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Hundreds of millions of U.S. dollars are invested in the research and development of 
a single drug. Lead compound development is an area ripe for new design strategies. 
Therapeutic lead candidates have been traditionally found using high-throughput in vitro 
pharmacological screening, a costly method for assaying thousands of compounds. 
This approach has recently been augmented by virtual screening (VS), which employs 
computer models of the target protein to narrow the search for possible leads. A vari-
ant of VS is fragment-based drug design (FBDD), an emerging in silico lead discovery 
method that introduces low-molecular weight fragments, rather than intact compounds, 
into the binding pocket of the receptor model. These fragments serve as starting points 
for “growing” the lead candidate. Current efforts in virtual FBDD within central nervous 
system (CNS) targets are reviewed, as is a recent rule-based optimization strategy in 
which new molecules are generated within a 3D receptor-binding pocket using the 
fragment as a scaffold. This process not only places special emphasis on creating 
synthesizable molecules but also exposes computational questions worth addressing. 
Fragment-based methods provide a viable, relatively low-cost alternative for therapeutic 
lead discovery and optimization that can be applied to CNS targets to augment current 
design strategies.

Keywords: fragment-based drug design, CNS, dopamine, structure, target

introduction

The cost of developing and bringing a single successful drug to market approaches one billion dollars, 
and the process requires on average 12  years to accomplish. Even after FDA approval, only one 
in five medications is eventually profitable (1). The preclinical evaluation process is estimated to 
be 32% of the total cost of drug design (2). The recent economic recession forced pharmaceutical 

Abbreviations: ADME, absorption, distribution, metabolism, and elimination; FBDD, fragment-based drug design; GPCR, G 
protein-coupled receptor; LBDD, ligand-based drug discovery; MCSS, multiple-copy simultaneous search; MCT, MedChem 
Transformations; MOE, molecular operating environment; NMR, nuclear magnetic resonance; QSAR, quantitative structure–
activity relationship; SBDD, structure-based drug discovery; SDM, site-directed mutagenesis; SERT, serotonin transporter 
protein; VHTS, virtual high-throughput screening; VS, virtual screening.
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companies to drastically limit research expenses, and while 
outsourcing is an option carrying benefits and liabilities (3), 
development of new, more cost-effective drug design methods is 
a priority. Central nervous system (CNS) disorders are logical foci 
for such new strategies; the increasingly geriatric population is 
more susceptible to Alzheimer’s disease, Parkinson’s disease, and 
ischemic stroke (4). Mental health disorders such as depression 
are effectively treated with existing therapeutics only a fraction 
of the time; much of the population is unresponsive or plagued 
with adverse drug effects (5). Among the reviews and discussion 
on structure- and knowledge-based CNS drug design (4, 6–9), 
recent fragment-based drug design (FBDD) literature focusing 
on CNS targets is underrepresented. Application of FBDD to CNS 
targets should provide a new spark for drug design in this area.

what is virtual Drug Design?

Ligand- and structure-based techniques are most commonly 
used in virtual drug design (Figure 1). Ligand-based techniques 
involve comparing candidate ligands to an experimentally veri-
fied ligand for a given receptor, and can be performed without 
knowledge of the receptor’s structure. When a 3D receptor 
structure is available, structure-based drug design (SBDD) is 
an attractive alternative (5). Receptor protein structures are 
experimentally solved through X-ray crystallography or by NMR 
techniques (10). If the target protein of interest has not been 
crystalized, a homology model can be created using as template 
a crystal structure of an evolutionarily similar protein (Figure 2). 
Template crystal structures are available for download from the 
Protein Data Bank1 and the Cambridge Structure Database2. As 
the structures of targets represented by homology models are not 
experimentally verified, one might question how these models 

1 www.rcsb.org
2 http://www.ccdc.cam.ac.uk

FiGURe 1 | Representation of two commonly used drug design approaches. Ligand-based drug design focuses on specific properties of a molecule, 
employing a pharmacophore. Structure-based drug design utilizes the ligand-binding pocket amino acid side chains of the target receptor. Left: ligand-based drug 
design. Spheres indicate the features of the ligand pharmacophore, including pi–pi bond (PiN, orange), hydrophobic (Hyd, green), and H-bond acceptor (Acc, cyan) 
interactions. Right: structure-based drug design. The ligand (blue) is docked in the orthosteric pocket (green cloud) of a G protein-coupled receptor (red).

compare to experimentally known structures. A retrospective 
docking study on the β2-adrenergic receptor (AR) noted the 
usefulness of homology modeling even when a crystal structure 
is known. Crystal structures and homology models based on 
different templates were compared with respect to various con-
formational states. The homology models were found to be more 
useful in differentiating active and inactive compounds and pro-
vided more conformational flexibility, increasing the diversity of 
compounds that could be accommodated by the active site (11).

