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Objective: The neuroprotective properties of the noble gas xenon have already been 
demonstrated using a variety of injury models. Here, we examine for the first time xenon’s 
possible effect in attenuating early brain injury (EBI) and its influence on posthemorrhagic 
microglial neuroinflammation in an in vivo rat model of subarachnoid hemorrhage (SAH).

Methods: Sprague-Dawley rats (n = 22) were randomly assigned to receive either Sham 
surgery (n = 9; divided into two groups) or SAH induction via endovascular perforation 
(n = 13, divided into two groups). Of those randomized for SAH, 7 animals were post-
operatively ventilated with 50 vol% oxygen/50 vol% xenon for 1 h and 6 received 50 
vol% oxygen/50 vol% nitrogen (control). The animals were sacrificed 24 h after SAH. 
Of each animal, a cerebral coronal section (−3.60 mm from bregma) was selected for 
assessment of histological damage 24 h after SAH. A 5-point neurohistopathological 
severity score was applied to assess neuronal cell damage in H&E and NeuN stained 
sections in a total of four predefined anatomical regions of interest. Microglial activation 
was evaluated by a software-assisted cell count of Iba-1 stained slices in three cortical 
regions of interest.

results: A diffuse cellular damage was apparent in all regions of the ipsilateral hippo-
campus 24 h after SAH. Xenon-treated animals presented with a milder damage after 
SAH. This effect was found to be particularly pronounced in the medial regions of the 
hippocampus, CA3 (p = 0.040), and dentate gyrus (DG p = 0.040). However, for the CA1 
and CA2 regions, there were no statistical differences in neuronal damage according to 
our histological scoring. A cell count of activated microglia was lower in the cortex of 
xenon-treated animals. This difference was especially apparent in the left piriform cortex 
(p = 0.017).

Abbreviations: SAH, subarachnoid hemorrhage; ICP, intracranial pressure; rCBF, regional cerebral blood flow; ROI, region of 
interest; ICA, internal carotid artery; HPF, high power field.
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Figure 1 | Flow chart of included animals. Animals were randomized by lot 
drawing in one of four groups. Sham N2 (Sham surgery after 1 h delay 
followed by ventilation with 50 vol% O2/50 vol% N2 for 1 h), Sham Xe (Sham 
surgery after 1 h delay followed by ventilation with 50 vol% O2/50 vol% Xe for 
1 h), SAH N2 (SAH induction after 1 h delay followed by ventilation with 50 
vol% O2/50 vol% N2 for 1 h), and SAH Xe (SAH induction after 1 h delay 
followed by ventilation with 50 vol% O2/50 vol% Xe for 1 h).
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conclusion: In animals treated with 50 vol% xenon (for 1 h) after SAH, a less pronounced 
neuronal damage was observed for the ipsilateral hippocampal regions CA3 and DG, 
when compared to the control group. In xenon-treated animals, a lower microglial cell 
count was observed suggesting an immunomodulatory effect generated by xenon. As 
for now, these results cannot be generalized as only some hippocampal regions are 
affected. Future studies should assess the time and localization dependency of xenon’s 
beneficial properties after SAH.

Keywords: subarachnoid hemorrhage, early brain injury, animal model, xenon, neuroprotection

inTrODucTiOn

Background
Aneurysmal subarachnoid hemorrhage (SAH) is a subtype of 
stroke occurring at a relative young age causing either death 
or disability in many patients (1). Few people recover without 
impairments (2). The annual incidence is estimated to be about 
9.1 patients per 100,000 (3). In around 85% of spontaneous SAHs, 
the underlying cause is the rupture of a cerebral aneurysm (4). 
The resulting increase in intracranial pressure (ICP), disruption 
of the blood–brain barrier and global ischemia contribute to 
early brain injury (EBI) (5). These injuries within the first 72 h of 
the initial ictus account for the later development of vasospasm 
and delayed cerebral ischemia (6). There is a substantial interest 
in EBI and in ways to reduce initial cerebral damage and thus 
indirectly attenuate secondary injuries.

