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In addition to being endogenous, a circadian system must be able to communicate
with the outside world and align its rhythmicity to the environment. As a result of such
alignment, external Zeitgebers can entrain the circadian system. Entrainment expresses
itself in coinciding periods of the circadian oscillator and the Zeitgeber and a stationary
phase difference between them. The range of period mismatches between the circadian
system and the Zeitgeber that Zeitgeber can overcome to entrain the oscillator is
called an entrainment range. The width of the entrainment range usually increases with
increasing Zeitgeber strength, resulting in a wedge-like Arnold tongue. This classical
view of entrainment does not account for the effects of photoperiod on entrainment.
Zeitgebers with extremely small or large photoperiods are intuitively closer to constant
environments than equinoctial Zeitgebers and hence are expected to produce a narrower
entrainment range. In this paper, we present theoretical results on entrainment under
different photoperiods. We find that in the photoperiod-detuning parameter plane, the
entrainment zone is shaped in the form of a skewed onion. The bottom and upper points
of the onion are given by the free-running periods in DD and LL, respectively. The widest
entrainment range is found near photoperiods of 50%. Within the onion, we calculated
the entrainment phase that varies over a range of 12 h. The results of our theoretical study
explain the experimentally observed behavior of the entrainment phase in dependence on
the photoperiod.

Keywords: circadian clock, entrainment, seasonality, oscillator

1. Introduction

1.1. Entrainment
Most living organisms possess an internal clock which enables them to account for the periodically
changing environment due to the Earth’s rotation. The clock has to be sufficiently precise and,
which is sometimes more important, synchronized to the external cues referred to as Zeitgebers.
The process of setting the internal clock by Zeitgebers is called entrainment. Light, being one
of the strongest Zeitgebers, succumbs to seasonal changes which results in seasonal variations of
the light–dark (LD) ratio. The present paper is a systematic investigation of how entrainment of
circadian oscillators is influenced by seasonal variations of the Zeitgeber.

1.2. Seasonality
The first studies of the circadian seasonality go back nearly 50 years ago, see e.g., Ref. (1). The LD
ratio has been identified as one of the factors that influence the phase of circadian entrainment. In
agreement with intuition, the LD ratio close to 12 h:12 h was found to be the strongest Zeitgeber
(2). In the golden hamster, the phase of entrainment was measured in dependence on the Zeitgeber
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period T for different LD ratios (3), suggesting that phase of
entrainment is more sensitive to variations of T for shorter
LD values. Latitude-dependent LD effects in Drosophila auraria
were reported in Ref. (4), including differences in phase-response
curves and the dependence of the entrainment phase on the
photoperiod. In fruit flies, it has been found that the morning and
evening activity is controlled by two distinctive sets of neurons (5),
which support the idea of morning and evening oscillators (6).

More recently, an in-depth study of entrainment of Neurospora
crassa under different photoperiods resulted in a three-parameter
“circadian surface” (7). Using three different strains with free-
running periods of τ = 16.5 h, τ = 22.5 h, and τ = 29 h, the phase
of entrainment wasmeasured for Zeitgebers of different LD ratios.
On the molecular level, differences between responses to vary-
ing photoperiods were recently documented (8). The SCN - the
central circadian pacemaker in mammals - showed a break up
of synchronization under long photoperiods, but synchronization
was re-attained after the transition to short days by advancing the
decline of the expression of clock genes (8).

Those studies of seasonality were paralleled by computational
modeling of circadian systems under Zeitgebers of different
amplitudes, periods, LD ratios, and the proportion of the twilight
within a day (9). Numerical calculations revealed that the LD ratio
shifts the phase of entrainment in a direction which depends on
whether the organism is day- or night-active. Another theoretical
approach to the studies of phase of entrainment under different
photoperiods was to use a simple piece-wise linear PRC model in
Ref. (6). Themain result was that the activity onset (dusk for night-
active anddawn for day-active organisms) can be conserved across
a variety of photoperiod conditions. In addition, a large body of
the behavior of entrainment phase for different photoperiods and
PRC types was produced and thoroughly analyzed (6).

1.3. Arnold Tongue
Graphically, entrainment is represented by the Arnold tongue - a
triangular region on the “Zeitgeber period - Zeitgeber strength”
parameter plane, see Ref. (10–12), compare also Figure 1A.
Within the tongue, Zeitgeber enforces its period in the circadian

system. When entrained, the phase of the circadian system
assumes a stable relation to the phase of the Zeitgeber in such a
way that ψ - the difference between those two phases - assumes a
stable value. The range of period detunings between the Zeitgeber
and the circadian systemwhere entrainment occurs is called range
of entrainment. Larger Zeitgeber strengths often lead to larger
entrainment ranges which results in the characteristic wedge-like
shape of the tongue. Within the Arnold tongue, the structure
of the isophases has been determined (13), thus making possi-
ble to understand how the phase of entrainment changes under
variations of Zeitgeber strength and period.

The classical Arnold tongue depicts the entrainment region in
dependence on the effective Zeitgeber strength. When consider-
ing entrainment by Zeitgebers with different LD ratios, it is often
unclear what the effective Zeitgeber strength is under varying
LD ratio. Intuitively, one can expect that Zeitgebers with very
short or very long light phase should be less potent in entrain-
ing the circadian system than a Zeitgeber with a LD ratio close
to 12 h:12 h. In this manuscript, we quantify this intuition and
compare it to previously published data on entrainment under
different seasonal conditions (3, 14, 15).

