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Nowadays, many software solutions are currently available for simulating neuron mod-
els. Less conventional than software-based systems, hardware-based solutions generally
combine digital and analog forms of computation. In previous work, we designed several
neuromimetic chips, including the Galway chip that we used for this paper. These silicon
neurons are based on the Hodgkin–Huxley formalism and they are optimized for repro-
ducing a large variety of neuron behaviors thanks to tunable parameters. Due to process
variation and device mismatch in analog chips, we use a full-custom fitting method in
voltage-clamp mode to tune our neuromimetic integrated circuits. By comparing them
with experimental electrophysiological data of these cells, we show that the circuits can
reproduce the main firing features of cortical cell types. In this paper, we present the
experimental measurements of our system which mimic the four most prominent bio-
logical cells: fast spiking, regular spiking, intrinsically bursting, and low-threshold spiking
neurons into analog neuromimetic integrated circuit dedicated to cortical neuron simu-
lations. This hardware and software platform will allow to improve the hybrid technique,
also called “dynamic-clamp,” that consists of connecting artificial and biological neurons
to study the function of neuronal circuits.
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INTRODUCTION
In recent years, a new discipline called neuromorphic engineering
has emerged which challenges classical approaches to engineering
and computer research. There are two main aspects to neuro-
morphic engineering: neuromorphic modeling, which reproduces
neuro-physiological phenomena in order to increase the under-
standing of the nervous systems, and neuromorphic computation,
which uses the neuronal properties to build neurally inspired com-
puting hardware. Neuromorphic engineering proposes to fill the
gap between computational neurosciences, and low-power con-
sumption engineering (Mead, 1989). As alternatives to software-
based solutions (Brette et al., 2007; Davison et al., 2009) and
parallel graphics processors (GPUs) to alleviate the significant
computational cost (Wang et al., 2011), neuromorphic systems are
often based on custom integrated circuits (IC; Indiveri et al., 2011)
and systems (Misra and Saha, 2010). A neuromorphic system
could be digital, analog, or mixed. Brüderle et al. (2011) describes
a methodological framework for a fully automated translation
between PyNN domain and appropriate hardware configurations.
In our case, we chose an analog implementation of neuron models
while the communication between neurons is digital. The main
advantage of the analog implementation, compared to its numer-
ical simulation, arises from the locally analog and parallel nature
of the computations. Neuroscientists provide biological measure-
ments to computational neuroscientists who then propose a model
for simulation, and for studies of the single cell or neural network
dynamics. The chip designer uses this model for the design of
analog neuromimetic ICs (see Figure 1).

We wish here to reproduce the behavior of biological neurons
to extend the hybrid technique, also called “dynamic-clamp,” (Le
Masson et al., 1995) to Micro-Electrode Arrays (Bontorin et al.,
2007). This technique consists of connecting artificial and biolog-
ical neurons to create a real-time loop (Sorensen et al., 2004). A
review of the motivation for using the hybrid technique to study
biological cells can be found in Destexhe and Bal (2009). This tech-
nique has also been used with intracellular recordings to study
the transmission of information from the retina (implemented
by an analog retinal model of neuron) to the cortex through a
hybrid thalamic network composed of a biological thalamic relay
cell recorded in vitro and a model reticular cell providing feedback
inhibition onto the biological neuron (Le Masson et al., 2002). The
real-time feature of the hybrid technique extended to the Micro-
Electrode Arrays would allow us to study the properties of larger
biological networks. This extension of the hybrid technique has
never been done.

In previous work, we designed several neuromimetic chips
(Levi et al., 2008) included Galway chip that we used for this paper.
Galway includes analog operators to compute Hodgkin–Huxley
(HH) formalism and multi-synapses to build neural network.
Our analog IC was optimized for reproducing a large variety of
neuron behaviors thanks to tunable parameters. However the IC
does not guarantee that the use of parameters extracted from a
biological cell will reproduce the exact behavior of that cell. We
choose to compensate for the process variation and the device
mismatch through the tuning process. To demonstrate that our
neuromimetic IC can emulate the most important properties of
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FIGURE 1 | Design methodology (left-hand gray arrows) and validation

of an integrated neuromimetic circuit (Right-hand gray arrow).

biological neurons, we use electrophysiological recordings as a
reference.

