increased ROS production, inflamma-
tion, impaired signal transduction, mitochondrial damage, and
cell death, thus compromising brain vulnerability to subsequent
stress and injuries.

Brain energy metabolism is also disrupted during traumatic
stress. Under life-threatening situations, energy reserves are inten-
sively mobilized for fight-or-flight response via sympathetic acti-
vation and epinephrine/norepinephrine release. This reaction
increases cardiovascular output, aerobic supply, fear memory,
visual and auditory sensitivity, alertness, vigilance, and selective
attention that are essential for survival (17–19). However, poten-
tial metabolic over-reactivity meant to increase survivability in an
emergent situation has long-lasting deleterious effects that may
compromise the brain’s response to subsequent injuries.

The main goal of this study was to determine if prior repeated
stress altered TBI-induced brain ETC expression and behavioral
functions. We hypothesized that the combination of repeated
stress followed by mTBI could affect brain ETC complex expres-
sion in a way that is different from repeated stress or mTBI alone.
We included measures of behavioral and psychological uncondi-
tioned responses (i.e., activity, sensorimotor responses, acoustic
startle reflexes, and measures of depression-related behavior) to
determine whether the repeated stress has functional effects in
addition to changes to mitochondrial expression. Rat fluid per-
cussion (FP) was used to create mTBI and repeated stress was
used to model PTSD.

MATERIALS AND METHODS
ANIMALS AND EXPERIMENTAL GROUPS
Adult, male Sprague-Dawley rats (175–275 g) were obtained from
Harlan Laboratories (Indianapolis, IN, USA). All procedures were
performed in accordance with guidelines of the National Institutes
of Health and were approved by the Institutional Animal Care and
Use Committee (IACUC) at the Uniformed Services University of
the Health Sciences (USUHS). Rats were pair housed in standard
polycarbonate shoebox cages (42.5 cm× 20.5 cm× 20 cm) with
hardwood chip bedding (Pine-Dri) and kept on a 12-h reversed
light-dark cycle, with food (Harlan Teklad 4% Mouse/Rat Diet
7001) and water continuously available. All animals were weighed
just before the experiment (T0) and at the end of the experiment
(T7) as a measure of their general health. Rats were given coded
tail numbers and assigned randomly to experimental groups after
1 day of acclimation to the environment [Naïve, Stress, mTBI, and

mTBI with prior stress (S-mTBI)]. For behavioral analyses, a total
of 54 rats were used in this experiment (Naïve= 16; Stress= 12;
mTBI= 16; S-mTBI= 10). In the case of the S-mTBI animals, the
stress was given for 3 consecutive days and then mTBI was admin-
istered within 24 h. This group originally had 12 animals, but 2
died during the TBI surgery. Necropsies of these animals by Labo-
ratory of Animal Medicine (LAM) personnel found no identifiable
cause, including infection, for these deaths. At day 7-post injury,
animals were sedated under isoflurane anesthesia, and tissues were
collected. Brain tissue from eight animals of each treatment group
was dissected for biological analysis.

INDUCTION OF FLUID PERCUSSION INJURY
Mild traumatic brain injury was induced in rats according to our
published procedure (13). In brief, animals were anesthetized with
1–3% isoflurane in oxygen. Under sterile conditions, a 3-cm sagit-
tal incision was made along the midline to expose the cranium. A
5-mm burr hole was placed 2 mm to the right of the sagittal suture
halfway between bregma and lambda using a 5-mm trephine drill
bit exposing the dura. A Luer-Lock needle hub was placed into
the burr hole and cemented to the cranium using cyanoacrylate.
The glue was allowed to completely dry, and the empty Luer-Lock
hub was filled with normal saline before being connected to the
TBI device. A FP pulse of 2.5 atm was administered by an injury
cannula positioned parasagittally over the right cerebral cortex.
The FP pulse was administered by a pendulum modulated FP bio-
mechanical device (Richmond, VA, USA). The Luer-Lock hub was
removed and defects in the cranium were repaired with bone wax.
The skin was closed with a surgical skin stapler. Animals were
allowed to stabilize in the warm blanket before returned to their
home cages. At 7 days post mTBI, animals were sacrificed under
anesthetization, and brains were removed followed by the dissec-
tion of prefrontal cortex (PFC), cerebellum, and the ipsilateral and
contralateral of mTBI hippocampus and cerebral cortex.

REPEATED TAIL-SHOCK STRESS PROCEDURE
This paradigm was chosen because it has previously demonstrated
that repeated immobilization and tail-shock stress sessions are
more effective than a single stress session in producing physio-
logical and behavioral abnormalities, such as elevations in basal
plasma corticosterone levels and delayed exaggerated acoustic star-
tle responses (ASRs) are similar to symptoms observed in PTSD
patients (20–25). This restraint tail-shock model of stress in rats
is adapted from the “learned helplessness” paradigm in which ani-
mals undergo an aversive experience under conditions in which
they cannot perform any adaptive response (26). The stress proce-
dure consisted of a 2-h per day session of immobilization and tail
shocks over 3 consecutive days. Stressed animals were restrained
in a Plexiglas tube and given 40 electric tail shocks (2 mA, 3 s
duration) at varying intervals (140–180 s). Animals were returned
to their home cages immediately after exposure to the stress
procedure.