1.4. Arnold Onion
Our main result is the existence of the onion-shaped entrainment
zone on the photoperiod-detuning parameter plane, compare
Figure 1B. Both tips of the entrainment onion point to free-
running periods in complete darkness τDD or constant light τLL.
Thewidest part of the entrainment range is close to the equinoctial
photoperiod. The onion entrainment region is skewed to the right
or to the left depending on whether τLL is larger or smaller than
τDD. Within the entrainment onion, we calculated the phases of
entrainment, thus quantifying the claim by Aschoff (1) on the
dependence of the entrainment phase on the photoperiod. The
skewness of the entrainment onion makes possible achieving all
possible phases of entrainment by changing photoperiods. Even
for a constant mismatch τ −T, i.e., for vertical cross-sections
of the Arnold onion, large variations of entrainment phases are
found.

FIGURE 1 | (A) 1:1 synchronization region in the Z1 −T parameter plane
(1:1 Arnold tongue). Dotted, bold, and dashed black lines denote bifurcation
curves of periodic solutions as determined by a continuation method for
different photoperiods κ=0.25, κ= 0.5, and κ=0.75. Phases of the
solutions in the 1:1 synchronization regime to equinox photoperiods (i.e.,
κ= 0.5) are color-coded. (B) 1:1 Entrainment range (Arnold onions) and

color-coded phases in the κ–T-plane given a Zeitgeber strength of
Z1 = 0.1. Dashed lines denote the corresponding photoperiods κ= 0.25,
κ= 0.5, and κ= 0.75. Simulations for both Figures relied on the
parameters τ = 24 h, λ= 0.5 h−1, and A= 1. The color-coded phases in
the entrainment regions were determined by a “brute force integration
method” as described in Section 2.3.
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2. Materials and Methods

2.1. Mathematical Model
In this paper, we use as an illustrative, conceptual model of the
circadian clock, the generic amplitude–phase-oscillator

dr(t)
dt = λ r(t) (A− r(t)) ,

dφ(t)
dt = 2π

[
ε cos2(φ(t)/2) + c(ε, τ)

]
,

(1)

given in polar coordinates. Here, r(t) is the radial component
while φ(t) describes the phase evolution. The model depends on a
small set of generic parameters, namely the oscillator amplitude
A, the amplitude relaxation rate λ, and the intrinsic period τ .
The parameter ε controls the phase velocity dφ(t)

dt : for ε= 0 h−1,
the angular velocity dφ(t)

dt is constant along the whole limit cycle,
and for ε ̸= 0 h−1, the limit cycle has sections of faster and slower
changing dφ(t)

dt (16).
The internal period τ of system (Eq. 1) can be defined bymeans

of the time required for φ(t) to change by 2π, i.e.,

τ := 2
π∫

0

dφ
φ̇(t) =

1√
c(c+ ε)

. (2)

It can be noticed that τ generally depends on the choice of c and
ε. For the sake of tunability, we have chosen the offset c(ε, τ ) as

c(ε, τ) :=
√
τ−2 + ε2/4 − ε/2 , (3)

such that the internal period τ in system (Eq. 1) can be freely
chosen for any given value of ε. If Eq. 1 adopts a uniform phase
velocity φ̇(t) = 2π/τ for ε= 0, the model is commonly known as
the Poincaré oscillator (11, 17, 18).

2.2. Zeitgeber Input Function
Equation 1 can be transferred into Cartesian coordinates using
the definitions x(t):= r(t) cos(φ(t)) and y(t):= r(t) sin(φ(t)).
Including an additive Zeitgeber term, Eq. 1 then reads

dx(t)
dt = fx(x(t), y(t)) + cos(α)Z(t),

dy(t)
dt = fy(x(t), y(t)) + sin(α)Z(t),

(4)

where Z(t) is a scalar T-periodic Zeitgeber function.
An explicit representation of the vector field f⃗(⃗x(t)) :=

(fx(x(t), y(t)), fy(x(t), y(t)))T is given by Eq. 4 in Section S1.1
in Supplementary Material. Finally, α denotes the “direction”
of the perturbation of amount Z(t) that is applied to the vector
field f⃗(⃗x(t)). We define this direction by means of the azimuth
α in the polar plane. Using the relations cos(α+ π)=−cos(α)
and sin(α+π)=−sin(α), we can deduce that a phase-shift of
π (or 180°) in the direction α of the perturbation is tantamount
to substituting Z(t) by −Z(t). We will use this relation for the
interpretation of Figure 2A as well as Figures S2 and S4A in
Supplementary Material.

In analogy to common Zeitgeber signals under laboratory con-
ditions, we investigate the entrainment of the Poincaré Oscillator
to square-wave cycles. Such binary Zeitgeber can be written as

Z⊓(t) :=


Z1 ∀t : t mod(T) ≤ κT

0 elsewhere
(5)

where we define the photoperiodκ :=
TZ1
T ∈ [0, 1] as the duration

of the phase TZ1 with an active Zeitgeber signal (i.e., Z(t)=Z1)
divided by the period T of one Zeitgeber cycle. The photoperiod
parameterκ thus represents the relative duration of the light phase
during the day, i.e.,

κ =
LL

LL + DD .

Equation 5 inevitably leads to discontinuities of Z⊓(t) at all
time points of changing Zeitgeber intensity. For the sake of the
numerical stability of continuation methods applied below, we
substitute the piece-wise linear Zeitgeber function (Eq. 5) by a
continuous approximation Z(t), details are given in Section S1.3
in Supplementary Material.

In Section 3.5, we substitute the entrainment signal Z(t) by the
Fourier expansion of the asymmetric square-wave signal Z⊓(t).
The partial sum including the first N summands of the Fourier
series F{Z(t)} can be written as

ZN(t) = Z1 κ +

N∑
k=1

Rk cos(2π k t /T+ ϕ) , (6)

using the abbreviations ϕ:=arctan(−bk/ak) and Rk :=
√
a2
k + b2

k

with the Fourier coefficients ak = Z1
kπ sin(2π kκ) and bk =

Z1
kπ (1 − cos(2π kκ)), see Section S1.4 in SupplementaryMaterial
for a derivation of Eq. 6.

