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generation, which is the time step of the algorithm, a population 
of chromosomes compete to have their “genes” passed on to the 
next generation. The selection step is used to pick the chromosomes 
for the next generation based on their fitness. Those selected enter 
the mating pool, where two chromosomes mate using crossover. 
During this phase, parts of each parent string are swapped to form 
two new chromosomes that have certain aspects of their parents. 
After crossover, mutation is implemented. Mutation occurs with 
a small probability and is defined by a change from 0 to 1 or 1 to 
0 in the binary string. Mutation allows the introduction of new 
“genes” that were either lost from the population or were not there 
to start with. Through successive generations, increasingly better 
chromosomes come to dominate the population, and the optimal 
solution (or something very close) is realized.

Complexity of a Model
A key component of a GA is the method to evaluate the fitness of 
a chromosome. Thus, in order to use a GA for model selection in 
multiple regression, a way to evaluate the chromosomes is needed. 
More specifically the fittest chromosome is the set of parameters 
that maximizes the explanatory power of the model with minimum 
number of parameters. Bozdogan (1988, 2004) considered “com-
plexity” as a measure of fitness, which can be described as follows:

The complexity of a system (of any type) is a measure of the degree 
of interdependency between the whole system and a simple enu-
merative composition of its subsystems or parts.

The concept of “information complexity” was first introduced 
by Akaike (1973) as a measure of the complexity of a model: it is a 
relative measure of the information lost when a given model is used, 
and can be described as a function of the precision and accuracy 
of the model. The expression for AIC is given as

AIC( ) log ( ),k L m kk= − 



 +

∧
2 2θ 	 (1)

Introduction
Variable selection in predictive model building is known to be a 
difficult procedure. The main difficulty lies in determining what 
variables best explain the system. For instance, exhaustive search 
becomes unreasonable as the number of variables increases; 
employing a multiple regression search produces over one billion 
possible models for data with 30 explanatory variables.

In ecological studies, one of the commonly used methods for 
selection is stepwise regression, with forward or backward variable 
selection algorithms. These methods have been criticized for lacking 
the ability to truly pick the best model for several reasons (Boyce 
et al., 1974; Wilkinson, 1989). One problem is that the choice by 
which the variables enter the selection algorithm is not justified 
theoretically. In addition, the probabilities for the selection pro-
cedure are chosen arbitrarily, which may lead to a poorly selected 
model. Since these methods employ local search, it is unlikely that 
the global maximum set of variables will be found (Mantel, 1970; 
Hocking, 1976, 1983; Moses, 1986).

We propose the use of genetic algorithms (GAs) to determine the 
subset of variables with the highest goodness of fit for a multiple 
regression model. Due to their global search capabilities, the GA 
based model building is not prone to the problems associated with 
local search method, hence is a wise choice for this procedure.

We now explain the basics of GAs briefly; a thorough one can 
be found in Goldberg (1989).

Genetic Algorithms
Genetic algorithms are a set of optimization techniques inspired by 
biological evolution, operating under natural selection. First devel-
oped by Holland (1975), they have grown in popularity because 
of the ability of the algorithm to perform well on many different 
types of problems. In a GA, possible solutions are coded using 
binary strings, which are called chromosomes. Each chromosome 
has a fitness value associated with it based on how well the string 
model parameters predicts the dependent variables. During each 



Frontiers in Neuroscience  |  Systems Biology	 	 July 2010  | Volume 4  |  Article 33  |  2

Akman and Hallam	 GA model selection

fitness values is subtracting the ICOMP value of each string in that 
generation from the maximum value of ICOMP in the population. 
That is,

∆ICOMP IFIM ICOMP IFIM ICOMP IFIMMax( ) ( ) ( )( ) ( ) ( )i i= −
	

(5)

for each i = 1,2,…,N, where N is the size of the population. Then 
the average ICOMP difference (the “average fitness”) for the total 
population is calculated as

∆ ∆ICOMP IFIM ICOMP IFIM( ) ( ) .( )=
=
∑1

1N i
i

N

	
(6)

Finally, each string is given a fitness value that is the ratio of its 
ICOMP difference and the average fitness of the population:

Fitness
ICOMP IFIM

ICOMP IFIM( )
( )( )

( )
.i

i=
∆
∆ 	 (7)

A Genetic Algorithm for Multiple Linear Regression 
Model Selection
Here we consider the implementation of GA’s for predictive model 
selection and discuss possible improvements.