ANIMAL BEHAVIORAL MEASURES
Behavior was observed during the animals’ dark cycle (i.e., during
their active period). All animals underwent behavioral evalua-
tion prior to stress and/or injury (baseline), and at two other
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time points during the week after injury. Behavioral measures
included: open field activity (OFA) to measure general health and
depression-related behaviors; neurobehavioral testing [revised
neurobehavioral severity scale (NSS-R)] to measure sensory-
motor functioning; and ASR with and without pre-pulse to
measure startle and attention.

OPEN FIELD ACTIVITY
Open field activity was measured using Accuscan Superflex Sensor
Version 2.2 infrared photocell system in the Accuscan Instruments
testing chamber (measuring 40 cm× 40 cm× 30 cm; Accuscan
Instruments Incorporated, Columbus, OH, USA) located in a ded-
icated room designed to minimize acoustic interruptions. The
testing chamber was constructed of Plexiglas with a ventilated,
removable Plexiglas lid that prevents the animal’s escape during
the trial but allows adequate airflow. The animal’s locomotion was
captured by three, paired 16-photocell Superflex Sensors, which
transmit the location data to the Accuscan Superflex Node which
was processed and aggregated by Accuscan Fusion Software (Ver-
sion 3.4). Animals were acclimated to the chambers prior to the
beginning of the experiment. They then received a baseline mea-
surement prior to injury and/or stress and were measured at days
3 and 5 post injury. The OFA of each rat was measured for 1 h
during its active period (dark cycle).

REVISED NEUROBEHAVIORAL SEVERITY SCALE
The NSS-R is a specific, continuous sequence of behavioral tests
and observations that is a sensitive and reliable measure in rodents
(27, 28). This measure was originally designed to model a clinical
neurological exam conducted in patients. This particular sensory-
motor assessment scale was based on several previous reports
(29–32) and has been modified to increase standardization. The
tests assess reflex suppression, general movement, and postural
adjustments in response to a challenge. The NSS-R uses a three-
point Likert scale, in which a normal, healthy response is assigned
a “0,” a partial or compromised response is assigned a “1,” and the
absence of a response is assigned a “2.” This three-point scale is
clear and reliable and allows for greater discrimination based on
sensory-motor responses than do previous scales that used two-
point ratings of each response. The NSS-R has a scoring range of
0–20 with higher scores reflecting greater extent of injury. Three
NSS-R sessions were conducted in this experiment as a within-
subject measure: one before stress/injury (baseline) and two after
injury (days 3 and 5).

ACOUSTIC STARTLE RESPONSE WITH AND WITHOUT PRE-PULSE
Acoustic startle responses with and without pre-pulse were mea-
sured in a Med Associates Acoustic Response Test System (Med
Associates, Georgia, VT, USA). The Test System consists of weight-
sensitive platforms inside individual sound-attenuated chambers.
Responses were recorded by an interfaced Nexlink computer. Each
rat was placed individually in a ventilated holding cage (small
enough to restrict extensive locomotion but large enough to allow
the subject to turn around and make other small movements) on
the weight-sensitive platform. Following placement of animals in
the chambers, a 3-min acclimation period was conducted, in which
no startle stimuli were presented. Startle stimuli consisted of 110

or 120 dB noise bursts of 20 ms duration sometimes preceded by
a 100-ms, 68 or 82 dB, 1 kHz pure tones (pre-pulses). Intensity of
sound in decibel was verified by a Larson-Davis Sound Pressure
Machine Model 2800 (unweighted scale; re: 0.0002 dyn/cm2). Each
startle stimulus had a 0-ms rise and decay time so that onset and
offset were abrupt. There were multiple types of stimulus trials,
and each trial type was presented six times and averaged. Trial types
were presented in random order to avoid order effects and habitu-
ation. Animals’ movements in response to stimuli were measured
as a voltage change by a strain gage inside each platform. Animals
were acclimated to the chambers twice prior to the beginning of
the experiment. They then received a baseline measurement prior
to injury/stress and were measured at days 4 and 6 post injury.