2.3. Numerics
The color-coded entrainment regions of Figures 1, 3B,C, and 5A
as well as the phases in the Figures S4 and S5B in Supplementary
Material were calculated by the following “brute force integration
method”: firstly, after choosing all Zeitgeber and oscillator param-
eters, we integrated system (Eq. 4) in Cartesian coordinates for
the period of 105 entrainment cycles T using the SCIentificPYthon
function odeint. After that, we determined whether the oscillator
is entrained to the Zeitgeber signal by the following procedure:
We take the state x⃗0 of the system at the beginning of the 85th
entrainment cycle and determine the recurrence times tn, n= 0,
. . . , Nmax, to state x⃗0 for all times t > 85T. We assume that
the system has returned to the state x⃗0, if it has entered a small
neighborhood of x⃗0 in state space, defined by an ϵ-ball Bϵ(⃗x0) :=

{⃗x ∈ Rdim(x⃗0) : ||⃗x − x⃗0 ||2 < ϵ} with ϵ= 0.01 (such that it can
return at all, given the inaccuracies of numerical integration). If
the recurrence times do not change over time (i.e., |tn+1 − tn| <
δ with δ being small) and, on top of that, constitute a rational
multiple of the Zeitgeber period T, we consider the oscillator
entrained. Finally, we define the phases of x(t) and y(t) of the
entrained oscillator based on the time a given variable needs to
reach a local maximum after the onset of light.
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FIGURE 2 | (A) Free-running period τ as a function of the intensity Z1 of a
constant forcing signal, i.e., Z(t)=Z1 for all times t, which is equivalent to setting
κ to one in Eq. 5. (B) Dependence of the entrainment region on varying
intensities Z1 of a rhythmic Zeitgeber Z(t) as defined by Eq. 15 in Section S1.3 in

Supplementary Material. A Zeitgeber steepness of S= 100 was used.
Simulations were done for a (uniform) Poincaré oscillator with parameters
ε= 0 h−1, A= 1, and λ= 0.5 h−1. A three-dimensional representation of
(B) can be found in Figure S3 in Supplementary Material.

FIGURE 3 | (A) Plotted are the Fourier coefficients Rk(κ) of order k= 1, 2, 3, 4
from the Fourier decomposition (Eq. 6) of the asymmetric square-wave signal
(Eq. 5). (B,C) Entrainment regions in the κ− t parameter plane. Gray areas
denote these entrainment regions as determined by the “brute force integration
method” as described in Section 2.3. Dashed black lines denote the
entrainment border for system (Eq. 4), driven by the rectangular Zeitgeber signal

Z(t) from Eq. 15 in Section S1.3 in Supplementary Material, using a Zeitgeber
steepness of S=100. Bold colored lines denote the borders of entrainment of
the same system (Eq. 4) in case it is driven by the sum of the zeroth and k-th
Fourier mode from the Fourier expansion (Eq. 6). Zeitgeber and oscillator
properties are given by Z1 = 0.1, and T= 24 h as well as A= 1, λ= 0.5 h−1,
and ε= 0 h−1, respectively.

Apart from this “brute force integrationmethod,” we also calcu-
lated the borders of entrainment, which are given by bifurcations
of the system (Eq. 4). For this purpose, we used two different
Continuation software packages: Figure 2A as well as Figures S2,
S3, S4A, and S5A in Supplementary Material rely on computa-
tions done with XPP-AUTO (19). All other bifurcation lines in
Figures 1, 2B, 3B,C as well as Figure 5Awere computed bymeans
of AUTO-07p (20, 21).

3. Results

Circadian clocks are endogenous pacemakers, generating oscilla-
tions of certain physiological processes with a period of approxi-
mately 24 h. One of the central properties of these rhythms is their
persistence under constant environmental conditions, i.e., with-
out fluctuating external influences at diel frequency. However,
constant environmental conditions are rather the extreme excep-
tion in nature. Thus, to pace the rhythmic endogenous processes
with the period of the Earth’s rotation is of major importance
and was shown to confer a fitness benefit to the organism (22–
24). Rhythmic environmental signals that are able to synchronize
or entrain the circadian system to their own frequency are called
Zeitgeber signals (25).

In case of synchronization, the circadian oscillation of a given
physiological process and the Zeitgeber signal will establish a
stable phase relation ψ, commonly known as the phase of entrain-
ment (POE). If the system synchronizes at all and in such case the
POE will generally be dependent on the intrinsic properties of the
circadian system as well as the waveform, intensity, and period of
the Zeitgeber signal.

In the next sections, we will systematically investigate the
dependency of the entrainment region and the POE on the prop-
erties of the oscillator and the Zeitgeber signal by means of mod-
eling approaches. We will show that entrainment under different
photoperiod bears many similarities with the classical Arnold
tongue picture. The calculated dependence of the POE on the
photoperiod parameter κ and the oscillator’s intrinsic period τ
will complete our study.

3.1. Mathematical Model
Over the last decades, mathematical models have made a deci-
sive contribution to the understanding of the circadian clock-
work among a variety of organisms. While detailed, biochemi-
cally motivated models aim to shed light on the interlocking of
the circadian clockwork’s cogs and levers in a specific biological
context (organisms, cell types, etc.), simple and rather abstract
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conceptual oscillator models can be used to understand generic
features of the circadian system (26).