Background
The first step to implementing a GA for any optimization problem 
is to encode the input variable into binary strings. In the case of 
multiple linear regression, we have q data points with n explanatory 
variables and one response variable. We wish to fit the data to

y X= +β ε, 	 (8)

where y is an n × 1 response vector, X is an n × q matrix of the 
data points, β is a q  ×  1 coefficient matrix, and ε is an n  ×  1 
error vector with entries from independent normal distributions 
[N(0, σ2) for all components]. The encoding is done by creating 
a binary string which has n + 1 bits, where each bit represents 
a different parameter of the model and an intercept. The last n 
bits correspond to the n explanatory variables contained in the 
dataset, whereas the first bit is the intercept for the linear model. 
A parameter is included in the model if the value of the bit for 
that parameter is a 1 and is excluded if it is a 0. For example, sup-
pose we have a dataset where we are interested in predicting the 
reproductive fitness of a species of trees. The possible explanatory 
variables may include:

  1.	 Age of tree,
  2.	 Height of tree,
  3.	 Soil pH,
  4.	 Density of trees in the surrounding area,
  5.	 Average temperature of environment,
  6.	 Average rainfall of environment,
  7.	 Circumference of trunk,
  8.	 Longitude of environment,
  9.	 Latitude of environment,
10.	 Prevalence of disease in environment.

where L k( )θ
∧

 denotes the maximum likelihood function, θ̂k  is the 
maximum likelihood estimate of parameter vector θ

k
, and m(k) 

is the number of parameters in the model. The first term of AIC 
gives the lack of fit of the model, and the second term is a penalty 
for the number of parameters in the model. The model with 
the lowest AIC value is considered the best, because the model 
successfully determines the underlying stochastic process with 
the least number of parameters. Although AIC does take into 
account the problem of over-fitting, where other measures such 
as R-square do not, AIC is not sensitive to parameter depend-
ency, which is an important component for model selection. If 
a model with both low variance and low covariance can be pro-
duced, then the parameters can be better estimated, as they will 
not be correlated. As an alternative to AIC, we consider ICOMP 
as a complexity measure which considers variance and covari-
ance, and accounts for the problem of over-fitting the model. It 
is calculated by

ICOMP Model= − 



 +

∧ ∧
log ( ),L Ckθ 2 Σ

	
(2)

where L k( )θ
∧

 again denotes the maximum likelihood function, 
θ̂k  is  the maximum likelihood estimate of parameter vector θ

k
 

under the model m
k
, C is a real-valued complexity measure, and 

Σ̂Model
 is the estimated covariance matrix of the parameters of the 

model. Note that the first term in AIC is double the first term 
in ICOMP. The main difference between the two measures of 
complexity is that AIC only considers the number of parameters 
as a penalty, whereas ICOMP considers the covariance between 
parameters. In predictive model building, we use ICOMP (IFIM) 
as our multiple regression model selection criterion. This value for 
ICOMP is based on the inverse-Fisher information matrix (IFIM). 
For multiple regression, the value of ICOMP can be directly calcu-
lated after regression is implemented, and is given by

ICOMP IFIM Regression( ) log( ) log= +

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n is the number of parameters in the model, q is the number of 
observations, ˆ / , ˆ ( )σ σ2 2 1= ′( )−SSE trn XX  is the trace of the obser-
vation matrix multiplied by its inverse and then scaled by ˆ ,σ2  and 
| |ˆ ( )σ2 1XX ′ −  is the determinant of the previous matrix.