Another comparison of structures examined dopamine D3 
receptor (D3R) homology models based on β1- and β2-AR crystal 
structures. Both models had comparable VS hit rates and showed 
no bias toward their respective templates (12). Using the D3R-
eticlopride cocrystal (13) as template, we created a D3R model 
lacking the D3 orthosteric antagonist eticlopride. This ligand 
was docked in the D3R model, and its position was compared to 
that found in the crystal structure (Figure 3). The location of the 
docked eticlopride within the model was very similar to its crys-
tallized position (Figures 3A,B). More deviation of the ligand’s 
original position was observed when the β2AR-based D3R model 
was employed [Figure 3C, based on Ref. (12)]. Nevertheless, a 
crystal structure is a static representation of a protein and can-
not account for the multiple conformational states within the 
protein–ligand complex (14). While the structural information 
derived from a crystal structure is useful, it is akin to a “snapshot” 
and cannot fully represent all conformational states of a protein.

Lead Compound Development
A lead compound is the precursor molecule that through modi-
fications becomes the therapeutic drug. The quality of a “lead” 
is important; substandard leads hinder the discovery process 
by unnecessarily diverting resources. Good leads increase the 
likelihood of progressing through later phases of clinical testing, 
justifying the extra effort spent generating such a compound (1).

High-throughput screening (HTS) is a traditional method of 
discovering new lead compounds. A chemical library of thousands 
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to millions of compounds is gathered and pharmacologically 
tested at one or more receptors to identify potential “hits.” The 
assays may assess the compound’s receptor-binding affinity or 
functional response (e.g., Ca2+ channel opening, vasodilation, 
analgesia) (15). HTS is an effective process for identifying lead 
compounds, but the money and time required are typically con-
siderable. Automation is implemented due to the sheer number 
of compounds being screened (16). The associated cost of HTS is 
well beyond what the typical academic researcher can afford, and 
minimally requires a core facility (5).

Virtual screening (VS, also known as virtual HTS or vHTS) 
is an emerging alternative for discovering new lead compounds. 
VS uses computational methods to predict how the compounds 
in a structural (virtual) library would interact with a crystal 
structure representation or homology model of the target 
receptor (17). Compounds in a virtual library are ranked by 
their predicted binding affinities or other criteria (e.g., visual 
inspection or druggability). The top-scoring hit compounds can 
be refined in  silico to improve characteristics, such as binding 
affinity or lipophilicity, before selecting hits to be pharmaco-
logically evaluated. Thus, VS provides a rapid and inexpensive 
“pre-filter” step that can reduce the time and cost associated with 
conventional HTS.

FiGURe 2 | Creation of a human serotonin transporter (hSeRT) homology model. The SERT primary amino acid sequence is aligned with optimal fit with that 
of the x-ray crystal structure template, the dopamine transporter (DAT) protein from the fruit fly Drosophila melanogaster (dark blue). This alignment, combined with 
structural information from the template, is used to create a human SERT homology model (cyan).

Guidelines for identifying Drug-Like Molecules
A landmark 1997 paper on identifying drug-like molecules 
(18) provided guidelines for predicted drug-like properties, 
now known as the Lipinski’s Rule of Five. Molecules with more 
than 5 hydrogen bond donors, 10 hydrogen bond acceptors, 
a molecular weight >500  g/mol, or a LogP value >5 were 
predicted to show poor solubility and permeability (18). The 
Rule of Five was designed to be a filter that could be applied 
to computational methods to predict better starting compounds 
for drug discovery. These serve more as guidelines rather than 
inflexible rules; suitable compounds have been found that did 
not meet every criterion. Still, Christopher Lipinski has stated 
that Pfizer would not pursue compounds that broke two of the 
five parameters (19).

introduction to Fragment-Based 
Drug Design

Fragments in Drug Design
Fragment-based drug design is a process in which new leads are 
developed/identified by sequentially piecing together molecules. 
Fragments are drawn from three sources: known biologically active 

http://www.frontiersin.org/Neurology/archive
http://www.frontiersin.org/Neurology/
http://www.frontiersin.org


FiGURe 3 | Comparing the binding of a GPCR orthosteric antagonist at a homology model vs. crystal structure. (A) Structure of the dopamine D3 
receptor (blue) – eticlopride (green) crystal structure (13). (B) Docking of eticlopride (yellow) into the D3R crystal structure (blue). (C) Docking of eticlopride (yellow) 
into a D3R homology model (red) based on the β2-adrenergic receptor crystal structure (60).
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drugs, natural products, and compounds with novel scaffolds (20). 
Fragments generally have a molecular weight of <250 Da and a 
LogP < 3 (21). An important difference between fragments and 
whole molecules is the typically poor initial binding affinity of the 
former. The fragments are later “grown” into high-affinity ligands 
through the drug design processes described below.