Following this tradition of modeling in the field of chrono-
biology (9, 27–31), we describe the dynamical properties of the
circadian clock by means of a generic amplitude–phase oscilla-
tor, see Section 2.1 for details. Given in polar coordinates, the
dynamical Eq. 1 define the radial evolution r(t) in time (i.e., the
time-dependent distance from the origin) as well as the phase
dynamics φ(t) for a given initial condition (r0, φ0). A small set of
only four generic parameters τ ,A, λ, and ε conveniently describes
general features of limit cycle oscillators: While A denotes the
amplitude of the oscillator with internal period τ , the parameter
λ quantifies the rate at which an amplitude perturbation relaxes
back to its stable periodic orbit at radius r⋆ = A. Parameter
ε determines the shape of the oscillations. For ε= 0 h−1, Eq. 1
reduce to a system of uniform phase velocity which is commonly
referred to as aPoincaré oscillator (17). For ε> 0 h−1, we introduce
a non-uniformity of the phase velocity: on the periodic orbit, there
are stretches of a larger and smaller instantaneous phase velocity
dφ(t)

dt . We can thus tune the shape of the resulting oscillations
(when viewed in Cartesian coordinates) ranging from sinusoidal
(ε= 0 h−1) to more and more spike-like oscillations (ε> 0 h−1),
compare also Ref. (16).

3.2. Entrainment
Throughout this paper, we consider the effect of a given Zeitgeber
by means of a scalar function Z(t) that forces the system along
a certain direction (e.g., the x- or y-axis) in the phase-plane, see
Eq. 4. Recently, it was demonstrated that oscillators with low
amplitudes A and relaxation rates λ can be more easily entrained
by a rhythmic Zeitgeber Z(t) in comparison to oscillators with
large A and λ (32). Based on this differential responsiveness to
a certain Zeitgeber signal, we will term oscillators with a large
entrainment region “weak” oscillators while terming oscillators
with a narrow entrainment region “strong” oscillators.

As already discussed above, the strength, period, and waveform
of a Zeitgeber signal will determine if an oscillator will entrain
or not. Figure 1A shows the region of 1:1 synchronization in the
parameter plane of Zeitgeber intensity Z1 and period T. A square-
wave Zeitgeber signal with equal periods of light and darkness was
assumed to act on a uniform Poincaré oscillator with ε= 0 h−1,
A= 1, λ= 0.5 h−1, and an intrinsic period of τ = 24 h. The phases
of entrainment, which were normalized to values between 0 and
1, are color-coded. As intuitively expected, narrow entrainment
ranges can be observed for a Zeitgeber signal of low strength Z1.
The entrainment range successively gets broader with an increas-
ing Zeitgeber intensity Z1, thus leading to a triangularly shaped
structure called Arnold tongue. The tip of this Arnold tongue lies
for Z1 = 0 at a point defined by a vanishing period mismatch (i.e.,
τ −T= 0).

Since the effective Zeitgeber strength scales reciprocally with
the oscillator amplitude (13), we can interpret the effect of a low
or high Zeitgeber intensity Z1 in analogy to the behavior of a
strong or a weak oscillator, respectively. Thus, it follows from
Figure 1A that strong oscillatorswith a small range of entrainment
exhibit a high sensitivity of their phases of entrainment to the
period mismatch τ −T. Analogously, weak oscillators with a large

range of entrainment exhibit a low sensitivity of their phase of
entrainment.

The discrimination of weak and strong oscillators was used
in Ref. (32) to interpret experiments on the tissue level but can
even be applied to interpret entrainment data on the organis-
mic level. For example, a comparative study on literature data
by Aschoff and Pohl revealed that mammals and birds have a
rather narrow entrainment range accompanied by a high sen-
sitivity of the entrainment phase ψ in comparison to insects,
plants, and unicellular organisms (3). These differences could
either reflect a differential response to a given Zeitgeber signal
or could point to different oscillator properties of the underlying
circadian clocks.

An attractive hypothesis to explain such differences in entrain-
ment ranges and phase sensitivities relies on the effect of mutual
coupling among clock neurons in the mammalian and avian cir-
cadian system. In contrast to unicellular organisms and plants,
vertebrates have a highly centralized organization of their circa-
dian master clock, consisting of multiple, densely packed neurons
which are thought to mutually couple via neurotransmitters like
GABA, VIP, or AVP (33). However, it was shown theoretically that
coupling between autonomously oscillating systems can lead to an
amplitude expansion as well as an enhancement of the relaxation
rates of the oscillators. It can thus reduce the entrainment range of
the coupled system in comparison to the behavior of the single
oscillators (32, 34). Along these lines, coupling between clock
neurons could be the essential difference that explains the nar-
rower entrainment range and higher sensitivity of ψ with respect
to varying period mismatches τ −T in mammals and birds. It
shall be noted, that the above interpretation for ensembles of cells,
which is supported e.g., by entrainment data in Ref. (3, 32), solely
holds true where the dynamical behavior of the whole network
of coupled oscillators can be approximated by a single-oscillator
model. The interpretation of certain other experimental findings
might demand the consideration of the underlying network orga-
nization: one example is an enhanced sensitivity to Zeitgeber sig-
nals during an increasing ensemble amplitude of neuronal activity
in a population of clock neurons after short-day entrainment in
mice (35). A similar boost of phase-shift capacity after short-day
entrainment was found in hamsters (36). These findings, at a first
glance counterintuitive in the light of the differences between
strong and weak oscillators, could indicate yet to be clarified
network mechanisms.

3.3. Effects of a Varying Photoperiod
So far, we have discussed the impact of varying Zeitgeber intensity
and period mismatch on the entrainment properties of the cir-
cadian clock. Organisms living distant from equatorial latitudes
are also subject to seasonal changes in the duration of light they
receive per day.We now investigate, using ourmodeling approach,
the effect of varying light duration by changing the fraction κ
of one Zeitgeber period T in which the Zeitgeber signal is active
(i.e., Z(t)=Z1), see Section 2.2 and Section S1.3 in Supplementary
Material for technical details. Throughout the rest of this paper,
such fraction κ, which is also termed duty cycle in the context of
electrical engineering, will be used as synonym for the photope-
riod. The photoperiod κ can take values between 0 and 1 and
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the extremal values κ= 0 and κ= 1 are equivalent to constant
darkness or constant light conditions, respectively.