WESTERN BLOT
Brain tissue homogenates from four brain regions (prefrontal cor-
tex, cerebellum, hippocampus, and cerebral cortex) were homog-
enized and sonicated in the T-Per tissue lysis buffer (Pierce,
IL) in the presence of protease inhibitor cocktail (Sigma, St.
Louis). For the mTBI and S-mTBI animals, ipsilateral and con-
tralateral hippocampus, and cerebral cortex were dissected and
processed respectively. Protein concentrations were determined
using a Bradford assay (BioRad, CA, USA). Aliquots of 20 µg pro-
teins were separated by electrophoresis on NuPage Novex Midi
Bis-Tris gels (4–12%) and transferred to a polyvinylidene difluo-
ride membrane (PVDF), Millipore. The membranes were rinsed
in a 0.01-M Tris-buffered saline (TBS) solution (pH 7.4, 0.1%
Triton X-100) for 30 min, blocked in 5% bovine serum albu-
min for 30 min, and incubated overnight at 4°C with the primary
mouse monoclonal antibodies for ETC complex subunits CI-V
and PDHE1α1 (Abcam, UK) at a dilution of 1:200, each in a TBS
solution containing 3% bovine serum albumin. The membranes
were then washed three times with TBS solution for 30 min and
incubated at room temperature with a horseradish peroxidase-
conjugated secondary anti-mouse antibody (1:5000 dilution) in
TBS solution for 60 min.

Due to the lack of an appropriate housekeeping mitochondrial
protein (33, 34), WB band intensity was expressed as fold change
relative to naives, but was not normalized to an internal control.
However, we took extra steps to normalize our data by (1) loading
the equal amount of protein for each sample; (2) all samples were
processed, loaded, and run in parallel, and (3) transfer efficiency
of proteins to the PVDF membrane was confirmed by staining
with Ponceau solution. Immunoreactive bands were visualized
using enhanced chemiluminescence Western blotting detection
reagents (GE Healthcare Bio-Sciences Corp, Piscataway, NJ, USA).
The western blots were captured with a digital camera and the
intensities of protein bands were quantified with NIH Image 1.62.

STATISTICAL ANALYSIS
For behavioral data, repeated measures analyses of variance
(rANOVA; to assess for overall main effects for Time, Group,
Injury, Drug, and any interactions) and analysis of variance
(ANOVA; to assess for main effects of Group, Injury, Drug, and
any interactions at each time point) were conducted for each
of the dependent variables. Baseline measurements were used
as a covariate to account for any baseline differences. Pairwise
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comparisons were performed where appropriate. OFA scores were
separated into two subscales: horizontal activity (HA) and vertical
activity (VA). Analyses for all measures except for OFA included
data for all subjects (N = 54). The OFA included a subset of the
subjects (N = 46) because of an equipment malfunction during
one cohort of eight subjects. Cohorts were similar among exper-
imental groups; therefore, the remaining data are representative
of all experimental conditions. All tests were two tailed using
α= 0.05. Data analyses were performed at the conclusion of the
project, after all measurements were collected.

Mitochondrial complex I-V and PDHE1α1 protein expression
levels were analyzed for each brain region (prefrontal cortex,
cerebellum, and contralateral and ipsilateral hippocampus and
cerebral cortex) using a one-way ANOVA followed by LSD mul-
tiple comparison. A p-value <0.05 was considered statistically
significant.

RESULTS
In reference to the weight gain in the groups the following was
observed. The mTBI animals gained only 2.7% of the base-
line weight (p < 0.05), while the stressed animals gained sig-
nificantly more both with mTBI at 10.8% and without mTBI
at 11.9% (p < 0.001). Naïve animals also gained a significant
amount of weight at 7.5% in comparison to the baseline, but less
than the stressed rats. The behavioral and western blot analysis
quantification was not conducted in a blinded fashion.

BEHAVIORAL FUNCTIONAL OUTCOMES
Open field activity
Open field activity measures naturally occurring behaviors exhib-
ited when an animal explores and interacts with its surroundings.
These measures provide reliable and valuable data about gross
motor and specific movements related to psychological conditions
such as anxiety-related and depressive-related behaviors (35–38).
For the purposes of this experiment, two variables were extracted
from the animal’s movement within the chambers: HA and VA.
Figure 1A presents HA (an index of general health and move-
ment) of the animals. Overall, there was a main effect for Group,
F(3,40)= 6.00, p < 0.01, η2

= 0.31, such that Naïve animals had
significantly more activity overall than did the S-mTBI animals.
There was a main effect for Stress, F(1,40)= 16.25, p < 0.001,
η2
= 0.29, such that the non-stressed animals had significantly

more activity overall than did the stressed animals. There also was
a significant Time× Stress Interaction, F(1,40)= 4.13, p < 0.05,
η2
= 0.09. At 3 days post injury, there was a main effect for Group,

F(3,40)= 5.83, p < 0.01, η2
= 0.30, such that the Naïve animals

had significantly more activity than did the Stress animals and
the S-mTBI animals. There also was a main effect for Stress,
F(1,40)= 16.38, p < 0.001, η2

= 0.29, such that the non-stressed
animals had significantly more activity than did the stressed ani-
mals. At day 5 post injury, there was a main effect for Group,
F(3,40)= 4.38, p < 0.01, η2

= 0.25, such that Naïve animals had
significantly more activity than did S-mTBI animals. There also
was a main effect for Stress, F(1,40)= 10.58, p < 0.01, η2

= 0.21,
such that the non-stressed animals had significantly more activity
than did the stressed animals.