Historically Significant Fragment-Based 
Programs
The use of fragments in rational drug design is a concept 
originating from the late 1980s (Table  1). Among the original 
fragment-based approaches is the GRID program. This compu-
tational approach to SBDD creates a grid within the receptor’s 
ligand-binding pocket. The functional group of a probe molecule 
is placed at each point within the grid and measured for its abil-
ity to interact with the pocket. Grid points of equal interaction 
strength are connected to form a contour map of the binding 
pocket, which allows easy identification of potential regions of 
interest to exploit (22). The multiple-copy simultaneous search 
(MCSS) method was also designed to explore the receptor’s 
ligand-binding pocket (23). The binding site of hemagglutinin, 
part of the influenza virus, was initially probed with thousands of 
fragments simultaneously, followed by energy minimization and/
or quenched molecular dynamics. Fragments were composed of 
three to six atoms with little or no dihedral degrees of freedom, yet 
were complex enough to model the potential interactions within 
the binding site. Points of interest within the binding pocket 
could be identified based on the aggregation of the fragments 
from the minimization and exploited in rational drug design (23). 
This method was further detailed in a second paper in 1993 that 
used MCSS to construct ligands targeting the human immuno-
deficiency virus 1 proteinase (24). The MCSS method fit into a 
three-part strategy of drug design: development of a method to 
identify regions of the binding pocket that interacted favorably 
with the functional group fragments, linkage of the identified 
fragments to form novel ligands, and prediction of high-affinity 
binders among the newly formed structures.

TABLe 1 | Key software advances in FBDD.

Software Year importance Paper

GRID 1985 Ligand-binding pocket mapping with probe 
molecules

(22)

MCSS 1991 Simultaneous search of the binding pocket with 
probe molecules followed by minimization

(23)

LUDI 1992 Focus on hydrogen bonding and linking of 
fragments to form inhibitors

(25)

SPROUT 1993 Incorporation of primary and secondary 
characteristics of the receptor into the ligand 
design process

(26)

SuperStar 1999 Knowledge-based approach using information 
from crystal structures

(27)

MUSIC 2000 Simultaneous search minimization method 
performed within a flexible binding pocket 
created incorporation of molecular dynamics

(28)

In 1992, an automated process to design enzyme inhibitors 
(“LUDI”) was described. This program utilizes the ligand-
binding site of crystal structures and small molecule probes 
to identify ligand–receptor interaction sites. The focus is 
placed on receptor hydrogen bonding ability with the probes; 
the latter are then replaced with fragments that can be joined 
to form novel inhibitors (25). SPROUT, introduced in 1993, 
employs primary and secondary structure characteristics of 
the receptor to generate ligands. Once these characteristics 
are identified, a fragment library can be screened to find 
molecules that match the constraints, which could then be 
combined to form novel compound scaffolds and ranked for 
predicted affinity (26).

The late 1990s brought two additional programs, SuperStar 
and “multi-unit search for interacting conformers” (MUSIC). 
SuperStar models binding pocket interactions using a knowl-
edge-based approach created by studying ligand interactions 
in experimentally solved receptor crystal structures in the 
Cambridge Structural Database. This information is translated 
into a scatterplot, to be used to predict how fragments will 
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TABLe 2 | Comparison of vS fragment libraries.

Fragment library Key feature website

3D Fragment 
Library Consortium

Greater shape diversity http://www.3dfrag.org

AnalytiCon Fragments from natural 
products

http://www.ac-discovery.com

Asinex Minimalistic fragments http://www.asinex.com
ChemBridge Over 6000 compounds, 

rule of 3 (RO3)
http://www.chembridge.com/

ChemDiv Over 14,000 fragments http://www.chemdiv.com
Enamine RO3 http://www.enamine.net
Key Organics Multiple fragment libraries http://www.keyorganics.net
Life Chemicals Multiple fragment libraries http://www.lifechemicals.com
Maybridge RO3 http://www.maybridge.com
Otava RO3 http://www.otavachemicals.

com
Prestwick 
Chemical

Fragments derived from 
known drugs

http://www.
prestwickchemical.com

Vitas-M Labs RO3 http://www.vitasmlab.com
ZINC Combination of various 

commercial libraries
http://zinc.docking.org
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interact with the binding site of the target protein (27). MUSIC 
improved upon the MCSS program introduced by Miranker 
and Karplus. While MCSS was developed for use with a fixed 
binding pocket, MUSIC uses a flexible binding pocket to run 
the multiple-copy simulations. The flexible binding pocket is 
prepared using a pharmacophore, after molecular dynamics 
simulations identify possible conformational changes within 
the receptor (28).

