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A novel electromyography (EMG) signal decomposition framework is presented for 
the thorough and precise analysis of intramuscular EMG signals. This framework first 
detects all of the active motor unit action potentials (MUAPs) and assigns single MUAP 
segments to their corresponding motor units. MUAP waveforms that are found to be 
superimposed are then resolved into their constituent single MUAPs using a peel-off 
approach and similarly assigned. The method is composed of six stages of analytical 
procedures: preprocessing, segmentation, alignment and feature extraction, clustering 
and refinement, supervised classification, and superimposed waveform resolution. The 
performance of the proposed decomposition framework was evaluated using both syn-
thetic EMG signals and real recordings obtained from healthy and stroke participants. 
The overall detection rate of MUAPs was 100% for both synthetic and real signals. The 
average accuracy for synthetic EMG signals was 87.23%. Average assignment accura-
cies of 88.63 and 94.45% were achieved for the real EMG signals obtained from healthy 
and stroke participants, respectively. Results demonstrated the ability of the developed 
framework to decompose intramuscular EMG signals with improved accuracy and 
efficiency, which we believe will greatly benefit the clinical utility of EMG for the diagnosis 
and rehabilitation of motor impairments in stroke patients.

Keywords: eMg decomposition, segments detection, minimum spanning tree, superposition waveform resolution, 
pseudo-correlation measure

inTrODUcTiOn

Electromyography (EMG) signals carry information regarding the motor unit action potential 
trains (MUAPTs) generated by the motor units (MUs) that are recruited during muscle contraction. 
Each MUAPT is made of a series of intermittent discharges that take the form of spatially dispersed 
individual motor unit action potentials (MUAPs). Intramuscular EMG is commonly acquired by 
means of indwelling needles or fine wire sensors that provide direct and targeted contact with the 
musculatures. Clinically, intramuscular EMG is used as a routine method for the electrophysiologi-
cal examination of neuromuscular symptoms.

EMG decomposition reverses the process of signal generation by separating the de-noised EMG 
signal into its constituent MUAPTs. This process is accomplished by identifying MUAP waveforms 
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generated by the MUs adjacent to the detection surface and 
assigning these MUAPs to their corresponding MUAPTs. 
Characteristic properties of a decomposed MUAP, such as wave 
shape and firing pattern (1), can provide critical details regard-
ing the health of the nervous system—details that are essential 
for the clinical diagnosis of neuropathies and myopathies (2–6), 
and the investigation of the neuromuscular control loop (7). 
Unfortunately, EMG decomposition is often a difficult and chal-
lenging task due to both external interferences, such as poor 
signal-to-noise ratio (SNR), movement artifacts, shifts in needle 
position, and so on, and interior challenges, such as waveform 
variations, intermittent MU firing, and the superposition of 
multiple MUAPs. EMG decomposition, therefore, requires a 
complex of advanced signal processing techniques. In the past 
few decades, many researchers have sought to develop advanced 
EMG decomposition techniques (8–15). The resultant decom-
position methods can be grouped into three categories based 
on the extent of human interaction: manual, semi-automatic, 
and automatic (16). Following the manual method, MUAP 
analysis is performed directly by users who visually inspect 
and identify the distinctive MUAP patterns (17). This method 
is time-consuming in practice, highly experience-dependent, 
and incapable of resolving superimposed waveforms (18, 19). 
Hence, the development of automatic MUAP extraction meth-
ods is imperative to improve the work efficiency and clinical 
applicability of EMG decomposition. Despite the unremitting 
effort devoted to the optimization of automatic intramuscular 
EMG decompositions (5, 16, 20–23), there is still an unmet need 
for more accurate, complete, and reliable EMG decomposition 
techniques.