The neuroprotective effect of the noble gas xenon has been 
well established in animal experiments for focal and global 
cerebral ischemia (7–11). Xenon has a proven additive neuro
protective effect to hypothermia in models of neonatal asphyxia 
(12–14). So far, xenon treatment has not been examined in the 
context of SAH. Multiple animal models of SAH have been 
established. The two most commonly used are the cisternal 
injection model and the endovascular perforation model (15). 
We opted for the latter as it better mimics the pathophysiology 
of an aneurysm rupture, and it is probably more suitable to 
investigate EBI (16). In this trial, the neuroprotective properties 
of the noble gas xenon were examined in the early phase after 
SAH using an endovascular perforation rat model. Despite its 
cost, xenon has demonstrated minimal side effects in extensive 
anesthesia studies, making it an interesting future treatment in 
human trials aiming for neuroprotection (17–21). Furthermore, 
xenon has already been approved in Europe for use as a general 
anesthetic.

MaTerials anD MeThODs

study Design
We performed a randomized four group controlled animal 
trial examining the neuroprotective effects of xenon inhala
tion (50 vol% for 1 h) with treatment initiation 1 h after SAH  
induction.

ethical statement
The study protocol was approved by the government agency for 
animal use and protection (Protocol number: TVA 10416G1  

approved by “Landesamt für Natur, Umwelt und Verbraucher
schutz NRW,” Recklinghausen, Germany), all experiments 
were conducted in accordance with the Guide for Care and Use 
of Laboratory Animals (National Research Council, and the 
Committee for the Update of the Guide for the Care and Use of 
laboratory Animals; 8th edition 2011).

animals
Male SpragueDawley rats (body weight 300–400  g, Charles 
River, Sulzfeld, Germany) were housed for at least 1  week 
before surgery with free access to food in a specific pathogen
free environment maintaining a 12h light/dark cycle. Prior to 
anesthesia induction, animals were randomly assigned to one of 
the following four groups by lot drawing: Sham N2 (Sham surgery 
after 1 h delay followed by ventilation with 50 vol% O2/50 vol% 
N2 for 1 h), Sham Xe (Sham surgery after 1 h delay followed by 
ventilation with 50 vol% O2/50 vol% Xe for 1 h), SAH N2 (SAH 
induction after 1 h delay followed by ventilation with 50 vol% 
O2/50 vol% N2 for 1 h), and SAH Xe (SAH induction after 1 h 
delay followed by ventilation with 50 vol% O2/50 vol% Xe for 
1 h) (see Figure 1).

experimental Procedure
Anesthesia was induced by intraperitoneal injection of a mix
ture of midazolam (2 mg/kg), medetomidine (0.15 mg/kg), and 
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Figure 2 | Selected regions of interest. (a) In H&E staining, a high power 
field was focused on four regions of interest: CA1, CA2, CA3, and DG. (B) In 
Iba-1 staining (the image displays a NeuN staining), a high power field was 
focused on the three cortical regions of interest: Pta, PLCo1, and Pir1.
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fentanyl (0.0075 mg/kg) (22, 23). A quarter of the initial dosage 
was injected in 30–45  min intervals to maintain anesthesia. 
Postoperative analgesia was started directly after surgery via 
intramuscular injection of metamizole (20  mg/kg) and con
tinued until euthanasia (24  h after SAH induction). Animals 
were intubated using an 18 gauge i.v. cannula. Blood pressure 
was monitored by cannulation of the tail artery, electrolytes, 
and blood gases were monitored by repeated arterial blood gas 
analysis and body temperature was maintained at 37°C via a heat
ing pad (Physitemp Instruments, Inc., Clifton, NJ, USA). After 
anesthesia induction, two laser Doppler flowmetry probes were 
fixated in proximity of the bregma to measure regional cerebral 
blood flow (rCBF), as previously described (Moor Instruments, 
Axminster, Devon, UK) (23). A left side parietal ICP probe was 
inserted for continuous ICP monitoring (Microsensor/Codman 
ICP Express Monitor, Codman/De Puy, Raynham, MA, USA). 
Baseline recordings of blood pressure, bilateral rCBF, heart 
rate, and ICP were done prior to surgery, during intervention, 
and 90 min thereafter (PowerLab, ADInstruments, Spechbach, 
Germany). SAH was induced by the polypropylene mono
filament perforation technique initially described by Bederson 
et al. and modified by Veelken et al. (24, 25). The procedure was 
performed as previously described (26). After exposing the left 
common carotid artery, the left internal carotid artery (ICA) was 
identified and a 3–0 polypropylene suture with a diameter rang
ing from 200 to 250 µm (Prolene suture, Ethicon Inc., Somerville, 
NJ, USA) was advanced intravascularly. Perforation of the ves
sel and subsequent SAH was verified by a sudden increase in 
ICP and a bilateral decrease in rCBF. Shamoperated animals 
underwent the same anesthesia and surgical procedure, but the 
monofilament was advanced into the ICA without perforation 
of the vessel.