As FBDD moved into the next century, a “rule of three” for 
working with fragments emerged from Jhoti and colleagues. 
Based on their analysis of fragment hits, it was suggested that 
druggable fragments showed three properties: a molecular 
weight under 300 Da, <3 hydrogen bond donors, and a LogP < 3 
(29). This rule has been accepted by many and incorporated 
into the construction of commercial fragment libraries, such 
as ChemBridge and Life Chemicals. Recently, the usefulness 
of this rule of three has been a subject of debate (30, 31). The 
Köster et al. study built and tested a fragment library that was not 
limited to the rule of three. Fifty-five endothiapepsin inhibitor 
hit compounds were identified, 11 of which were crystalized to 
discern how the fragments bound to the enzyme. Fragments 
that did not comply with the rule of three were crystallized more 
frequently than the rule-compliant fragments, suggesting that 
this rule of three could exclude promising lead compounds. 
Another concept that has been reviewed recently is ligand 
efficiency, which tries to quantify the binding energy contribu-
tion of a ligand on a per atom basis (32). Whereas typical drug 
development overemphasizes drug potency in selecting which 
compounds should advance, ligand efficiency also takes into 
account the compound’s molecular size, lipophilicity, shape, 
hydrogen-bonding properties, and polarity. The ligand efficiency 
approach is useful in assessing which fragments should comprise 
the drug; these fragments are unlikely to be detected by affinity 
or potency measurements.

Fragment Libraries
Fragments are pooled to form a fragment library, used by 
structure-based VS methods to identify starting points for lead 
compounds (20). Of the various methods for designing fragment 
libraries (33), structural diversity of the library is key. Fragments 
are advantageous in this respect over whole compounds because 
comparable structural diversity can be achieved with far fewer 
fragments (33). The movement of whole compounds is also 
more likely to be sterically hindered within the receptor ligand-
binding pocket, while fragments are able to easily maneuver in 
this “chemical space” to optimize intermolecular interactions 
(33, 34).

Commercial sources have made their fragment libraries avail-
able to screen in silico. The “ZINC is not commercial” (ZINC) 
database, operated by the University of California, is composed 
of 293 commercially available libraries (35). Alternatively, 
researchers may develop “in house” libraries customized for 
screening a given target. Focused libraries, small subsections of 
molecules that contain desired functional groups or qualities, can 
be created to screen select targets. Virtual fragment screening 
techniques can be employed to filter libraries (36). Table 2 lists 
several libraries that can be used for fragment-based VS. These 

collections were chosen for their accessibility to be screened by 
a researcher, rather than collections that could be screened by 
third party companies. The fragment library used at Vernalis was 
originally composed of vendor catalogs (37). The original 2004 
library was designed to be a general-purpose library that could 
be screened by a variety of targets. Increased emphasis on chemi-
cal diversity was placed on the construction of the library, and a 
molecular fingerprinting method based on 2D three-point phar-
macophores was used to assess the diversity. Many compounds 
were removed from the original library after screening and qual-
ity control, replaced with more complex fragments that carried 
more desirable characteristics. This evolution was considered an 
essential process to keep up with new project demands and the 
availability of new information on the desired targets (37). The 
3D Fragment Consortium, a collaboration of non-profit drug 
discovery groups based in the United Kingdom, argues that tra-
ditional fragment libraries often contain limited shape diversity, 
possibly explaining why some target sites are troublesome for 
trying to identify hit compounds. The consortium is creating a 
chemical library consisting of fragments that have “greater three 
dimensionality” that explore the chemical space, as opposed to 
planar, rigid fragments. While the increased complexity of 3D 
compounds could potentially lower hit compound numbers, 
the group is hopeful that the resulting leads will explore more 
biologically relevant chemical space and lead to better starting 
molecules for drug design (38).