Figure 1B investigates the region of entrainment in the κ−T
parameter plane for a maximal Zeitgeber intensity of Z1 = 0.1,
using the same set of oscillator parameters as in Figure 1A (i.e.,
ε= 0 h−1, A= 1, λ= 0.5 h−1, and τ = 24 h). In the first place, one
notices that the entrainment region adopts an oval, onion-shaped
geometry. Such region that we will term Arnold onion in the
following, has its widest range of entrainment near the equinoctial
photoperiods at κ= 0.5. It gets narrower for photoperiods dif-
fering from equinox and tapers toward extremer photoperiods.
The tips of the onion point to entrainment periods T that are
given by the free-running periods of the oscillator under constant
darkness (τDD) or constant light (τLL), respectively. Thus, the
Arnold onion will be tilted (i.e., there is no symmetry along the
κ-axis) in any case where the difference∆τ = τLL − τDD does not
equal 0.

The Arnold onion represents the main finding of this paper.
We continue the manuscript by explaining the following aspects:
(i) what determines the tilt of the onion, i.e., whether the onion is
skewed toward left or toward right, (ii) what makes the Arnold
onion open and close again under change of the photoperiod
and how this can be related to the properties of the classical
Arnold tongue, and (iii) what is the distribution of the phase of
entrainment ψ within the onion.

3.4. Free-Running Periods Determine the Tilt of
the Arnold Onion
The influence of a certain Zeitgeber signal can be interpreted as a
parametric change in the circadian clocks dynamical system, i.e.,
a time-dependent change of its set of parameters. Changes in the
intensity of a constant environmental signal that can potentially
act as a Zeitgeber will thus most probably lead to changes in the
oscillation periodwhenever its parametric effects are not compen-
sated or balanced out. A large body of data has accumulated, show-
ing for a variety of organisms that the free-running period under
conditions of a constant light generally depends on the intensity
of the illumination (37, 38). Whether such parametric changes
lead to an increase or decrease of the free-running period for an
increasing light-intensity generally depends on the specificities
of the organism under investigation. Aschoff was the first who
noticed that day-active animals and green plants typically shorten
(τLL < τDD) while night-active animals lengthen (τLL > τDD) their
free-running period with an increasing intensity of illumination
(37). Only few exceptions have been found to this rule which
is now known as Aschoff ’s Rule (39). According to this rule, we
expect that the Arnold onions of night-active animals like mice
will be tilted to periods larger than their spontaneous frequency
τDD under constant darkness. Analogously, Arnold onions of day-
active animals and plants are expected to be tilted the other way
around.

Since the tips of the Arnold onion are given by the free-running
periods τDD (the lower tip) and τLL (upper tip), the tilt of the
onion depends on the relation between those free-running peri-
ods. Figure 2A shows the dependency of the free-running period
τLL of a uniform Poincaré Oscillator (i.e., ε= 0 h−1) to changing
intensities of a constant forcing signal Z(t)=Z1 for all times t.

The effect of a forcing signal is defined as an additive perturbation
along the x-axis like before [i.e., α= 0 in Eq. 4]. If we take Z1 = 0
as the nominal parameter value under constant darkness, a steady
increase of the free-running period can be observed for steadily
increasing Zeitgeber intensities with Z1 > 0. The only exception is
a small range of high Zeitgeber intensities Z1 ≫ 0 close before a
further increase would lead to arrhythmia (damped oscillations)
by driving the system through an Andronov–Hopf bifurcation.
Therein, we can observe a decline of the free-running period with
an increasing Zeitgeber intensity, see Figure S2 in Supplemen-
tary Material. In general, the steepness of such light-intensity-
dependent changes of the free-running period is strongly depen-
dent of the oscillator properties. UniformPoincaré oscillators with
higher radial relaxation rates λ or lower amplitudes A exhibit a
steeper increase in τLL upon changing Z1 compared to oscillators
with small values of λ and high values of A, respectively, compare
Figures S2A,B in Supplementary Material.

The effects of the maximal Zeitgeber intensity Z1 on the shape
of the Arnold onion are investigated in Figure 2B. There, the
entrainment regions in the κ−T parameter plane are plotted for
different Zeitgeber intensities Z1. As expected from the depen-
dency of the free-running period τLL on the Zeitgeber inten-
sity Z1, see Figure 2A, we can observe an increasing tilt of the
Arnold onion for increasing values of Z1. Since the width of
the entrainment range of a self-sustained oscillator is usually
positively correlated with the amplitude of its entraining Zeitge-
ber signal (see, e.g., Figure 1A), we see, apart from a larger tilt
also a broadening of the Arnold onion with increasing Zeitgeber
strength.

A peculiarity of the Poincaré Oscillator with ε= 0 h−1 is the
uniform evolution of the oscillators’ phase in time. As a direct con-
sequence, the system yields rotation equivariance. Thus, a rotation
of the Zeitgeber directionα by a certain angle β will lead to exactly
the same solution apart from a phase-shift of magnitude β, see
Section S1.2 in Supplementary Material for further details. This
explains the symmetry in Figure 2A, namely the fact that both
positive and negative constant forcing signals result in increasing
τLL. As described in Section 2.2, negative values of Z1 correspond
to a rotation of the Zeitgeber by β= 180°, thus leading to phase-
shifted solutions with exactly the same period τLL compared to
positive signals Z(t) (corresponding to α= 0°) of a given intensity
|Z1|. Regardless of the direction of the forcing signal, we thus
obtain an increase in the free-running period τLL with increasing
Zeitgeber strength, which mimics the behavior of night-active
animals.