In this paper, we propose a novel intramuscular EMG decom-
position framework by advancing the completeness and accuracy 
of MUAP decomposition. This framework is realized through six 
stages of analytical procedures: (1) EMG signal de-noising, (2) 
MUAP segmentation and extraction, (3) MUAPs alignment, fea-
ture extraction, and similarity measurement, (4) MUAP cluster-
ing and cluster refinement, (5) supervised classification, and (6) 
superimposed waveform resolution. Following this framework, 
we have attempted to improve the decomposition performance in 
four ways. First, we utilized a modified segment extraction scheme 
that is capable of detecting complete MUAP sets by incorporating 
amplitude threshold detection and resting segment recognition 
techniques. Second, single and overlapped MUAP waveforms 
were identified based on a phasic detection scheme, where phase 
templates were chosen based on the neurological condition of the 
tested muscle. The single MUAP segments of each MU under-
went a clustering process that markedly reduced the buffer size 
and processing time required for this task. Third, all recognized 
single MUAP segments were aligned by centering their main 
peaks (regardless of polarity). Finally, we resolved superimposed 
waveforms using a peel-off approach based on measurements 
of pseudo-correlation (PsC). The performance of the proposed 
decomposition framework was evaluated using both synthetic 
EMG signals and real recordings obtained from healthy and stroke 
participants. Results demonstrated the favorable performance of 
the developed framework in decomposing intramuscular EMG 
signals with improved accuracy and efficiency.

MaTerials anD MeThODs

subjects
Twenty healthy subjects (20–35  years of age, 16 males and 4 
females) participated in our data collection. No subject reported 
any history of neuromuscular diseases. Eight subacute hemipa-
retic stroke subjects (46–74 years of age, 6 males and 2 females, 
within 1 month of the ictal event) were recruited from the Third 
Xiangya Hospital of Central South University in China. The 
research protocol was approved by the local research ethics com-
mittee. All subjects were informed about the purpose and details 
of the experiment prior to the data collection.

Data acquisition
All EMG signals were recorded from the biceps brachii muscle. 
Subjects were seated in a chair with either the right forearm (for 
healthy subjects) or the affected forearm (for the stoke patients) 
supported by a horizontal table. Subjects were then asked to 
maintain elbow flexion at a 90° angle with their palms facing 
upward. A conventional needle electrode (9013s0032, Natus 
Neurology, USA) was inserted into the muscle belly at a depth of 
approximately 1 cm. Each subject was then asked to perform 10-s 
constant-force isometric contractions by resisting a load with 
pre-trained force. Each subject performed three contractions at 
both mild (3–4 MUs detected) and moderate (6–8 MUs detected) 
force levels. A 3-min break was provided following each contrac-
tion to avoid muscle fatigue. Signal quality and force level were 
monitored on a real-time display screen with audio feedback. All 
clinical procedures were performed by an experienced physician 
(Xuhong Li). The frequency band of the standard EMG instru-
ment was set to 2 Hz–10 kHz. All signals were sampled at 48 kHz 
and stored for off-line decomposition using an EMG workstation 
(Dantec Keypoint Focus, Natus Neurology, USA).

generation of synthetic eMg signals
Synthetic EMG signals are valuable for evaluating decomposi-
tion results as, unlike real recordings, the exact firing patterns 
and waveform templates of the synthetic MUs are known. The 
use of synthetic EMG signals thereby represents the only way to 
assess the sensitivity of decomposition algorithms to different 
parameters. In this study, 5-s segments of EMG signals (sampled 
at 30 kHz) were generated based on a model proposed by Farina 
et al. (24), where each segment consisted of one or more chan-
nels of synthetic intramuscular EMG recordings. The model was 
built using a library of real MUAP pools to better approximate 
biological signals. This library included 40 MUAP waveforms 
artificially extracted from real EMG signals. Each waveform 
was expanded by associated Hermite expansion functions in a 
16-dimensional space. The firing pattern was generated based on 
both regular and random firing. The regular firing component 
of this pattern was created using a mean inter-pulse interval 
within a stationary-renewal point process, while the embodied 
random-firing component were determined by uniform random 
variables (i.e., the positions of the random firing, which were 
determined by uniform random variables, were used to denote 
the pattern of the random firing). The synthetic EMG signals were 
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then corrupted by adding random white noise with a variable 
SNR and background noise. The random noise was simulated as 
band-pass filtered Gaussian white noise with a zero mean and 
normally distributed random sequences. The frequency band of 
the band pass filter was 100 Hz–10 kHz. The background noise 
was the residual signal obtained by subtracting all recognized 
active MUAP segments from the original EMG signal. Thirty sets 
of synthetic EMG signals were generated to evaluate the perfor-
mance of the proposed decomposition framework.