Recent FBDD Strategies
Techniques and strategies utilized in the development of the 
fragment into a lead compound are constantly evolving as new 
concepts are explored and modified. As the name implies, the 
fragment growing strategy is to start with a fragment within 
the receptor’s ligand-binding pocket and allow the fragment to 
expand to interact with the pocket amino acid side chains. A 
second strategy, fragment linking/merging, first positions frag-
ments to optimally interact with the pocket. These fragments are 
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FiGURe 4 | Fragment growth vs. fragment linking. Fragment growth (A–C) extends the fragment (green) to maximize interactions within the binding pocket (TM 
helices in yellow). Fragment linking (D,e) covalently joins (purple) two or more fragments (green) to form a novel-scaffold ligand within the binding pocket (TM helices 
in blue).
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next covalently joined with “filler” atoms or molecules to form 
a single molecule that likely provides a novel chemical scaffold 
(Figure 4). These fragment-based techniques have been applied 
to CNS targets in the pursuit of structure-based lead design. The 
initial step is fragment screening to choose the proper starting 
point; this technique is often referred to as “docking.” VS of a 
fragment library using a computational model of the histamine 
H1 receptor crystal structure (39) yielded docking fragments 
in one of the first studies of this nature involving a G protein-
coupled receptor (GPCR). The fragment docking was assessed 
with a fingerprint scoring method that predicted 19 out of 26 
fragment-like compounds to possess high binding affinity at 
the H1 receptor (73% hit rate) (39). Separate work compared 
fragment library screening by two GPCR models correspond-
ing to the dopamine D3 and histamine H4 receptors. Molecular 
dynamics was performed to represent the different conforma-
tional states of the receptor-binding pocket. All 12,905 fragments 
were docked into both a single receptor conformation and an 
ensemble of conformations. The top 50 hit compounds for each 
receptor model were pharmacologically tested. Both the single 
and ensemble structures were found to be suitable for screening 
against GPCRs; little overlap was observed between the leads 
from the two receptors (36).

When possible, pharmacological data are used to augment 
the fragment screening process. The orthosteric pocket of an A2A 
adenosine receptor model was used to screen a fragment library; 
500 fragments were ranked using target-immobilized NMR 
screening, yielding 94 hits to be pharmacologically characterized. 
Five fragments were pharmacologically identified to exceed the 

threshold affinity (30% displacement of a radioligand at 500 μM) 
for the target. Four of those fragments were among the top 50 
fragments predicted in  silico. While the computational method 
found most of the pharmacologically relevant fragments, it 
also predicted similarly high binding affinities for 46 “non-hit” 
compounds. A secondary screen of the A2A receptor using com-
mercially available fragments yielded 22 compounds, 14 of which 
were subsequently shown via radioligand-binding assay to be A2A 
adenosine receptor ligands. Molecular dynamics simulations and 
quantitative structure–activity relationship (QSAR) were used 
to refine the lead fragments (40). In separate work, consensus 
scoring methods (similarity fusion and group fusion) were used 
to retroactively analyze ligand-based VS of over a thousand 
fragments that were experimentally tested against the histamine 
H1 and H4 and serotonin 5-HT3A receptors (two GPCRs and a 
ligand-gated ion channel). The results from this study showed 
that one can increase VS enrichments by using both consensus 
scoring methods. The authors also recommend that similarity 
fusion and group fusion be used in a prospective ligand-based 
VS analysis (41).

Target selectivity may be the most daunting challenge of the 
drug development process. Many protein targets are evolutionar-
ily similar, which increases the probability of off-target responses. 
One strategy to increase selectivity arose from structure-based 
VS using histamine H4 receptor and 5-HT3A (serotonin) receptor 
models that yielded a common pool of hit compounds. Because 
the more complex hit molecules provided more potential groups 
for interaction within a given receptor’s ligand-binding pocket, 
increased complexity correlated with compound selectivity. 
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Studying how compounds interact with the binding pocket can 
determine which interactions are favored. That knowledge could 
guide target specificity by extending the fragment to favor the 
target-selective interactions (42).

While single-target selectivity is typically a goal of drug 
design, there are occasions in which modulating more than 
one receptor may be appropriate. A novel strategy for designing 
ligands with affinity for multiple distinct targets was recently 
outlined. Through a two-step process, LigBuilder 3 gener-
ated ligands with affinity for cyclooxygenase-2 (COX-2) and 
5-lipoxygenase/leukotriene A4 hydrolase (LTA4H), enzymes 
involved in metabolic pathways of inflammation. First, frag-
ments derived from known inhibitors of COX-2 or LTA4H 
were docked into the crystal structure-based models of both 
receptors using AutoDock 4.0. Fragments that showed binding 
for both receptors were “grown” in the second step. Emphasis 
was placed on testing multiple docking conformations because 
of the difficulty in predicting fragment docking. Compounds 
chosen for experimental evaluation were selected based on the 
need for minimum modification, sharing a common frame-
work, and synthesizability. A second round of optimization was 
used to further refine the compounds for both receptors (43). 
This method was able to design de novo dual target inhibitors 
with an increased success rate compared to rival strategies, such 
as linking and fusion, which covalently link fragments that are 
simultaneously bound to the receptor pocket.