Figure 1B presents VA (an index of depression-related behav-
iors; where less VA indicates more depression-related behaviors)

of the animals. Overall, there was a main effect for Group,
F(3,40)= 6.46, p < 0.001, η2

= 0.32, such that Naïve animals
had significantly more VA than did S-mTBI animals and Stress
animals. There was a main effect for Injury, F(1,40)= 7.91,
p < 0.01, η2

= 0.16, such that non-injured animals had signifi-
cantly more VA than did the TBI animals. There was a main effect
for Stress, F(1,40)= 13.18, p < 0.001, η2

= 0.25, such that non-
stressed animals had significantly more VA than did the stressed
animals. There also was a significant Time×Group Interaction,
F(3,40)= 6.73, p < 0.001, η2

= 0.33, a Time× Injury Interaction,
F(1,40)= 9.08, p < 0.01, η2

= 0.19, and a Time× Injury× Stress
Interaction, F(1,40)= 10.17, p < 0.01, η2

= 0.20. At day 3 post
injury, there was a main effect for Group, F(3,40)= 7.61,
p < 0.001, η2

= 0.36, such that Naïve animals had significantly
more VA than did mTBI animals, Stress animals, and the S-
mTBI animals. There was a main effect for Injury, F(1,40)= 11.81,
p= 0.001, η2

= 0.23, such that non-injured animals had signifi-
cantly more VA than did the TBI animals. There also was a main
effect for Stress, F(1,40)= 13.34, p < 0.001, η2

= 0.25, such that
non-stressed animals had significantly more VA than did stressed
animals. At 5 days post injury, there was a main effect for Group,
F(3,40)= 5.07, p < 0.01, η2

= 0.27, such that Naïve animals had
significantly more VA than did S-mTBI animals. There also was a
main effect for Stress, F(1,40)= 10.54, p < 0.01, η2

= 0.21, such
that non-stressed animals had significantly more VA than did
stressed animals.

Revised neurobehavioral severity scale
The NSS-R is a sensitive and reliable measure of sensory-motor
responses in rodents (27, 28, 39). This measure models a clinical
neurological exam of human patients and was based on several
previous reports (29–32).

Figure 2 presents the neurobehavioral severity data (NSS-
R; where higher scores indicate more sensorimotor functional
impairment) of the animals. Overall, there was a main effect
for Group, F(3,49)= 5.99, p < 0.001, η2

= 0.27, such that Naïve
animals had significantly lower NSS-R scores than did mTBI ani-
mals. There also was a main effect for Injury, F(1,49)= 14.97,
p < 0.001, η2

= 0.23, such that non-injured animals had signifi-
cantly lower NSS-R scores than did TBI animals. Similarly, at 3 days
post injury, there was a main effect for Group, F(3,49)= 4.23,
p < 0.01,η2

= 0.21, such that Naïve animals had significantly lower
NSS-R scores than did mTBI animals. There also was a main
effect for Injury, F(1,49)= 10.53, p < 0.01, η2

= 0.18, such that
non-injured animals had significantly lower NSS-R scores than
did TBI animals. At 5 days post injury, there was a main effect
for Group, F(3,49)= 4.72, p < 0.01, η2

= 0.22, such that Naïve
animals had significantly lower NSS-R scores than did mTBI
animals and S-mTBI animals. There also was a main effect for
Injury, F(1,49)= 10.09, p < 0.01, η2

= 0.17, such that non-injured
animals had significantly lower NSS-R scores than did TBI animals.

Acoustic startle response with and without pre-pulse
The ASR with and without pre-pulse are whole body behav-
ioral responses believed to index information processing (40) and
possibly attention (41–43).

Figure 3A presents the ASR data with a tone of 110 dB. Over-
all, there was a main effect for Time, F(1,49)= 9.41, p < 0.01,
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FIGURE 1 | Effects of stress, mTBI, or the combination on open field
activity. Activity was measured for 60 min at baseline (BL), and 3 and 5 days
post injury and the number of beam breaks was collected. (A) Horizontal
activity (measure of general health and movement) of the animals throughout

the experiment. (B) Vertical activity (measure of depression-related behavior)
of the animals throughout the experiment. Vertical activity measurement post
injury was covaried for baseline measurements due to differences at baseline
between groups. *p < 0.05, **p < 0.01 vs. Naïves, respectively.