Since the model with the lowest ICOMP value is considered 
the best, the GA chooses strings biased toward those with the low-
est value. A commonly used method to form the mating pool is 
“proportional selection,” which depends on selecting strings for 
the mating pool with a probability proportional to their fitnesses. 
In proportional selection, the first step of the calculation of the 
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points is chosen at random. Then the bits from the parent strings 
are swapped to create two new offspring strings (see Figure 1). 
The purpose of crossover is to bring together models which have 
components that reduce complexity. Recall the previous example 
about trees, where we specified two strings, which we will call Parent 
1 and Parent 2. Applying crossover to the two parents creates two 
offspring (see Figure  1), where Offspring 1 represents a model 
with an intercept, soil pH, average temperature of environment, 
longitude of environment, latitude of environment, and prevalence 
of disease in environment, and Offspring 2 represents a model that 
includes density of trees in the surrounding area, average rainfall 
of environment, circumference of trunk, and longitude of environ-
ment. Through successive generations and application of crossover 
of low complexity models, the algorithm is able to find the least 
complex model (or something close to it) to explain the data.

Crossover can only generate models that include parameters 
which already exist in the population. But, what happens if the 
actual least complex model includes a parameter that is not present 
in the population, that is, the position in the string that represents the 
parameter is fixed at 0? Mutation alleviates this problem. Mutation in 
GAs is similar to the mutation that occurs naturally in DNA. First, the 
probability of mutation, p

m
, has to be determined. This value gives the 

probability that at each location in the string the bit will be flipped. 
Flipping is defined as a change of a 0 to 1 or a 1 to a 0. Typically, muta-
tion rates are low, on the order of 10−3 to 10−5. However, strings used 
for other applications of GA’s are usually longer than the ones used 
for determining least complex models. Although there are ongoing 
studies on determining optimal crossover and mutation rates (such 
as Nested GAs, Self-adjusting parameterless GAs), these rates can be 
determined by trial and error or by pilot runs before the actual data 
set has been used to build a model.

We conclude this section with a pseudo code for a GA used to 
find the least complex model that sufficiently describes the data.

1.	 Generate Initial Population
2.	 While (t  <  Max Generations OR the maximum number of 

computations have not been executed)
(a)	 Calculate ICOMP for the model each string encodes
(b)	 Select strings for the mating pool
(c)	 Create a new population using crossover
(d)	 Mutate new population
(e)	 t = t + 1

3.	 End

Model Building via Accelerated Genetic Algorithms
While the use of a typical GA for model selection already proves to 
be more efficient than stepwise regression, with a few modifications, 
the process can show a 10-fold increase in accuracy given the same 

In this case, each binary string will have 11 bits. For example, 
the string 10010111101 would represent a model which includes 
the intercept, soil pH, average temperature of environment, average 
rainfall of environment, circumference of trunk, longitude of envi-
ronment, and prevalence of disease in environment. Similarly, the 
string 00001000110 is a model that has no intercept, and includes 
density of trees in the surrounding area, longitude of environment, 
and latitude of environment (see Table 1).

The probability that a string will be chosen for the mating pool 
is proportional to its fitness value. Note that the string with the 
worst ICOMP value will never be picked for the mating pool, as 
its fitness will be 0.

Now that we have a method of encoding information and a method 
to evaluate the fitness values, we have to determine the remaining 
parameters of the GA. The first one we consider is the method of 
creating the initial population and determining its size. Unless previ-
ous knowledge about the problem is given, it is commonplace in GAs 
to randomly generate binary strings (Goldberg, 1989). However, in 
the case of model selection, a user may want to force a parameter(s) 
to be included, even if it is not part of the model with the lowest 
complexity. In this case, the initial population can be generated in 
such a way that certain parameters are always in the model. In addi-
tion to determining the method to generate the population, the user 
must choose the size of the initial population. This decision can be 
difficult. Generally the size should not be too large, as this will slow the 
algorithm, and should not be so small that genetic drift takes over the 
course of evolution of the population. In typical GAs, the size of the 
population stays the same; however, this may not be an effective use 
of computation. We will see in the next section that starting with a 
larger size then reducing it may be more effective.