Considering the similarities between GPCR orthosteric (pri-
mary) binding pockets among not-so-distant family members, 
the drug design field has turned its focus to secondary or allos-
teric binding sites (44). Allosteric or secondary sites are usually 
composed of the extracellular loops, where sequence homology 
is low compared to the transmembrane regions that delineate the 
orthosteric site. One approach to mapping an allosteric/second-
ary site while generating novel ligands is to determine the span 
between the primary and secondary sites using “double-headed” 
molecular probes. Using a dopamine D3 receptor model, frag-
ments were successively docked at each of the binding pockets. 
The top three hit fragments for the secondary site were fused to 
an arylpiperazine fragment with affinity for the primary site. The 
resulting compounds were docked in both the D2 and D3 recep-
tors and were predicted to have high affinity for each receptor. 
Radioligand-binding assays showed that the in  vitro binding 
affinity, but not the selectivity, of the compounds could be suc-
cessfully predicted in silico. The binding assay was only reflective 
of orthosteric site binding, where the radioactive ligand can bind 
and be displaced (45). Alternatively, one binding pocket can be 
used to anchor fragment building toward the other pocket. To 
create selective lead compounds, a naturally derived fragment 
was docked in the allosteric pocket of the matrix metallopro-
teinase 13 (MMP-13) enzyme, then elongated until the molecule 
simultaneously occupied the orthosteric pocket (46).

While it may be logical to design inhibitors working through 
allosteric sites, the allosteric site may be undefined, as with the 
A2A adenosine receptor. In this case, the hindrance of relying 
only on the orthosteric site for screening was mitigated by the 
NMR screen (40). Site-directed mutagenesis (SDM) is another 
complementary tool for defining allosteric sites. Such a site 

was first hinted at for the serotonin transporter (SERT) protein 
using SDM. Using the tentative allosteric SERT site to screen 
for non-competitive inhibitors yielded the novel SERT modula-
tor ATM-7, displaying nanomolar affinity. Mutagenesis of the 
allosteric binding site residues predicted to interact with ATM-7 
confirmed that SERT affinity for the allosteric ligand was lost 
(47). Computational approaches to discovering allosteric sites 
and the drugs that modulate receptor function via these sites 
will be key to developing efficient (and potentially selective) CNS 
drugs.

The β-amyloid cleavage enzyme BACE-1 and acetylcholinest-
erase (AChE) were recently studied using a group-based QSAR 
approach to designing fragments (48). Initially, ligand-based 
approach predicts new compounds by comparing functional 
groups of known inhibitors; structure-based screening was 
next applied. QSAR focused on compounds derived from 
1,4-dihydropyridine was analyzed to predict protein interactions 
for different functional groups. The compounds were split into 
four pools based on a common functional group and were then 
docked into a crystal structure-based model. Molecules were ini-
tially screened using the BACE-1 model, followed by a secondary 
screen with the AChE model. This method produced leads that 
had dual functionality for both BACE-1 and AChE, representing 
a possible approach for Alzheimer’s drug design (48).

Role of Medicinal Chemistry

Identifying legitimate candidate lead compounds from a library 
has always been a challenge with VS. Dahlin and Walters (35) 
argue that a majority of compounds being screened are “artifacts” 
or “promiscuous bioactive molecules,” which do not make for 
good lead targets. To address this problem, the authors recom-
mend a triage approach to drug discovery involving a collabora-
tion of medicinal chemists, biologists, and purification experts 
from the beginning of the drug design process. This approach 
of identifying targets for optimization allows for an exchange of 
ideas with experts. Medicinal chemists are placed in a pivotal 
role, defining which molecules are actually synthesizable. This 
approach is widely adopted by the pharmaceutical industry for 
the development of novel targets (35). Useful perspectives on 
how medicinal chemists approach drug design would include 
the reactions commonly in their toolboxes (49), and how they 
exploit molecular interactions (14). Incorporation of medicinal 
chemist expertise into computational methods is improving the 
drug design process.

Application of “Medicinal Chemistry Rules”
A first effort in this direction was Drug Guru™, a web-based 
program that applies medicinal chemistry rules to a starting 
fragment (50). Traditional medicinal chemistry approaches for 
creating new compounds employ (1) bioisoteric replacements: 
structural changes that retain similar properties or (2) non-clas-
sical replacements: more radical attempts to achieve a dramatic 
impact on a desired property. Initially, Drug Guru contained 
187 reaction rules concerning functional group transformations 
and framework modifications. Results could then be manually 
inspected by the synthetic chemist. Drug Guru does not filter 
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molecules, allowing the researcher to see all the options. The pro-
gram compiles not only results expected by the medicinal chemist 
but also options that might not be normally considered. Drug 
Guru allows for multiple program cycles, further diversifying the 
product pool. Some newer software programs utilize the reaction 
rules from Drug Guru while adding the option to filter and dock 
newly generated compounds.