η2
= 0.16, such that animals 4 days post injury had significantly

lower startle to the tone than did animals at 6 days post injury.
There also was a main effect for Group, F(3,49)= 9.21, p < 0.001,
η2
= 0.36, such that Naïve animals had significantly higher startle

to the tone than did mTBI animals and S-mTBI animals. There was
a main effect for Injury, F(1,49)= 23.29, p < 0.001,η2

= 0.32, such
that non-injured animals had higher startle responses than did TBI
animals. There also was a significant Time× Stress Interaction,
F(1,49)= 6.88, p < 0.050, η2

= 0.12. At 4 days post injury, there
was a main effect for Group, F(3,49)= 7.25, p < 0.001, η2

= 0.31,
such that Naïve animals had significantly more startle to the tone
than did mTBI animals and S-mTBI animals. There also was a
main effect for Injury, F(1,49)= 20.00, p < 0.001, η2

= 0.29, such
that non-injured animals had significantly higher startle to the
tone than did TBI animals. At 6 days post injury, there was a main
effect for Group, F(3,49)= 8.42, p < 0.001, η2

= 0.34, such that
Naïve animals had significantly higher startle to the tone than did
Stress animals, mTBI animals, and S-mTBI animals. There was a
main effect for Injury, F(1,49)= 18.25, p < 0.001, η2

= 0.27, such
that non-injured animals had more startle to the tone than did TBI
animals. There also was a main effect for Stress, F(1,49)= 6.40,

p < 0.050, η2
= 0.12, such that non-stressed animals had more

startle to the tone than stressed animals.
Figure 3B represents the ASR data with a tone of 110 dB and a

pre-pulse of 68 dB (heard 100 ms before the tone). Similar results
were found here as with the 110-dB tone alone. Overall, there
was a main effect for Time, F(1,49)= 4.66, p < 0.05, η2

= 0.09,
such that animals at 4 days post injury had significantly less startle
than animals at 6 days post injury. There was a main effect for
Group, F(3,49)= 15.15, p < 0.001, η2

= 0.48, such that Naïve ani-
mals had significantly more startle than did Stress animals, mTBI
animals, and S-mTBI animals. There was a main effect for Injury,
F(1,49)= 37.79, p < 0.001, η2

= 0.44, such that non-injured ani-
mals had significantly more startle than did TBI animals. There was
a main effect for Stress, F(1,49)= 5.77, p < 0.050, η2

= 0.11, such
that non-stressed animals had significantly more startle than did
stressed animals. There also was a significant Time× Stress Inter-
action, F(1,49)= 6.99, p < 0.050, η2

= 0.13. At 4 days post injury,
there was a main effect for Group, F(3,49)= 11.85, p < 0.001,
η2
= 0.42, such that Naïve animals had significantly more star-

tle than did mTBI animals and S-mTBI animals. There also was a
main effect for Injury, F(1,49)= 32.73, p < 0.001, η2

= 0.40, such
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FIGURE 2 | Effects of stress, mTBI, or the combination on
neurobehavioral function. Neurobehavioral severity was determined by
using a 10-item test with a score of 0, 1, 2, on each given task. Higher
scores indicate more neurobehavioral impairment. Animals were tested

at baseline (BL), and 3 and 5 days post injury. Neurobehavioral
assessment post injury was covaried for baseline measurements due to
differences at baseline between groups. *p < 0.05, **p < 0.01 vs.
Naïves, respectively.
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FIGURE 3 | Effects of stress, mTBI, or the combination on
acoustic startle response (ASR) with and without pre-pulse
(a measure of attention). (A) ASR at 110 dB alone throughout the
experiment. (B) ASR at 110 dB with a 68-dB pre-pulse throughout

the experiment. (C) ASR at 110 dB with an 82-dB pre-pulse
throughout the experiment. Animals were measured at baseline
(BL), and at 4 and 6 days post injury. *p < 0.05, **p < 0.01 vs.
Naïves, respectively.
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that non-injured animals had significantly more startle than did
TBI animals. At 6 days post injury, there was a main effect for
group, F(3,49)= 11.81, p < 0.001, η2

= 0.42, such that Naïve ani-
mals had significantly more startle than did stress animals, mTBI
animals, and S-mTBI animals. There was a main effect for Injury,
F(1,49)= 24.59, p < 0.001, η2

= 0.33, such that non-injured ani-
mals had significantly more startle than did TBI animals. There
also was a main effect for Stress, F(1,49)= 10.02, p < 0.01,
η2
= 0.17, such that non-stressed animals had significantly more

startle than did stressed animals.
Figure 3C represents the ASR data with a tone of 110 dB and a

pre-pulse of 82 dB (heard 100 ms before the tone). Similar results
were found here as with the 110-dB tone alone. Overall, there
was a main effect for Time, F(1,49)= 7.18, p < 0.01, η2

= 0.13,
such that animals at 4 days post injury had significantly less
startle than animals at 6 days post injury. There was a main
effect for Group, F(3,49)= 15.03, p < 0.001, η2

= 0.48, such that
Naïve animals had significantly more startle than did mTBI ani-
mals and S-mTBI animals. There was a main effect for Injury,
F(1,49)= 39.10, p < 0.001, η2

= 0.44, such that non-injured ani-
mals had significantly more startle than did TBI animals. There was
a main effect for Stress, F(1,49)= 6.27, p < 0.05, η2

= 0.11, such
that non-stressed animals had significantly more startle than did
stressed animals. There also was a significant Time× Stress Inter-
action, F(1,49)= 4.80, p < 0.05, η2