Finally, we discuss the genetic operators which allow the algo-
rithm to find the optimal model. There are two operators that are 
generally implemented in GAs: crossover and mutation. Crossover 
mimics biological crossover in a simplified manner. First, the prob-
ability of crossover, p

c
, is chosen. In the mating pool, a pair of strings 

are chosen along with a random number from [0, 1]. If that number 
is less than the probability of crossover, crossover occurs. Thus, 
if p

c
 = 1, then every pair will cross, and if p

c
 = 0, then no strings 

will be altered by crossover. After the choice of p
c
, the number of 

crossover points must be chosen. The location of the crossover 

Table 1 | Chromosomes and variables included by the model it 

represents.

Chromosome	 Variables included

10010111101	 Intercept, 3, 5, 6, 7, 8, 10

00001000110	 4, 8, 9

Figure 1 | Diagram of crossover with two points.
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As a result, the population never increases in size. Since we wished 
to minimize ICOMP, we set the fitness of each chromosome to be 
the negative of the ICOMP value.

The user must determine the values for ∆fmax
best and MIN_

POPSIZE. The choices of these parameters should be done by 
considering characteristics of the problem such as the expected 
increase in fitness over time. This is typically a difficult character-
istic to determine. Generally, as the number of variables increase, 
the value of ∆fmax

best should decrease. As the number of variables 
increases, so does the number of possible values of ICOMP, and 
the likelihood that the population will evolve slower. The value 
of MIN_POPSIZE should be chosen so that it is quite small (≈5), 
regardless of the number of variables. As a side note, the GA with 
no population reduction is a special case of the adaptive method 
where ∆fmax .best = 0

The final modification to a GA for multiple regressions is the 
use of “binary tournament” instead of proportional selection. In 
this selection scheme, two chromosomes are chosen at random, 
and the one with the lower ICOMP value is selected for the mat-
ing pool. Then both chromosomes are put back into the pool of 
contestants of the tournament. One advantage of this technique is 
that ICOMP values need only be calculated for the chromosomes 
that participate in the tournament. For models with few explana-
tory variables, this gain in computation may be negligible. On the 
other hand, for those models with many variables, the reduction 
in computation means that more generations can be used, or the 
initial population can be larger. When the population is being 
reduced, genetic drift may be amplified, since the sampling space 
for the next generation decreases. Proportional selection may 
increase this effect because a few chromosomes with extremely 
high fitness are expected to be picked often for the mating pool. 
However, selection to participate in the tournament is random, 
avoiding the over-selection of chromosomes with extremely large 
fitness values.

To test the benefits of these modifications, we used the data 
set in Bozdogan (2004) where the predictive model is constructed 
for body fat and 13 explanatory variables. In order to determine 
how well the GA was performing, all subsets of the variables 
(214 − 1 = 16,383 subsets) were used to generate a model, and then 
the ICOMP value was determined. This way, the subset yielding 
the least complex model was found. Testing was done to ensure the 
same ICOMP values were being generated for the MATLAB and 
Java code. We performed comparisons between Bozdogan’s original 
setup and four cases with our modifications. These cases differed 
in the value of ∆fmax ,best  and as a result in the initial population size. 
All trials were allowed 600 computations, where a computation is 
the total number of chromosomes summed over every generation. 
Table 2 gives the parameters that were the same for all different 
setups. Each different GA scheme ran through 200 trials and the 
number of times the correct model was selected was recorded. 
Table 3 gives the results.

Conclusion
While model selection remains to be a difficult procedure in case of 
a large number of parameters, using a GA to find the least complex 
model can be quite helpful. We have shown that our modifications 
to the original GA for model selection can yield strong results. 

amount of computation. First, we discuss the modifications, and 
then we explain the study done to determine the effectiveness of 
these modifications.