De-noising through Wavelet Filtering and 
Threshold estimation
Signal preprocessing followed the methods described in our 
previous publications (25, 26). Briefly, a wavelet filter was first 
applied to remove random interference by identifying the wave-
lets whose frequency range lay outside the 30 Hz–8 kHz window 
and setting their coefficients to zero. A hard-threshold estimation 
method was subsequently implemented to eliminate background 
noise. After performing threshold estimation, the de-noised EMG 
signals could be reconstructed by an inverse discrete wavelet 
transform (WT) using modified wavelet coefficients. Additional 
single-channel-independent component analysis method and 
digital notch filtration were applied to further remove the residual 
power-line interference when necessary (25, 26).

segmentation and isolated/Overlapped 
MUaP segments separation
All active MUAP segments were first identified using a modi-
fied segmentation scheme. A detection window of 1.25 ms was 
shifted through the entire EMG signal. A resting segment was 
recognized if the absolute values of the signal within the window 
were continuously lower than the pre-set amplitude threshold. 
Whenever two or more successive resting epochs were detected, 
the signals spanning between these epochs were extracted as the 
active segments, in which the signal exceeded this pre-set ampli-
tude threshold. The boundaries of identified active epochs were 
then spatially expanded by at least 0.2 ms to ensure that the whole 
MUAP waveform was preserved. This amplitude threshold level 
was defined as k multiplied by the estimated noise power, σn

2. The 
noise power of the inactive segments was estimated automatically 
according to Eqs 1 and 2, based on original EMG signal. The value 
of k was selected by the investigator according to the force level, 
with a range of 5–8.
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Extracted MUAP-containing segments can be either isolated 
or overlapped. Isolated MUAPs that discharge multiple times 
can be easily recognized and labeled using clustering methods. 
Conversely, overlapped MUAP waveforms are created by the 
partial or full superposition of two or more single MUAPs 

discharging simultaneously, making the constituent waveforms 
much more difficult to parse. According to Thornton and Michell 
(27), MUAPs from a healthy musculature may contain up to four 
phases while an increase in MUAP phases may be indicative 
of the MU remodeling period that occurs after pathological 
denervation. In this study, the subject-specific recognition of 
isolated/overlapped MUAPs was carried out by assigning a 
tetraphasic (4-phase) template to the EMG signals from healthy 
participants and a hexaphasic (6-phase) template to the signals 
from stroke participants. The phasic properties of the MUAPs 
are affected by many variables, so it may be improper to assign 
phasic parameters a fixed value. Thus, the extraction results were 
evaluated and phasic thresholds were fine-tuned if some of the 
isolated MUAPs were incorrectly assigned to the overlapped sets. 
In our experiment, we applied a pentaphasic (5-phase) template 
for 6 of the 20 healthy data sets and octophasic (8-phase) template 
for 3 of the 8 stroke data sets. Superimposed waveforms always 
possess longer durations so, during alignment, segments were 
zero padded to match the duration of the longest event (22, 28). 
A very large buffer size would be required if all active segments 
were to be aligned. To save buffer size and computing time, seg-
ment grouping was performed in advance and only the isolated 
MUAPs were inputted for alignment and clustering. Overlapped 
MUAPs were not processed until the superimposed waveforms 
are resolved (see Resolving Superimposed Waveforms Using the 
Peel-Off Approach Based on Pseudo-Correlation).