Segall et al. (51) described an additional medicinal chemistry 
transformation method. Drawing from the medicinal chemistry 
literature, 206 transformation reactions were divided into seven 
groups: ring addition, modification, and removal, functional group 
addition, linker modification, atom removal, and terminal group 
exchange. A reaction transformation language (SMIRKS) (52) was 
used to encode the transformations, and the StarDrop software 
platform (53) was used to apply the modification to a parent (start-
ing) fragment using criteria supplied by the researchers. The user 
controls growth of the molecule in that reaction subsets may be 
selected, and regions of the parent molecule can be preserved. Using 
as parent molecule, the lead compound that led to the SERT inhibi-
tor and antidepressant/analgesic duloxetine (Cymbalta™), QSAR 
models of absorption, distribution, metabolism, and elimination 
(ADME) properties and predicted SERT Ki values were used to 
predict hit compound pharmacological activity. Repeated applica-
tion of this method was able to create an exponential number of 
diverse compounds. A set of 1500 compounds generated from 400 
molecules was randomly assessed for quality by medicinal chem-
ists, 94% of which were found to be acceptable (51).

AutoGrow is another software package that incorporates 
medicinal chemistry knowledge into ligand design (54). 
AutoGrow modifies the initial fragment through “mutations” 
that replace or combine reactive groups and “crossover” reactions 
that compare overlapping fragments with similar structures. A 
selection process compares the products regarding drug-like 
properties. Hit compounds are subsequently docked using 
AutoDock Vina (55) and scored by predicted binding affinity. The 
top-scoring compounds are selected for successive generations of 
modifications. The latest version of AutoGrow attempts to create 
compounds that are more easily synthesized (56).

BioSolveIT Inc. (Bellevue, WA, USA) has developed useful 
suites for FBDD and its support. The ReCore module modifies 
hit compounds by replacing their “core” (chemical scaffold) (57). 
Fragments used to replace the core are generated in 3D, a vector-
based scheme is used to cut and replace the fragments, and the 
resulting structures are scored using the FlexX docking program. 
Filters can be applied to sort structures by size of fragment used or 
various geometic properties, such as torsion angles. The Feature 
Trees (FTrees) module explores chemical spaces with fragment 
hopping and using overlapping fragments to create a composite 
ligand structure (58). The starting fragment is modified with 
linker fragments that share similar functional groups; these are 
overlapped and the new fragment is grafted onto the starting 
fragment. The resulting structures should maximize the chemical 
space within the receptor (59). FTrees interfaces with PipelinePilot 
(SciTegic) and Molecular Operating Environment (MOE; Chemical 
Computing Group) software; the latter can be used to cluster FTrees 
results by topology (57). The fragment space extension module 
FTrees-FS allow a search of 1018 compounds in 5 min. BioSolveIT’s 

structure-based SeeSAR module provides receptor-binding affinity 
 estimates that indicate atomic contributions within the compound,  
ranking hit compounds (also against known ligands, if desirable) 
even while they are being modified in silico.

Chemical Computing Group (Montreal, QC, USA) has 
recently added the MedChem Transformations (MCT) feature 
to their MOE software suite. Fragment growth or novel ligand 
scaffold building occurs within the ligand-binding pocket of the 
three-dimensional receptor target, providing advantages over 
two-dimensional approaches, such as QSAR. This de novo process, 
based on Drug Guru concepts, creates novel ligands using over 170 
transformation rules. MCT begins with a starting fragment ligand 
in the receptor-binding pocket. Transformation rules are applied 
to discrete portions of the fragment using a match-and-replace 
algorithm. Once a match is made, the corresponding atoms are 
replaced and the unaffected portion of the ligand is added back 
to the newly created molecule. The transformation takes place 
in a 2D environment, and either minimization or 3D embed-
ding generates 3D coordinates for the molecule. After filtering 
based upon molecular weight, molecular interactions, toxicity, 
solubility, or other chemical attributes, the molecule is assigned 
a synthesis feasibility score. The molecules can be refined using 
force fields and scored using the MOE docking program. MCT 
may generate bioisosteric (addition of a functional group with 
similar electrochemical properties) or homologation (addition 
of a repeating unit for functional group) transformations. The 
smaller and simpler the starting fragment, the greater number 
of iterations needed to add enough functional groups to create a 
molecule the size of a binding pocket-filling drug. In some cases, 
multiple iterations are necessary for the desired functional groups 
to be placed at the correct carbon positions. With these outcomes, 
large numbers of compounds are generated. Even with cluster-
ing or fingerprinting as a sorting mechanism, more results are 
obtained than an individual can effectively inspect.