The first modification is changing how the initial population was 
created. According to Fisher’s Fundamental Theorem of Natural 
Selection (Fisher, 1930), the increase in mean fitness is equal to 
the variance in fitness. For model selection using GAs, the easiest 
way to increase variance in fitness would be to allow every model 
to be represented in the population. Of course, this is impossible 
for a model with a large number of possible explanatory variables, 
and would amount to doing an exhaustive search. We believe that 
the next best procedure is to force the population to start with the 
highest variance in each position of the chromosome. Since each 
position is either a 0 or 1, this would imply that at each position 
there are the same amount of 0’s and 1’s across the entire popula-
tion. To implement this procedure, half of the initial population 
is randomly generated. The other half is generated by taking each 
of the chromosomes in the first half and changing each bit from 
1 to 0 or 0 to 1. We call this process diversifying. In addition to 
increasing variance at each position, this procedure guarantees that 
within one generation, recombination alone could generate the 
best model. That is, every possible combination of explanatory 
variables is attainable within one generation. This does not imply 
that mutation is not necessary, as selection acts on the entire string, 
not individual positions. Since selection will reduce variance at each 
position, mutation is still required to maintain some variance.

The second modification is starting with a larger initial popula-
tion and then reducing it in size. We have used a reduction method 
that adapts to the changes in the algorithm in this study.

Adaptively reducing the population is done by calculating the 
change in the best fitness between two consecutive generations 
and then reducing the population based on this change. More 
specifically, the population is reduced by the percentage increase 
in best fitness up to some limit. Clearly, there must be a limit to 
the percentage of reduction, since the population should not be 
reduced too much, and also because the percent change can be 
more than 100. Here the amount of population reduction depends 
on the complexity of the problem, that is the type of the fitness 
function (such as MSE, AIC, ICOM, Mallow’s Cp and so on) used. 
This limit on the reduction may be determined by pilot studies. 
The percent change in fitness at generation t is denoted by ∆ft

best 
and the limit is denoted by ∆fmax .best  The change is calculated by the 
formula ∆f f f ft t t t

best best best best= −− − −| | | |1 2 2/ . The population size N(t) at 
each generation is given by the recursive relation

N t

f N f f

f N
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(9)

When using the adaptive method, “elitism” was also imple-
mented. Elitism is a procedure commonly used in GAs in order to 
pass the best chromosome, or a group of the best chromosomes, 
to the next generation without any modifications. Using elitism 
guarantees that the change in best fitness is always non-negative. 
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statistically the same accuracy if we employ diversification. In all 
trials, diversification never decreased accuracy. Along with the facts 
presented above and the fact that diversification is easy (and not 
costly) to implement, it is our recommendation that it be used for 
model selection using GAs.

Table 2 | Parameters that were the same for all genetic algorithm 

schemes.

Number of computations allowed	 600

Population size (without reduction)	 30

Number of generations (without reduction)	 20

Number of crossover points	 2

Mutation rate	 0.05

Table 3 | The frequency of the correct model being selected over 200 

trials. The first 4 schemes are with the modifications and the last is without.

GA scheme	 Frequency of correct solution

Adaptive ∆fmax
best = 0 	 0.915 

(no population reduction)

Adaptive ∆fmax .best = 0 1	 0.935

Adaptive ∆fmax .best = 0 2	 0.93

Adaptive ∆fmax .best = 0 3	 0.905

Bozdogan’s	 0.09
Additionally, the GA approach (because of the use of ICOMP) is 
better at handling data in which collinearity exist than the tradi-
tional selection methods such as forward, backward, and stepwise 
selection. In particular it is clear that the modifications had a large 
effect on the accuracy of the GA. All of the GAs which implemented 
our modifications significantly outperformed Bozdogan’s GA. This 
seems to indicate that we may reduce computation and still get 