One hour after SAH induction or Sham surgery, the animals 
were ventilated for 1 h with either a mixture of 50 vol% O2/50 
vol% xenon (Air Liquide, Paris, France) or 50 vol% O2/50 vol% 
N2 (control group). After treatment, anesthesia was stopped 
and animals were allowed to recover spontaneously. Analgesic 
treatment with metamizole (20  mg/kg intramuscular app
lication every 8 h) was carried on until euthanasia (24 h after 
SAH induction). Euthanasia was performed 24  h after SAH 
induction by exsanguination under deep anesthesia followed 
by decapitation. Brains were harvested and cut into 2  mm 
coronal slices, fixated in paraformaldehyde, and embedded  
in paraffin.

histology/immunohistochemistry
Sections of 2 µm thickness were cut from the paraffinembedded 
brain slices and placed on silanecoated slides. Of every animal, 
the same section 3.60 mm posterior to the bregma was searched 
based on anatomical landmarks. After deparaffinization,  
a section was routinely hematoxylin/eosin (H&E) stained. Two 
consecutive sections were dewaxed, rehydrated, and heated 
in citrate buffer for antigen retrieval. After blocking of non
specific binding by incubation in PBS containing 2% normal 
goat serum, one slide per animal was incubated for 1  h with 
antiNeuN (Millipore, MA, USA) as primary antibody diluted 
in blocking solution and one slide with antiIba1. Appropriate 

biotinylated secondary antibodies were used (1:200, Vector 
Laboratories Ltd., Peterborough, UK) for 15  min, followed  
by DAB visualization (DAKO, Carpinteria, CA, USA). Appro
priate negative controls without the primary antibodies were  
performed.

neuronal cell Damage
Neuronal cell damage was measured and quantified in four 
regions of the left hippocampus, in H&E and NeuNstained 
section: CA1, CA2, CA3, and dentate gyrus (DG). A single high 
power field (HPF) was focused on the center of each of these 
four region of interest (ROI) and the image was photographed 
with an Axioplan microscope (ZEISS, Germany). An absolute 
neuronal cell count as well as a cell count of all ischemic 
damaged neurons was done using ImageJ/Fiji v 1.50 (ImageJ 
Software downloaded at https://imagej.nih.gov/ij). See Figure 2. 
Neuronal cell damage was cytomorphologically defined as a 
combination of hypereosinophilia, shrunken cytoplasm, and 
pyknotic nuclei. This counting process was done twice by a 
single investigator blinded to treatment allocation on two 
different timepoints and results were compared for incongru
ence. In case of incongruence or doubt, the consecutive NeuN 
stained slices was consulted and the process was repeated. 
The ratio of damaged neurons too the complete neuronal cell 
count was graded into five categories (1 = 0–20%, 2 = 20–40%, 
3  =  40–60%, 4  =  60–80%, and 5  =  80–100%). See Figure  3. 
The results of this scale for each ROI in the left hemisphere 
were then summed to yield an overall neurohistopathological 
severity score per animal.