Extracted active segments with only one phase or a MUAP 
duration shorter than 1.5 ms were regarded as invalid and excluded 
from the detected MUAP set. Finally, the remaining single MUAP 
segments were retained as a valid set for the following alignment. 
The beginning points of these active segments, representing the 
onsets of the MU firing instances, were assembled into a separate 
one-dimensional array.

MUaP Waveforms alignment and Feature 
extraction
At this stage, all of the detected MUAP waveforms were aligned with 
their main peaks (either positive or negative) at the spatial center 
and shorter waveforms were zero padded so that all segments were 
of equal length. This alignment scheme can enhance the sensitivity 
in discerning and grouping MUAPs into their MU origins.

Wavelet-domain features have been shown to improve stabil-
ity when analyzing EMG signals that are contaminated by high 
frequency background noise or baseline drift (1, 16). As a result, 
we implemented WT at the sixth level using the aligned MUAP 
segment data. The wavelet coefficients from the third through 
sixth levels of aligned MUAP segments were chosen as the feature 
space. For WT, we used a compactly supported biorthogonal 
wavelet base, namely the Daubechies compactly supported wave-
let with five vanishing moments, or db5.

After feature extraction, the distance matrix was calculated 
based on the variance of the error normalized by the sum of the 
RMS values for the paired segments (20). This is denoted as
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where s1(n) and s2(n) are the two active segments to be compared 
and e(n) is their error signal. The distance measure defined by 
Eq. 3 was used as a similarity measure for clustering.

clustering and refinement Using the 
Minimum spanning Tree (MsT) Method
The MUAP set was partitioned into its constituent MUAPTs based 
on the similarity measure presented above. To do this, we utilized 
a single-linkage hierarchical clustering algorithm that permits a 
simple graph-theoretical interpretation, namely the MST method. 
The MST method, considered best suited for EMG clustering (1), 
is able to cluster the MUAPs with low variation from one occur-
rence to the next and does not depend on the presentation order of 
the samples. We generally set the number of cluster equal to 8–12 
depending on the size of the detected single MUAP segments.

A subsequent cluster refining procedure was performed to 
verify if any potential class should be deleted or subdivided. 
Clusters with at least three templates were chosen as potential 
MUAP classes, while those with less than three templates were 
regarded as invalid MU clusters and excluded. All MUAP seg-
ments belonging to these deleted clusters were moved to an 
unclassified set for subsequent supervised classification. At times, 
two different MU clusters can be incorrectly assigned to the same 
cluster due to similarities in their characteristic waveforms. In 
these cases, the mis-clustered MUs should also be subdivided 
based on the MST method. MUAPT templates were then 
calculated as the mean waveforms of each MUAP cluster. After 
clustering, we obtained the initial sets of MU clusters and the 
unassigned MUAPs were set aside to be classified in the next step.

supervised classification Based on the 
Minimum Distance classifier
At this stage, we used the supervised minimum distance classifier, 
which is based on measurements of Euclidean distance, to classify 
the MUAP waveforms in the unassigned candidate set. The clas-
sification program was based on the wavelet coefficient features 
and valid clustering results. During classification, the threshold 
was set to the lowest mean value obtained from the inter-class 
distances. Signal instability and electrode movement can cause 
MUAP shapes to vary from discharge to discharge. Therefore, a 
weighted averaging technique reported by Zennaro et al. (7) was 
utilized to adapt the MUAP class template.

resolving superimposed Waveforms 
Using the Peel-Off approach Based on 
Pseudo-correlation
During muscle contraction, a portion of the entire MU pool is 
recruited and the intermittent firing pattern of each recruited 
MU can be extracted as its MUAPT. Multiple MUs that discharge 
simultaneously or within a very short interval will results in the 
superposition of MUAP waveforms. Resolving these waveforms 
is the process of identifying the overlapped MUAP segments and 
splitting them into their constituent single MUAPs. In our study, 
a peel-off approach based on PsC was adopted to resolve the 
superimposed waveforms after the isolated MUAP segments had 
been successfully classified.