= 0.090. At 4 days post injury,
there was a main effect for Group, F(3,49)= 11.31, p < 0.001,
η2
= 0.41, such that Naïve animals had significantly more star-

tle than did mTBI animals and S-mTBI animals. There also was a
main effect for Injury, F(1,49)= 32.01, p < 0.001, η2

= 0.40, such
that non-injured animals had significantly more startle than did
TBI animals. At 6 days post injury, there was a main effect for
Group, F(3,49)= 11.42, p < 0.001, η2

= 0.41, such that Naïve ani-
mals had significantly more startle than did mTBI animals and S-
mTBI animals. There was a main effect for Injury, F(1,49)= 26.17,
p < 0.001, η2

= 0.35, such that non-injured animals had signifi-
cantly more startle than did TBI animals. There also was a main
effect for Stress, F(1,49)= 8.90, p < 0.01,η2

= 0.15, such that non-
stressed animals had significantly more startle than did stressed
animals. Similar results were found with 120 dB with and without
pre-pulses (data not shown).

WESTERN BLOT DATA
Prefrontal cortex
Expression levels of mitochondrial proteins in Stress and mTBI
groups was reduced, whereas S-mTBI increased PDHE1α1 protein
level in the prefrontal cortex (Figure 4). One-way ANOVA revealed
significant effects of repeated stress and mTBI treatment on ETC
CI (p < 0.05), CII (p < 0.05), CIII (p < 0.05), CIV (p < 0.01), CV
(p < 0.05), and PDHE1α1 (p < 0.05) protein levels (Figure 5).
LSD post hoc showed that when compared with Naïves, Stress, and
S-mTBI animals had significant enhancing effects on CI, CII, and
CIII. S-mTBI animals also had enhancing effects on CIV and CV
protein levels. In contrast, mTBI treatment alone did not affect
ETC subunit expression in the prefrontal cortex.

Cerebellum
One-way ANOVA showed significant effects of Stress and S-
mTBI on cerebellar CI (p < 0.05), CV (p < 0.05) and PDHE1α1

(p < 0.05) expression in rat cerebellum (Figures 4 and 6). LSD
post hoc showed that when compared with Naïves, cerebellar CI
protein level increased significantly (p < 0.05) whereas CV protein
decreased at a trend level (p < 0.01) in S-mTBI-treated animals.
Cerebellar PDHE1α1 protein level decreased in the Stress and
mTBI groups compared to the Naïve group.

Hippocampus
One-way ANOVA showed significant effects of Stress, mTBI, and
S-mTBI on CI (p < 0.05), CII (p < 0.05), CIV (p < 0.05), CV
(p < 0.01), and PDHE1α1 (p < 0.05) protein levels in the hip-
pocampus. LSD post hoc showed that, when compared with the
Naïve hippocampus, CI and CII proteins in the contralateral and
ipsilateral hippocampus of the S-mTBI animals decreased signif-
icantly. Complex IV protein levels in the hippocampus of Stress
animals and contralateral hippocampus of S-mTBI animals, as well
as CV protein level in the ipsilateral hippocampus of mTBI animals
also decreased significantly. PDHE1α1 protein level in the ipsilat-
eral hippocampus of S-mTBI animals also decreased significantly
(p < 0.01) (Figures 4 and 7).

Cerebral cortex
One-way ANOVA showed significant effects of TBI treatment on
CIII (p < 0.05), CIV (p < 0.05), CV (p < 0.01), and PDHE1α1
(p < 0.01) protein expression in the cerebral cortex (Figures 4
and 8). LSD post hoc revealed that when compared with the Naïve
group, CIII protein level was significantly higher in the contralat-
eral and ipsilateral cortex of S-mTBI animals (p < 0.05), CIV
protein level was significantly lower in the ipsilateral cortex of
mTBI animals (p < 0.05), and CV protein level was significantly
higher in the cortex of S-mTBI animals (p < 0.05). PDHE1α1 was
significantly higher in the contralateral cortex of mTBI animals
(p < 0.05) but lower in the ipsilateral cortex of mTBI (p < 0.05)
and S-mTBI animals (p < 0.01).

DISCUSSION
The prevalence of post-concussive syndrome associated with
increased anxiety and memory deficit are particularly high among
military casualties of the Iraq and Afghanistan wars (5). The role
of psychological stress in the battlefield is very important on the
outcome of TBI. Currently, the overlapping depressive sympto-
mology of PTSD and mTBI present a major diagnostic challenge
and dilemma for clinicians. In this study, we have dissected the
neurobehavioral symptoms and altered brain metabolic pathways
following stress or mTBI alone, and combined effect of stress and
mTBI in rats. The key findings of this study are (1) animal expo-
sure to the repeated stress or mTBI alone resulted in an early and
short term increase in anxiety and impaired memory, (2) these
symptoms persisted for a long time in animals with combined
stress and mTBI, and (3) abnormal mitochondrial ETC and PDH
enzyme expressions in different parts of the brain were seen in all
animals with stress with or without brain injury confirming the
altered cellular metabolic pathways due to stress or mTBI (44, 45).