Microglial activation
An absolute microglial cell count was performed in a similar 
fashion in the Iba1 (ionized calciumbinding adapter mol
ecule 1) stained sections. Three cortical regions of interest per 
animal were photographed. The absolute number of activated 
Iba1positive cells was softwareassisted counted out in the 
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Figure 4 | Course of ICP and rCBF. Graphs for intracranial pressure (ICP) and left regional cerebral blood flow (rCBF) are presented as mean ± SD of percentages 
of baseline values; time = 0 min is defined as subarachnoid hemorrhage (SAH). The courses did not differ between the xenon and control group (repeated measures 
analysis of variance).

Figure 3 | Histopathological severity score. Neuronal cell damage was evaluated in H&E and NeuN staining. Damaged neurons, characterized by 
hypereosinophilia, shrunken cytoplasm, and pyknotic nuclei, were software assisted counted and expressed as a ration to the total cell count per region. The 
resulting percentage was converted into grade 1 to grade 5.
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lateral primary somatosensory cortex (Pta), posterolateral 
cortex (PLCo1), and the piriform cortex (Pir1) of both hemi
spheres. Figure 2 offers an overview of the selected regions of 
interest.

experimental Outcomes
The primary outcome was left side histopathological hip
pocampal damage as measured by our neurohistopathological 
severity score. The secondary outcome was microglial acti
vation. In the initial trial design, a 24h clinical evaluation 
using an 18 and 28point scoring system was included. After 
the negative results in a similar study with argon, where we 
observed no difference in neurologic function in the acute 
phase (26), no shortterm neurological evaluation was done 
in this trial.

statistical Methods
To estimate sample size data from previous experiments using 
argon as a neuroprotective agent were extrapolated (26). Using 
these data, an effect size of 0.62 was calculated (alpha: 0.1; beta: 
0.8). As xenon is known to be more potent, we estimated an 
effect size of 0.7 (alpha: 0.1; beta: 0.8) resulting in a sample size 
of n = 6 (G*Power 3.9.1.2 downloaded at http://www.gpower.
hhu.de/).

All statistical analyses were performed using SPSS v 23.0 
(SPSS Inc., Chicago, IL, USA). All graphics were plotted 
using GraphPad Prism (GraphPad Software Inc., La Jolla, 
CA, USA). A pvalue of <0.05 was considered statistically sig
nificant. After normality testing (Kolmogorov–Smirnov test), 
an unpaired ttest was used to analyze normally distributed 
numeric variables. Group comparisons were performed using 
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Figure 5 | Hippocampal neuronal cell loss. Cytomorphological quantification of ischemic damage. (A) After summing up the four scores (0–5) per hippocampal 
region, a single score per animal between 0 and 20 was yielded. The summed-up scores were 4.5 ± 1.83 (Sham N2), 10 ± 4.05 (Sham Xe), 16 ± 2.52 (SAH N2), and 
12.71 ± 4.13 (SAH Xe) group. There was no difference between the SAH N2 and SAH Xe groups. There was a significant difference between the Sham N2 and SAH 
N2 groups, *p = 0.0001. There was no significant difference between Sham Xe and SAH N2 groups, **p = 0.326. (B) The CA1 region of the SAH N2 group and the 
SAH Xe group had a mean histopathological severity score of 3.33 ± 1.70 vs. 3.0 ± 1.60, ***p = 0.4280. (C) In the CA3 regions, a significant difference group-score 
was seen, 4.5 ± 0.76 (SAH N2) vs. 2.71 ± 1.58 (SAH Xe) group, #p = 0.040. (D) The difference was also statistically significant in the DG regions 4.24 ± 1.38 vs. 
3.09 ± 1.28, ##p = 0.040.
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oneway or twoway ANOVA testing followed by the appropri
ate post hoc test. All data are presented as means ± SD unless 
stated otherwise.

resulTs

Baseline Data
The course of ICP and left side rCBF is illustrated in Figure 4. 
The SAH Xe group reached an overall higher peak in ICP increase 
after SAH induction compared to the control group. However,  
this difference was not statistically significant (p =  0.064). The 
initial decrease in rCBF after SAH induction did not differ signifi
cantly between the xenon and control group (p = 0.1964).