According to Florestal et al. (5), PsC outperforms standard 
techniques such as cross-correlation-based matched filters and 
the normalized Euclidean distance. In addition, the PsC between 
superimposed segments and MU template waveforms can be 
calculated directly without alignment. Therefore, it is feasible 
to use PsC as the similarity measure between the superposed 
segments and MU template waveforms. The PsC between a 
superimposed segment and a MU template waveform at point 
k, PsCk, is defined (5, 29) as
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where xj is clustered MU template waveform, yj the superimposed 
segment, and m and n are the size of x and y, respectively.

The waveform that has the greatest PsC at the point k was 
regarded as the optimal match and was first subtracted from the 
superimposed segment aligned at point k. The matched MUAP 
waveform and its firing time k were then, respectively, assigned 
to the corresponding MU cluster and associated firing time array. 
Then the MUAP waveform that had the second greatest PsC was 
similarly subtracted and assigned. The resolving process contin-
ued repeating until segment subtraction resulted in a negative PsC 
value or an increase in the residual signal energy. In our work, the 
number of the iterations was experientially set to 3, which was the 
maximal MUAP number included in the superposed waveform.

Performance indices
The following three measures related to the MUAP waveform 
detection and the EMG decomposition process were used to 
evaluate the performance of the EMG decomposition system.

Detection Ratio
The detection ratio (DR%) was used to measure the rate of the 
successful detection of active MUAP segments. The DR% is 
defined as

 
DR%

NM
NM

detected

total

= ×100%,
 

where NMtotal is the total number of MUAP segments—either 
the size of recruited library of MUs (for synthetic signals) or the 
number of MUs manually obtained by a neurophysiologist (for real 
signals)—and NMdetected is the number of MUAP segments detected.

The Assignment Ratio
The assignment ratio (AR%) measures the rate of MUAP assign-
ment using the proposed EMG decomposition framework. It is 
defined as

 
AR%

NM
NM

unassigned

detected

= − ×1 100%,
 

where NMunassigned is the number of MUAP segments not assigned 
by the EMG decomposition framework and NMdetected the total 
number of MUAP segments detected.
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The Correct Classification Rate
The correct classification rate (CCR%) assesses the performance 
of the whole EMG decomposition system. It is defined as the 
ratio of NMcorrect (the number of correctly decomposed MUAPs) 
to NMdetected (the total number of MUAPs detected):

 
CCR

NM
NM

correct

detected

% %.= ×100
 

resUlTs

In our study, the DR% of the MUAP detection program for all real 
and generated EMG recordings reached 100% by using the novel 
MUAP segment detection scheme.

The complete decomposition of the superimposed waveforms 
resulted in a marked improvement in the assignment ratio. In this 

paper, the average assignment ratios (AR%s) of our decomposi-
tion system were 99.79% for the synthetic signals, and 98.66 and 
91.52% for real recordings from healthy and stroke participants, 
respectively (listed in Table 1).

Figures 1A,B show representative examples of real de-noised 
EMG signals and the correspondingly assigned MUAP signals, 
respectively. After decomposition, the classified MUAPs were 
subtracted from the original EMG signal in order to obtain the 
residual signal, which is shown in Figure 1C. A total of 216 active 
MUAP segments were detected with an AR% of 99.54% for the 
signals shown in Figure 1. Only one MUAP segment in this case 
(marked by the bold arrow in Figure 1D) could not be assigned 
by the proposed framework.