In a simple extension of the model, the rotational symmetry
of the uniform Poincaré Oscillator can readily be broken by
introducing a non-uniform phase evolution as described by Eq.
1 for ε ̸= 0 h−1. Such non-uniform oscillator shows a decrease of
the free-running period for Z1 < 0 and an increase for Z1 > 0 if
a constant forcing signal is applied, see Figure S4A in Supple-
mentary Material. Hence, the corresponding Arnold onions are
tilted toward τLL<τDD for Z1< 0 and into the opposite direction
τLL>τDD for Z1 > 0, see Figure S4B in Supplementary Material.
We are thus able to mimic this general behavior of night-active
animals and day-active animals or plants with one generic oscilla-
tor model, parameterized by a set of only four generic parameters.
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3.5. Explaining the Form of the Arnold Onion
It turns out that the onion-like structure of the entrainment zone
on the “LD ratio-detuning” parameter plane can be explainedwith
the help of the reduction of the system to its phase dynamics
(12). This explanation does not rely on a particular kind of the
oscillating system,whichwe assume to have amost general formof

du⃗
dt = f⃗(u⃗) + z⃗(t), (7)

where u⃗(t) is a N-dimensional state variable, d⃗u
dt = f⃗(u⃗) is the

autonomous (non-perturbed) equation of the circadian oscillator
model and z⃗(t) is an external time-periodic Zeitgeber. It turns out
(12, 13) that the dynamics of the phase difference ψ between the
oscillations of u⃗(t) and the Zeitgeber z⃗(t) is determined by the
circular convolution integral

dψ
dt =

T∫
0

dt ξ⃗(t− ψ)⃗z(t), (8)

where ξ⃗(t) is the infinitesimal phase-response function of the limit
cycle in the unperturbed equation d⃗u

dt = f⃗(u⃗). This convolution
integral can be best understood by recalling that a convolution
in the time domain is equivalent to the product of the Fourier
transforms of the functions ξ⃗ and z⃗ in the frequency domain.

3.5.1. The Case of Sine-Like PRCs
In the case of Eq. 1 with ε= 0 h−1, the phase-response function is
given by ξ⃗(t) = (−sin(ωt), cos(ωt))T, i.e., it has a single Fourier
component at the base frequency ω. By the convolution theorem,
the dynamics of the phase difference will hence be determined
only by the first Fourier coefficient of the Zeitgeber Z(t). In
Figure 3, we present the result of the computation of the Arnold
onion in a direct way compared to the prediction by the first
Fourier mode. Figure 3A shows the dependence of the first four
Fourier modes of a rectangular Zeitgeber in dependence on the
photoperiodκ, note also Eq. 6. There, we see that the first Fourier
mode has its maximum at κ= 0.5 and approaches 0 for κ close
to 0 and 1. Thus, we expect that Zeitgebers with κ close to 0.5
would have the largest influence on the circadian oscillator and,
consequently, would result in a widest range of entrainment. In
Figure 3B, we plot the Arnold onion calculated with the rectan-
gular Zeitgeber with different photoperiodsκ (bold colored lines)
and, for comparison, the Arnold onion calculated using just the
sum of zeroth and the first Fourier mode of the same Zeitgeber
(dashed black lines). Both lines coincide almost perfectly, which
supports our claim that the first Fourier mode of the Zeitgeber
determines the entrainment dynamics in Eq. 1 with ε= 0 h−1.

3.5.2. Higher Order Arnold Onions
So far, we have considered 1:1 entrainment in case of Zeitgeber
periods T that were close to the internal period τ . The same
logic applies for entrainment by Zeitgebers with periods T being
multiples of the endogenous period τ with the only difference
that it is the k-th Fourier mode that matters for entrainment
with T

τ ≈ k for k= 1, 2, . . .. Depending on the photoperiod

κ, the k-th Fourier mode of the rectangular Zeitgeber has k+ 1
zeros, compare Figure 3A. The corresponding entrainment zones
are consequently organized as k separate Arnold onions piled
on top of each other, see Figure 3C. The photoperiods κ of
the zero-width entrainment range are given by the values of κ,
where the corresponding k-th Fourier mode has a 0. Higher order
resonances have also been observed experimentally in the context
of circadian entrainment, where the phenomenon is commonly
known as frequency demultiplication (7, 40, 41).

3.5.3. Beyond Sine-Like PRCs
Even if the PRC of the oscillator contains more than one Fourier
mode (as it is the case in Eq. 1with ε ̸= 0 h−1), we can still apply the
convolution theorem to Eq. 8. For a constant Zeitgeber, be it a 0 as
in the case of a DD regime or a positive constant as in the case of a
LL regime, all Fourier modes save the zeroth, are equal to 0, thus
making no contribution to the dynamics of the phase difference ψ
in Eq. 8. Thus, we expect that even for a general non-sine-like PRC
and an arbitrary Zeitgeber with a seasonally driven periodicity, the
entrainment zonemust close in an onion-likemanner atκ= 0 and
κ= 1.

3.6. Entrainment Phases Under Varying
Photoperiods
Possessing an intrinsic period τ that enables the synchronization
to environmental Zeitgeber signals allows the circadian clock to
pace physiological processes with daily environmental cycles of
light and temperature. In the synchronized state, it is actually
the phase of entrainment ψ that schedules diurnal physiological
processes within the temporal structure of a solar day. From an
evolutionary point of view, parameters that influence the value
of ψ are thus expected to be open to evolutionary adjustment or
natural selection. Our current theoretical considerations allow us
to study the phase of entrainment ψ inside the Arnold onions, i.e.,
for different values of period mismatches and photoperiods.