neuronal cell Damage in h&e  
and neun-stained sections
Routine hematoxylin and eosin staining was used to cytomor
phologically quantify ischemic damage. Apoptotic neurons 
were clearly demarcated in the cell layers of all four assessed 
hippocampal regions. To compare treatment groups, the 

four scores (0–5) for each hippocampus were summed up 
to obtain a single score per animal between 0 and 20. Sham 
animals presented with mild baseline cell damage in all four 
hippocampal regions. The Sham N2 group had a summed
up score of 4.5  ±  1.83. The Sham Xe group presented with 
a summedup score of 10  ±  4.05. The SAH N2 group had a 
summedup score of 16 ± 2.52, and the SAH Xe group showed 
a summedup score of 12.71 ± 4.13. These data are presented 
in Figure  5. The xenontreated SAH group scored a lower 
summedup score compared to the SAH N2 group, suggesting a 
protective effect of xenon after SAH. These differences proved, 
however, not to be statistically significant (p  =  0.287). There 
was a significant difference between the Sham N2 and SAH N2 
groups (p = 0.0001) illustrating the overall damage caused by 
the induced SAH. For the summedup scoring, there was no 
significant difference between the Sham Xe and SAH Xe groups 
(p = 0.326). Once comparing individual hippocampal regions, 
it became apparent that the more medial located CA3 and DG 
regions were generally more intensely damaged compared to 
the more lateral located CA1 and CA2 regions. In those regions 
with more pronounced damaged the intergroup differences 
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Figure 6 | Cortical microglial cell count. Software assisted counting of Iba-1 positive cells in four cortical regions. (a) Comparing the summed up absolute cell 
count per animal, the xenon-treated animals showed a lower overall microglial cell count compared to the control groups, *p = 0.1206. (B,c) Regions closer to the 
bleeding source showed a higher number of activated microglia (highest damage in the PLCo1L region) with an increase in the difference between treatment groups 
without statistical significance, **p = 0.1680, #p = 0.1002. (D) The difference in cell count was statistically significant in the left side piriform cortex (pir1 L). 8 ±1.16 
microglial cells were counted in the control group vs. 4 ± 1.07 in the xenon group, ##p = 0.017.

increased. Comparing the CA1 region of the SAH N2 group and 
the SAH Xe group, the mean histopathological severity score 
was 3.33 ± 1.70 vs. 3.0 ± 1.60 (p = 0.428). Whereas comparing 
the CA3 regions in the SAH N2 group, a mean score was yielded 
of 4.5 ± 0.76 vs. 2.71 ± 1.58 in the SAH Xe group (p = 0.040). 
The difference between the SAH N2 and SAH Xe group also 
became statistically significant in the DG regions 4.24 ± 1.38 
vs. 3.09 ± 1.28 (p = 0.040).

Microglial activation in iba-1 stained 
sections
In the brain, ionized calciumbinding adapter molecule 1 (Iba1) 
is specifically expressed in microglia and, therefore, can be used 
as a robust biomarker for these cell types. Activated microglial 
cells are morphologically characterized by cellular branches and 
are easily identified using confocal microscopy. We determined 
the presence of activated microglia within three cortical regions 
for each hemisphere. Two regions are located at the base of the 
brain, close to the source of the induced hemorrhage (PLCo1 and 
Pir1). One region was chosen more distal to the bleeding source 
in the cranial parietal cortex (Pta). Iba1positive cells were 
softwareassisted quantified in a HPF, focusing on the center of 

each ROI. In comparison to Shamoperated rats, SAH animals 
showed a clear increase in Iba1positive cells in all three cortical 
regions, reflecting the early inflammatory response after SAH. 
Once the absolute cell count of all three regions was summed 
up per animal, it became apparent that xenontreated animals 
showed a lower overall microglial cell count compared to the 
control groups. See Figure  6. Also in all SAH animals, those 
regions closer to the initial bleeding source (left side Pir1 and 
PLCo1) showed a higher number of activated microglia reflecting 
the spatial distribution of severity of neuronal damage around 
the area of primary hit. This effect has been previously described 
in a rat SAH perforation model (27). In those regions of greater 
damage and microglial activation, the number of microglial cells 
was lower in the xenontreated animals. This difference was 
statistically significant in the left side pir1 L where an average 
of 8 ± 1.16 microglial cells were counted per HPF in the control 
group vs. 4 ± 1.07 cells in the xenon group, p = 0.017.