BEHAVIORAL EFFECTS OF STRESS, mTBI, OR STRESS WITH mTBI
The presence of repeat stress in our rat model had little effect
on sensorimotor responses, but significant decrease in startle
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FIGURE 4 | Representative samples of Western blotting of CI, CII,
CIII, CIV, CV, and PDHE1α1 protein bands in the tissue homogenates
of rat prefrontal cortex (PFC), cerebellum, hippocampus, and
cerebral cortex collected at 7 days post mTBI. Contralateral and
ipsilateral hippocampus and cerebral cortex were collected for mTBI and

S-mTBI animals. Twenty micrograms of total proteins were resolved on
SDS-PAGE gel and incubated with the primary antibodies against each
protein. N, Naïves; S, Stress; T, mTBI; ST, stress followed by mTBI;
C, contralateral mTBI; I, ipsilateral mTBI; ST, contralateral S-mTBI;
STi, ipsilateral S-mTBI.

responses, with and without pre-pulse at day 6. These findings
suggest that stress initially decrease movement and temporary
increase in depression-related behaviors. These findings are simi-
lar to the previous published report in which rat exposure to fear
only caused temporary increased in anxiety and impaired memory
(46). In contrast, our startle data reveals that information process-
ing was not immediately affected by stress, but became abnormal
over time suggesting the progression of secondary brain injury
in our rat model of repeat stress. Similarly, patients with PTSD
also frequently display increased arousal, which is manifested by
irritability, attention deficit, and disturbed sleep (3, 47). These
observations confirm the similarities of depression like symptoms
in our rat repeat stress model and patients with PTSD.

Brain injury alone caused a significant decline in sensorimotor
function and startle responses throughout the experiment when
compared with naïves animals. These observations indicate that

even mTBI initially triggers the depression like behaviors that
recovered within 6 days following injury, but the poor senso-
rimotor function persisted. Similar cognitive dysfunctions have
also been published in rat models with controlled cortical impact
injury, lateral and midline FP injury, and blast (48). In humans
also, cognitive dysfunctions and impaired memory are the com-
mon clinical manifestations of mTBI that have not been widely
studied in animal models (49). Therefore, functional neurobehav-
ioral responses to mTBI in this study are important for future
diagnosis and treatment of mTBI.

The combination of stress and brain injury appeared to pro-
duce an additive effect on activity, sensorimotor function, and
startle responses. A significant decreased the horizontal and
VA, sensorimotor functions and startle responses were noted
throughout the experiment in animals with combined stress
and mTBI. The additional behavioral findings in our study
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FIGURE 5 | Semi-quantitative determination of the Western blotting
protein bands density of ETC subunits CI, CII, CIII, CIV, CV proteins, and
PDHE1α1 protein expressed in rat prefrontal cortex (PFC) 7 days post

mTBI. N, Naïves; S, Stress; T, mTBI; ST, stress followed by mTBI. Results are
presented as the fold change relative to the Naïves (=1). *p < 0.05,
**p < 0.01 vs. Naïves, respectively.
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FIGURE 6 | Semi-quantitative determination of the Western blotting
protein bands density of ETC subunits CI, CII, CIII, CIV, CV proteins, and
PDHE1α1 protein expressed in rat cerebellum 7 days post mTBI.
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*p < 0.05, **p < 0.01 vs. Naïves, respectively.
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FIGURE 7 | Semi-quantitative determination of the Western
blotting protein bands density of ETC subunits CI, CII, CIII, CIV, CV
proteins, and PDHE1α1 protein expressed in rat hippocampus
7 days post mTBI. N, Naïves; S, 3 days repeated stress; T, mTBI; ST,

stress followed by mTBI; C, contralateral mTBI; I, ipsilateral mTBI; ST,
contralateral S-mTBI; STi, ipsilateral S-mTBI. Results are presented as
the fold change relative to the Naïves (=1). *p < 0.05, **p < 0.01 vs.
Naïves, respectively.
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FIGURE 8 | Semi-quantitative determination of the Western
blotting protein bands density of ETC subunits CI, CII, CIII, CIV, CV
proteins, and PDHE1α1 protein expressed in rat cerebral cortex
7 days post mTBI. N, Naïves; S, 3 days repeated stress; T, mTBI; ST,

stress followed by mTBI; C, contralateral mTBI; I, ipsilateral mTBI; ST,
contralateral S-mTBI; STi, ipsilateral S-mTBI. Results are presented as
the fold change relative to the Naïves (=1). *p < 0.05, **p < 0.01 vs.
Naïves, respectively.
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confirms that the combination of injury and repeated stress
were particularly disruptive. Naïve animals showed the appro-
priate habituation expected over the course of the experiment
with regards to OFA and NSS-R (i.e., the animals’ activity or
score decreased over time). It is also worth noting that animals
were also tested using the rotarod (data not shown), to test for
motor deficits, and while TBI decreased the time the animals
were able to balance, stress improved the animals’ balance. This
finding helps in the interpretation of the OFA results, indicat-
ing that the combination of stress and mTBI did not cause any
motor deficits, therefore the decrease in horizontal and VA can be
interpreted as deteriorated general health and depressive-related
behaviors.