We have shown in Section 3.2 that the entrainment range of
a given self-sustained oscillator which is subject to a periodic
Zeitgeber signal broadens with an increasing Zeitgeber strength
Z1. Interestingly, it is found that, regardless of the Zeitgeber
strength, the phase of entrainment ψ can vary only within a
range of approximately 180° across the entrainment interval of a
classical Arnold tongue (13). Consequently, the sensitivity of the
phase ψ to changes in the period mismatch τ −T gets smaller
with increasing Zeitgeber intensities, see Figure 1A. Since we
have proven in the last section that a rectangular Zeitgeber has
its largest impact at equinoctial photoperiods (κ= 0.5), we expect
the phase-sensitivity on the inside of a given Arnold onion to
be smallest at κ= 0.5 while it should get larger the further we
get away from equinox. This theoretical expectation is confirmed
numerically by Figure 4, where we have plotted the phase of
entrainment versus the period mismatch for equinoctial (κ= 0.5)
as well as extremely short (κ= 0.05) and long (κ= 0.95) photope-
riods. Interestingly, such behavior can also be found in experi-
mental studies using golden hamsters (Mesocricetus auratus) (3).
When forced by light–dark cycles of different periodsT, these ani-
mals show a relatively wide range of entrainment and a low phase-
sensitivity for equinoctial photoperiods κ= 0.5. In contrast, a
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FIGURE 4 | Entrainment phases ψ as a function of the period
mismatch τ −T between the intrinsic oscillator period τ and the
Zeitgeber period T for different photoperiods κ. The curves correspond
to horizontal cross-section of Figure 1B at the ordinate positions κ= 0.05,
κ=0.5, and κ=0.95, respectively; i.e., the same Zeitgeber intensity Z1 and
oscillator properties ε, A, λ, and τ were used as those underlying the
simulations in Figure 1B.

high phase-sensitivity accompanied by a narrow range of entrain-
ment could be observed for extremely short photoperiods where
a 1 h light-pulse per Zeitgeber period T was applied.

Figure 5A shows the Arnold onions in the photoperiod (κ) –
internal period (τ ) parameter plane for two different maximal
Zeitgeber intensities, namely Z1 = 0.05 and Z1 = 0.1. Please note
that a right-tilted Arnold onion in the κ−T parameter plane
appears as a left-tilted onion in the κ− t parameter plane and
vice versa. Hence, Figure 5A shows an oscillator with τLL>τDD
and owing to Aschoff ’s rule is representative for night-active
animals. Again, the amount of tilt and the entrainment region is
determined by the maximal Zeitgeber intensity Z1 - the larger tilt
and entrainment region is generated by a larger Z1.

In Figure 5B, we show the entrainment phase ψ in dependence
on the photoperiod κ for three sections through the Arnold
onion for Z1 = 0.1, which are denoted as vertical dashed lines in
Figure 5A. The difference between the sections is the choice of
the internal period τ . The variation in the internal periods can be
interpreted as different period phenotypes of the same organism,
either describing natural variation or specific clock mutants. In
the first case with τ = 22 h, the vertical line crosses just one side
of the onion and the entrainment phase does not span a 12 h
range as discussed in Ref. (13). In the second case with τ = 26 h,
the situation is mirrored: the line crosses the right border of the
onion and the entrainment phase varies again within a range
smaller than 12 h. With τ = 23.5 h, however, both borders of the
onion can be reached by varying κ and the entrainment phase
spans a broader range of values, appearing above as well as below
the L to D transition in Figure 5. In this case, under variation
of the photoperiod κ, the phase of entrainment spans a range
considerably larger than 12 h. We additionally note that since it
is the difference between the periods τ −T that determines the
form of the Arnold onion, similar results can be obtained with a
constant τ , but rather different Zeitgeber periods T.

4. Discussion

Our main finding in this manuscript is the concept of the Arnold
onion, which formalizes the notion of entrainment of circadian
systems under different photoperiods. Using a generic model of
the circadian clock we provided theoretical evidence that the
entrainment region in the photoperiod (κ) – Zeitgeber period
(T) parameter plane constitutes an onion-shaped geometry, see
Figure 1B. This Arnold onion has its widest entrainment range
close to equinox and tapers for extreme photoperiods toward
the free-running periods τLL and τDD under constant conditions.
From this it follows that the Arnold onion is tilted, whenever the
free-running period under a constantly active forcing signal (τLL)
is considerably different compared to its period under a constantly
inactive forcing signal (τDD), i.e., ∆τ = τLL − τDD ̸= 0, see e.g.,
Figure 2. Owing to Aschoff ’s rule, we thus expect a left-tilted
Arnold onion in case of diurnal animals or plants while expecting
a right-tilted Arnold onion for nocturnal animals. This proposed
behavior is confirmed by a numerical study of the Arnold onions
from a previously published molecular model of the plant model
organism Arabidopsis thaliana, see Figure S5 in Supplementary
Material.

A direct implication of the tilt of the Arnold onion is that the
entrainment range along the photoperiodic axis is not symmetri-
cal around equinoctial photoperiods (κ= 0.5). If the entraining
period T is closer to τDD than to τLL, then the oscillator will better
entrain to extremely short photoperiods than to extremely long
photoperiods and vice versa if T is closer to τLL. This theoretical
prediction is consistent with experimental findings in a set of
organisms (14, 15). For example, it was found that the drinking
behavior of squirrel monkeys (Saimiri sciureus) remained syn-
chronized with the 24 h rhythms of light pulses even for extremely
short photoperiods while the new world monkeys were not able
to entrain to photoperiods longer than 21 h (i.e., LD21:3 or
κ= 0.875) (15).

Apart from light, temperature cycles can act as Zeitgeber signals
among a variety of organisms and tissues (42, 43). One of the
most striking features of circadian clocks is temperature compen-
sation, i.e., the relative independence of the circadian clocks’ free-
running rhythmunder constant ambient temperatures of different
magnitude, at least inside the physiologically relevant range (44,
45). Since a mismatch between τLL and τDD is a necessary prereq-
uisite for observing a tilt of the Arnold onion, such behavior is not
expected to occur in temperature compensated circadian clocks
with temperature pulses being used as an entrainment cue.