Application of MedChem Transformations
Publication of the x-ray coordinates of the dopamine D3 receptor 
complexed with the D2/D3 antagonist eticlopride (13) provided 
an opportunity to study FBDD methodology in a relatively con-
trolled system. Eticlopride’s antagonist status meant that the usual 
(complicating) GPCR conformational changes upon agonist 
binding would be absent. The presence of this ligand in the crystal 
structure serves to define well the orthosteric antagonist pocket. 
In theory, MCT should be able to generate eticlopride within this 
pocket from a fragment as elementary as a benzene ring (Figure 5, 
upper panel). As a starting point in using this software, MCT was 
tested for its ability to rebuild eticlopride when a fragment lacking 
as many as three of the drug’s substituents was employed as the 
parent fragment (Figure 5, lower panel).

MedChem Transformations readily rebuilt eticlopride when 
single functional groups, such as the phenyl ring’s chloro or 
hydroxyl substituents, were first replaced with hydrogen atoms. 
This involved choosing a small set of transformations from the 
GROWTHRXN database (included in the software suite), and 
selecting the hydrogen that replaced the deleted functional group. 
Simultaneous regeneration of both the chloro and hydroxyl sub-
stituents was more challenging, requiring three synthesis iterations 
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TABLe 3 | MCT regeneration of eticlopride.

eticlopride Substituent 
modified

iterations Number of 
products formed

–Cl 2 13
–OH 1 2
–Cl, –OH 4 89
–OH, –Cl, –Ethyl 6 2483

FiGURe 5 | Fragment growing in MedChem Transformations. Upper panel: in theory, a starting fragment as simple as a benzene ring (yellow) can be grown 
into the D2/D3 antagonist eticlopride (yellow with atomtype-colored heteroatoms) within the D3 receptor (red) binding pocket with multiple MCT iterations. Lower 
panel: MCT chemistry in regenerating four substituent groups removed from eticlopride.

September 2015 | Volume 6 | Article 1979

Wasko et al. Fragment-based CNS drug design

Frontiers in Neurology | www.frontiersin.org

that yielded eticlopride and 63 other products. Additionally and 
simultaneously regenerating a third substituent (the ethyl moi-
ety) required six iterations to obtain eticlopride among >2000 
product compounds (Table 3). It should be noted that MCT was 
primarily designed to produce bioisosteres of a compound, as 
opposed to building a molecule from a single functional group. 
Furthermore, the smaller the starting fragment used, the greater 
number of iterations needed to generate a drug-like compound. 
This number of iterations is unknown beforehand, as is how long 
the program will need to run to produce the desired results.

Interestingly, separate work recently successfully demonstrated 
the dopamine D3 receptor as a novel system to create ligands 
through FBDD. Utilizing the D3 receptor crystal structure (13) and 
a D2 receptor homology model, compounds with greater selectivity 
for the D3 receptor were computationally predicted using docking 
via the Glide 5.9 software, and validated in vitro (45).

Conclusion

The exorbitant cost of drug development is a driving force 
behind changes in the pharmaceutical industry. R&D has 

become a target of cutbacks and a victim to outsourcing. The 
continued development of in silico methodology enhances the 
speed and cost effectiveness of drug discovery. Rapid advances 
in our understanding of molecular mechanisms of action 
underlying depression/anxiety, schizophrenia and bipolar 
disorder, substance abuse, and Alzheimer’s and Parkinson’s 
diseases are providing new CNS target proteins for pharmaco-
therapeutic intervention. The addition of FBDD to structure-
based VS should increase the structural variety of hit-to-lead 
compounds.

Because the tools required for in  silico discovery are acces-
sible and affordable to an academic researcher, drug discovery 
now extends beyond the pharmaceutical industry. Techniques, 
such as the multitarget growing strategy, the sequential docking 
method, and group-based QSAR, allow development of frag-
ments into lead molecules. MCT is a FBDD method that creates 
novel ligands with a high degree of synthesizability. It is by the 
exploration of diverse transformations that truly unique lead 
molecules can be formed, but such computations are not without 
their disadvantages. The task of computationally sampling an 
essentially limitless number of structures is time consuming 
and resource demanding. Another challenge is sorting potential 
structures appropriately, which currently is subject to human 
judgment. Issues such as these will have to be addressed in the 
future. Overall, FBDD strategies provide diverse and useful tools 
that will lead to the development of medications that could not be 
predicted by conventional structure–activity relationship-based 
methods.
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