MITOCHONDRIAL EFFECTS OF STRESS, mTBI, OR STRESS WITH mTBI
The specific role of primary mechanisms in stress, mTBI, or com-
bined effects of stress with mTBI is difficult to assess in clinical
cases. However, postmortem analysis of brain tissue from patients
with PTSD and/or TBI indicated the involvement of mitochon-
dria in neuronal cell death and hippocampus atrophy (44, 45).
We believe this is the first study to examine the proteins responsi-
ble for mitochondrial energy producing pathways in response to
stress, mTBI, or stress with mTBI.

As with the behavioral effects, the stress and injury manip-
ulations have significant measureable effects on PDH and ETC
expression in different parts of the brain. These findings extend
our previous findings of altered mitochondrial PDH expres-
sion and activity after TBI (12, 13). Similar to our findings of
neurobehavioral effects of combined stress and mTBI, present
experiment indicate that the combination of repeated stress and
mTBI had the most effects on mitochondrial PDH and ETC sub-
unit expression compared with stress or mTBI alone. Therefore,
the parallel effects of combined stress and injury on behav-
ioral and brain ETC activity are noteworthy and merits further
investigation.

The PFC is known to exert a powerful inhibitory effect on
amygdala activity and plays an important role in fear extinc-
tion (50, 51). The increased ETC subunit expression in the PFC
of stressed animals (especially in the stress plus injury animals)
could be associated with increased inhibition of amygdala acti-
vation, altered fear memory and affect the reorganization of
interconnection and inter-regulation between the PFC and lim-
bic circuits to alter endurance and resistance from further stress
(52). The region-specific increase of ETC subunits expression
in the PFC of Stress and S-mTBI animals is also in agreement
with the recent report that chronic stress sensitizes the frontal
cortex to the release of cytochrome c (CIV) from the mito-
chondria of male rats. While the relevance of increased PFC in
ETC expression in an animal model of repeated stress with brain
injury (that may model PTSD with mTBI) remains to be vali-
dated. Recent brain imaging studies indicate that combat-exposed
war veterans with PTSD and mTBI with high risk for suicide
also had hyperactivation of the PFC and anterior cingulate dur-
ing error processing compared to non-suicidal PTSD with mTBI
veterans (53).

Although the mechanism and biological significance of pre-
existing stress on the severity of brain injury remains obscure, the

enhanced ETC expression may also reflect a compensatory mech-
anism for increased energy demand of the injured brain due to
increased neuronal activity in several brain regions. This data is
also in line with the reported up-regulation of cannabinoid recep-
tor (CBR) expression, an important mediator of energy metabo-
lism in the PFC of juvenile male rats after repeated stress (54). In
contrast to the increase ETC complexes in the PFC, the expres-
sion of CI, CII, CIV, and PDHE1α1 were significantly reduced
in the hippocampus of the stress plus injury animals. CV also was
decreased in the cerebellum of the stress plus injury animals. These
results suggest an increased vulnerability of a repeatedly stressed
hippocampus to the detrimental effects of mTBI in terms of ETC
complex expression and activity. Reduced ETC and PDHE1α1
expression are consistent with reports that inhibition or deficits of
mitochondrial ETC complexes are associated with increased ROS
production, increased oxidative damage, and apoptotic cell death
in the hippocampus after TBI (55–61). These findings corrobo-
rate the observations of Opii et al. (62) indicating that, following
TBI, several mitochondrial proteins involved in energy producing
pathways are modified or oxidatively damaged in different parts of
the brain, which may eventually cause cell death and brain atrophy
(45). Therefore, the identification of these proteins in response to
stress alone or stress followed by mTBI may provide new insights
into the brain cell metabolic mechanisms and possible therapeutic
interventions after mTBI.

The hippocampus is highly vulnerable to brain injury in both
animal models of TBI and humans with TBI, and the hippocam-
pus volume is also reduced in patients with PTSD (63–65). The
hippocampus undergoes atrophy and contributes to the chronic
memory deficits in the weeks to months following a mTBI (66, 67).
Other studies reported that alterations in hippocampus ETC level
is associated with aging and increased oxidative damage in mice
brains (68) and with Alzheimer’s disease (69), a neurodegenerative
disorder common among TBI patients (70, 71).

Summary
The behavioral and brain protein data support a greater impact
of combined stress plus brain injury than mTBI or stress alone on
neurobehavioral function and brain mitochondrial ETC expres-
sion. Repeated stress exposure prior to TBI potentiated mitochon-
drial ETC subunit expression in the various brain regions and also
potentiated several behavioral effects in rats. These results may
explain the relationship between altered regional brain mitochon-
drial activity and functional outcomes in people with PTSD and
mTBI. Repeated stress could have contributed to the high inci-
dence of long-term neurologic and neuropsychiatric morbidity in
military personnel with mTBI.
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