Figure 2 illustrates representative decomposition results based 
on the synthetic EMG signal, together with the firing patterns and 
the six identified MUAP template waveforms. Figure 2A shows 
the MUAP template waveforms decomposed from the signal 
shown in Figure 2B. Figure 2B depicts the de-noised synthetic 
EMG signal. Figure  2C demonstrates the corresponding MU 
firing patterns for each MU class identified by the decomposition 
framework.

Figure  3 then provides one example of the decomposition 
results from a stroke patient. Figure  3A shows the MUAP 
template waveforms for the three MUAPTs identified from the 
de-noised signal (shown in Figure  3B). Figure  3C shows the 
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corresponding MU firing patterns for each MU class identified 
by the decomposition framework.

Table 1 illustrates the decomposition results based on the syn-
thetic and real EMG signals. The decomposition results from the 
synthetic signals were compared to the known information of the 
EMG model. The results of the real EMG signals were compared 
to manual decomposition analysis (assumed gold-standard), 
performed by an experienced neurophysiologist.

According to Table  1, the CCR% was 87.23% for synthetic 
EMG signals, and 88.63 and 94.45% for real recordings from 
healthy subjects and stroke patients, respectively.

Accurate clustering results are critical to the decomposition 
performance. In our study, we performed a cluster refining step 
to improve the accuracy of results. Cluster refinement in this case 
included deleting invalid clusters and subdividing one incorrectly 
identified cluster into two or more clusters. Figure 4A demon-
strates a MU cluster after preliminary clustering, where two clus-
ters were found incorrectly grouped due to similarities in their 
waveforms. Further clustering refinement was performed based 
on methods described in Section “Clustering and Refinement 
Using the Minimum Spanning Tree (MST) Method,” where an 
MST method was adopted to further subdivide the erroneous 
cluster into two separate MU clusters, shown as in Figure  4B. 
Following this method, the erroneous cluster was successfully 
subdivided into two separate MU clusters.

The whole analysis process was conducted using a custom 
MATLAB script and performed on 2.5 GHz Intel i7 desktop com-
puter. The average processing time for decomposing a 10-s-long 
EMG data was approximately 15–20 min.

DiscUssiOn

EMG decomposition has been widely employed to provide 
information of alterations in motor unit characteristics in stroke 
patients (30). Achieving the complete and accurate motor unit 
firing pattern is vital for the understanding of pathological altera-
tions in patients, as well as for clinical diagnosis and manage-
ment. Therefore, the goal of this EMG decomposition framework 
is to identify complete MUAP segments in the EMG signal and 
classify them accurately into their constituent MUAPTs. Both 
the template waveforms and firing rates of the MUAPTs are 
largely dependent on the configuration of the needle electrode, 
the relative position of electrode to the muscle fibers, the level of 
contraction, and the pathological condition of the muscle. In this 
study, we developed an EMG signal decomposition framework 
based on a novel MUAP segmentation method and the resolu-
tion of superimposed MUAP waveforms. Results showed strong 
decomposition performance with high values for DR%, AR%, 
and CCR%. It should be noted that the CCR%s obtained for the 
stroke subject EMG signals were higher than those found in the 
other two conditions (signals from simulated and healthy sub-
jects), signifying a potential clinical application for this method 
in the assessment of neurogenic disorders. This is probably due 
to a well-studied denervation process that occurs in post-stroke 
patients (30). Compromised MU recruitment in these cases often 
leads to sparser MU firing patterns and consequently higher 
identification accuracy.

A high DR% value is critical, as the successful extraction of 
MUAPs greatly impacts subsequent decomposition procedures 
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and, consequently, the AR% and CCR%. All active MUAP 
segments and resting segments comprise the whole EMG 
signal. Due to signal disparities, direct identification of MUAP 
segments is more difficult than the identification of the resting 
epochs. Thus, we utilized a wavelet hard-threshold estimation 
technique to attenuate instrumental and background noises, 
then applied a novel segmentation scheme based on resting 
segment detection. All active MUAP segments were further 
detached by subtracting rest segments from the original signal. 
The employment of a modified segmentation scheme greatly 
enhanced the performance, achieving a DR% value of 100% and 
demonstrating the complete detection of all active MUAP seg-
ments. Conventional segmentation methods often fail to identify 
some active MUAPs, even when using different rigid detection 
thresholds, because of the abnormal waveform complexity 
(26). Therefore, this complete detection of MUAPs—reaching 
a DR% of 100%—is unlikely to be achieved using conventional 
approaches.