DiscussiOn

We investigated the effects of xenon to attenuate EBI in a rat SAH 
model. Although a xenonmediated protective effect was seen 
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in all hippocampal regions, the protective effect of xenon was 
enhanced in the CA3 and DG regions. Second, we have shown a 
reduction in cortical microglial activity in xenontreated animals. 
An intraparenchymal accumulation of microglia cells was more 
pronounced in regions closer to the site of vessel perforation. 
This effect has been previously demonstrated in animal as well 
as human tissue samples (28). In this trial by Schneider et  al., 
a centrifugal spreading of microglia accumulation developed 
over time, from the base of the cortex of both hemispheres, 
resembling a wave of intracerebral immune cell activation. 
Similarly, we saw a gradual decrease of microglial activation in 
regions farther away from the site of primary hit. In the base 
of the left hemisphere, the regions with the highest accumula
tion of inflammatory cells, the immunomodulatory effect of 
xenon was the largest. Microglia plays a major role in the pro 
inflammatory cytotoxic response and participates in the immuno
suppressive processes contributing to further tissue damage (29).  
We postulate a possible immunomodulatory mechanism of xenon 
reducing microglial activation and contributing to a decrease in 
neuronal cell damage.

Although not significant (p = 0.168), it is unclear why the Sham 
Xe group presented a higher summedup score and thus more 
hippocampal damage, compared to the Sham N2 group. It could 
be that Xenon has no effect on the background damage occurring 
in our Sham animals indicating that the neuropro tective effect of 
Xenon cannot be generalized.

We have previously demonstrated a reduction in mortality 
after argon postconditioning in a SAH animal model (26). Here, 
we present for the first time the beneficial effect of xenon treat
ment after experimental SAH with a reduction of hippocampal 
neuronal cell loss and a decrease in cortical microglial cell activity. 
Until now, the neuroprotective effects of xenon have been accred
ited to the inhibition of the NMDA receptor (30–32). In vitro 
research has shown that NMDA receptor stimulation triggers 
microglia activation and the secretion of neurotoxic factors (33). 
This could very well explain the immunomodulatory mechanism 
observed in our xenontreated animals. Xenon may be a potential 
clinical treatment for EBI under carefully defined conditions. By 
attenuation of the complex inflammatory mechanisms, some of 
the devastating secondary injuries may be prevented and outcome 
in SAH patients could be improved.

limitations
The primary weakness of our trial was the limited number of 
included animals. We estimated that a higher number of included 
animals could demonstrate a more pronounced therapeutic 
effect. Second, per ROI, only a single HPF was evaluated for cal
culation of neuronal cell loss (in H&E and NeuN Staining) and 
for the evaluation of microglial activation in Iba1 staining. In 
the initial trial design, neuronal cell loss was manually counted 
in the entire hippocampus. As the trial continued, we observed 
a good congruence between these results and the estimated 

damage using only a single HPF. Additionally, to estimate neu
ronal cell loss, we only looked at the right hippocampus. This 
was done because the insertion of the ICP probe on the left side 
caused additional damage to the left hemisphere introducing 
potential bias. ROIs in the left hemisphere were included for the 
assessment of microglial activation since they were located at 
the base of the brain, farther away from the regions of iatrogenic 
damage.

Until now, we did not examine whether the xenonmediated 
reduction in Iba1positive cells coincided with a reduction 
in cortical damage. Because of its higher cell count, estimat
ing cortical damage is more time consuming but could be 
the focus of future research projects. Additionally, it is worth 
mentioning that Iba1 is not a specific marker for microglia and 
unspecific binding of the antibody could have compromised  
our results.

cOnclusiOn

This is the first time that a neuroprotective effect of xenon has 
been shown. The effect is potentially mediated by an inhibitory 
effect on microglial activation. Further animal research should 
focus on longterm clinical outcome post Xenon ventilation in 
a SAH model.
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