Finally, we investigated systematically how oscillator and Zeit-
geber properties determine the phase of entrainment: Our results
suggest an increasing phase-sensitivity on the period mismatch
τ −T with an increasing distance from equinoctial photoperi-
ods. It is thus expected that variations in the driving period T
lead to larger changes of the phase of entrainment under long
or short photoperiods when compared to equinox. This has
been observed for experimental studies, e.g., in golden hamsters
(Mesocricetus auratus) or fruit flies (Drosophila pseudoobscura)
(3). Analogously, we can deduce that for a fixed Zeitgeber period
T, small variations of the internal period τ will have an increasing
impact on the resulting entrainment phase under photoperiods
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FIGURE 5 | (A) Entrainment regions and color-coded entrainment phases
in the κ− t parameter plane are plotted for T= 24 h and two different
Zeitgeber intensities, namely Z1 = 0.05 (blue color-map) and Z1 = 0.1 (red
color-map). (B) Entrainment phases ψ as a function of the photoperiod κ

for different intrinsic periods τ , obtained from the Arnold onion for
Z1 = 0.1. The curves correspond to the vertical cross-sections depicted
by dashed gray lines in (A). Other oscillator parameters were A= 1 and
λ= 0.5 h−1.

that increasingly differ from equinox. On the organismal level, the
phase of entrainment can be associated with the chronotype of an
organism (13). Thus, the distribution of different chronotypes in
a population of a given species is expected to be broader under
extreme photoperiods compared to equinoctial ones. On the tis-
sue level, small variations of the intrinsic oscillator properties, e.g.,
of single neurons, could lead to more dramatic phase variations
under extreme photoperiods when compared to equinox. Given
the experimentally observed differences of the internal period
across different sections in the SCN (46, 47), the higher phase-
sensitivity found by our modeling approach could contribute to
explain the drastic phase heterogeneity of up to 180° under
extremely long photoperiods (48).

From an evolutionary point of view, the entrainment of the cir-
cadian clock by rhythmic Zeitgeber signals is ofmajor importance.
It allows an organism to phase-lock or schedule (circadian clock
regulated) physiological processes around the day. Daily changes
of environmental cues can thus be anticipated and optimally used.
Furthermore, it opens the possibility to use the time of the day
as an ecological niche (49). However, apart from adaption to
daily environmental changes, organisms also adapted to seasonal
changes of environmental properties. A plethora of physiological
processes among a variety of organisms have been reported to
react on changes in day-length, a phenomenon commonly known
as photoperiodism: it has been shown that the photoperiod affects
the growth and development of plants and triggers their onset of
flowering (50, 51), triggers the induction of diapause in insects
(52), and has an impact on the reproduction and the onset of
hibernation in mammals (53–55). Erwin Bünning pioneered the
proposition that it is also the circadian clock that tracks seasons
by sensing the photoperiod (56). A flexible phase of entrain-
ment might confer an advantage with respect to the adaption or
evolutionary adjustment to seasonally changing demands on an
organism. From the viewpoint of the flexibility of the entrain-
ment phase, the Arnold onion offers a richer phase dynamics in
comparison to the classical Arnold tongue. In the latter, the 12 h
range of entrainment phase is achieved only by variations along
the horizontal axis, i.e., by changing either the internal period τ
or the Zeitgeber period T, see Ref. (16). In the case of the Arnold
onion, variations both in periods τ and T as well as variations in

the photoperiodκ can lead to variability of the entrainment phase
even beyond the range of 12 h.

Throughout our studies, we investigated the effect of varying
photoperiods among Zeitgeber signals that switch in a binary
fashion between states of high (Z(t)=Z1) and low intensities
(Z(t)= 0). This can only be reached under laboratory conditions.
Organisms living under natural environmental conditions are
usually faced with complex twilight transitions, photoperiods,
and variances of light-intensity and quality due to weather. All
these properties vary in a latitude- and altitude-dependent fashion
while seasons pass (57). Additionally, gating phenomena on the
molecular or behavioral level can influence the effective Zeitgeber
strength a given organism can process. It has been shown, for
example, that the light input pathway in plants is regulated by the
circadian clock itself (58, 59)while sleeping behavior or burrowing
can limit the amount of light received by mammals (60).

A certain amount of care should be taken with the interpre-
tation of the dynamics on large networks of coupled oscillators:
our current analysis applies to a cluster of synchronizing cells
where the group behavior can be approximated by the average,
i.e., when the coupling is strong, the network connections are
isotropic and the population is homogeneous. Any deviation from
the average behavior would imply a particular structural quality of
the network. Electrophysiological (35, 61) as well as reporter gene
(46, 48) data suggest a redistribution of network properties and
organization under varying photoperiods in the suprachiasmatic
nuclei of mice. This in turn is likely to affect the sensitivity of
the whole network to Zeitgeber signals, thus potentially altering
the effective Zeitgeber intensity. However, our current work does
help set a theoretical baseline so we can pick up the unique
bias in a given network. Furthermore, it still yields an attractive
explanation for organismal data as given, e.g., in Ref. (3, 14, 15).

Finally, it should be noted that although light appears to be the
most important Zeitgeber in most animals and “higher” plants,
a variety of other signals like temperature cycles (42, 59) or
odor (62) can additionally act as an entrainment cue. Since the
importance of the individual Zeitgeber signals relative to each
other is not known yet, an integrative view on the entrainment
given all these entrainment cues at parallel remains challeng-
ing. If any of the above mentioned phenomena impacts the
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effective Zeitgeber strength in a photoperiod dependent manner,
the resulting onion-shaped geometry might differ from its rather
symmetric shape as depicted in Figure 1B (e.g., broader ranges of
entrainment under short-day compared to long-day conditions or
vice versa). However, an analysis of these complex yet interesting
variations in the effective Zeitgeber signal a given organism can
sense will be subject of future investigations.
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