Motor unit action potential segments detected in the 
aforementioned manner can be either isolated MUAP seg-
ments or superimposed MUAP waveforms. Then isolated/
overlapped MUAP segments were separated based on either 
tetra- or hexaphasic waveform recognition methods. Segments 

with more than four MUAP phases for healthy subjects or six 
phases for stroke subjects were generally recognized to contain 
superposed MUAPs and separated for further analysis to resolve 
the superposition. Thus, by grouping segments based on their 
isolated MUAP characteristics in the first instance, the effi-
ciency of the decomposition system was improved greatly. The 
implemented main peak alignment method further served to 
improve the methodical distinguishability of MUAPs originat-
ing from different MU clusters, resulting in more accurate and 
efficient results.

In our study, the MUAP waveforms were clustered using a 
single-linkage hierarchical clustering algorithm. This technique 
is suitable for the clustering of MUAPs with slow variation 
and does not depend on the presentation order of the samples. 
However, the results of clustering are very sensitive to the value of 
the discriminatory threshold. Clustering results were, therefore, 
verified through visual inspection. Invalid clusters were excluded 
or subdivided again using the MST algorithm to ensure that all 
final clusters are valid. In addition, the fuzzy k-means algorithm 
is based on the minimization of a global cost function, which 
is related to its classification ability. It is our ongoing effort to 
further integrate these two clustering algorithms and, in doing 
so, achieve optimal clustering results.
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To obtain a thorough EMG decomposition, superimposed 
waveforms need to be resolved into their constituent MUAPs. 
This stage is the most time-consuming and critical procedure 
in the whole EMG decomposition framework. As it is essential 
to obtain a high-level AR% and complete information, the con-
sistent achievement of AR%s over 90% by the new framework 
represents a marked improvement over the 67% classification 
rate achieved by our previous methods (25). Two typical types 
of superposed waveform resolution approaches have been com-
monly employed: peel-off and modeling (31). In this study, we 
resolved superimposed waveforms using the peel-off approach 
based on a pseudo-correlation method that improves resolution 
efficiency. Despite its apparent efficacy, it should be noted that the 
peel-off method is incapable of identifying MUAP waveforms that 
superimpose in a destructive manner (1). Waveform resolution 
based on modeling can yield a more accurate separation but is 
also more time-consuming. Therefore, identifying a method that 
improves the efficiency and accuracy of superimposed waveform 
decomposition remains a focus for further exploration.

In summary, an effective EMG decomposition framework was 
developed. First, we utilized a novel MUAP segment extraction 
method to detect all active MUAP segments. This procedure was 
based on amplitude threshold detection and resting segment 

recognition. We then grouped the MUAP segments into single 
and overlapped waveforms using tetraphasic or hexaphasic 
detection schemes to save buffer size and improve computational 
efficiency. Third, all recognized single MUAP segments were 
aligned with the main peak at the center for the effective assess-
ment of waveform similarities. Finally, we resolved superimposed 
waveforms using a peel-off approach based on a measure of PsC. 
By incorporating multiple analytical approaches, this developed 
EMG decomposition framework achieves accurate and complete 
results without hampering computational speed, which we 
believe will greatly benefit clinical EMG utilities.
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FigUre 4 | The result of the cluster refinement. (a) A motor unit (MU) firing incorrectly clustered after original clustering. (B) Two correct MU firings (displayed, 
respectively, in black and blue) subdivided by cluster refinement.
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