To extend the hybrid technique, the aim is to build a bio-
physically realistic network model of the cerebral cortex which
incorporates the diversity of intrinsic cell properties in the cortex
by making use of reconfigurable integrated circuits (Saïghi et al.,
2011). Such ICs are designed with two goals in mind: firstly to
enable the construction of bio-realistic networks, and secondly to
offer the possibility of dynamically tuning the model parameters.
ICs are organized to form a simulation toolbox, so that a large
variety of models can be implemented in real-time. Although
our choice implies a costly design (Galway contains 105 pads,
around 50000 components, its area is 10.5 mm2, and is power
consumption is 550 mW), it is an interesting alternative to digital
computation in simulation platforms for computational neuro-
sciences in terms of simulation time–cost. For the simulation
of one neuron, hardware system is not really relevant but see-
ing further, for a large scale network, the hardware system will
be in real-time contrarily to the NEURON software. In addi-
tion, these ICs lead to neuromorphic network models that are
typically highly scalable and able to emulate neural networks
in real-time or much faster, independently of the underlying
network size.

The choice of neural model is important for designing an ana-
log tunable neuromimetic circuit. All models have advantages
and drawbacks (Izhikevich, 2004). In our case, where the hybrid
technique should allow one to better understand the biological
phenomena, the chosen model has to be the most biologically
plausible. We have no flops (floating point operations per sec-
ond) limitation for our design thanks to the analog computation.
Within the family of biologically plausible point neuron models,
there is a group of conductance-based models, in which ionic and
synaptic currents charge and discharge a capacitor representing the
neuron membrane. All of these models find their origins in the HH
model (Hodgkin and Huxley, 1952) which will be described in the
next section. Moreover, conductance-based models and real-time
processing at the sample level will be helpful for the hybrid tech-
nique. The neuroscientists can dynamically play with the model
parameters that have a biophysical meaning and observe the effects
on the biological cells.

Our chip, based on our library of analog operators, has a large
range of validity domains for the parameter to reproduce different
kind of neurons. The tuning of conductance-based analog neu-
romimetic chips has already been investigated by a few researchers
(Shin and Koch, 1999; Simoni et al., 2004; Rasche and Douglas,
2007; Yu and Cauwenberghs, 2010). However, none of them com-
pare their results with biological data. Simoni et al. (2004) and Yu
and Cauwenberghs (2010) validate the tuning notably thanks to
internal variables of the model which are not usually recorded in
biological cells. Rasche and Douglas (2007) and Shin and Koch
(1999) focus on the control of the firing rate versus stimulation.
This dependency between frequency and input currents is used for
the study of the network dynamic. However these neuromimetic
designs were never compared to biological data. Moreover, the
variety of implemented cell types is limited to the fast spiking
(FS) neuron (Yu and Cauwenberghs, 2010) and also the regular
spiking (RS) neuron (Shin and Koch, 1999; Rasche and Douglas,
2007). Only Simoni et al. (2004) presents more complex behaviors.
Additionally, the chip tuning of neuromimetic circuits is also a cur-
rent issue for other kinds of applications or models. Russel et al.
(2010), Orchard et al. (2008) use a genetic algorithm to reproduce
the activity of the Central Pattern Generator thanks to an adap-
tive integrate and fire model, while Brüderle (2010) has developed
a technique for reproducing the statistical characteristics of the
adaptive exponential integrate and fire model.

To fulfill our requirement, we selected the four most promi-
nent electrophysiological classes: “FS,” “RS,” “intrinsically burst-
ing” (IB), and “low-threshold spiking” (LTS) neurons, inspired
from the classification of Connors and Gutnick (1990). This subdi-
vision corresponds to classifying cells according to three qualitative
criteria: (1) presence or absence of spike-frequency adaptation; (2)
presence or absence of burst discharges from depolarizing stimuli;
(3) presence or absence of burst (or any other type of) discharge
following hyperpolarizing inputs (rebound response). In this
paper, we present their implementation in our analog/digital neu-
romimetic chip dedicated to the simulation of cortical networks
using the data and the electrophysiological recording presented in
Pospischil et al. (2008).

In Section “Materials and Methods,” we present the methods
that include the HH formalism, the implemented neural model,
and the chip tuning method. The material part of this section
presents the neuromimetic chip and the whole system for the
parameter optimization. This is followed by the Section “Results”
where we compare the biological and artificial neural behavior.
Finally, in the last section, we discuss the outlooks of this research
for improving the hybrid technique.

MATERIALS AND METHODS
THE HODGKIN–HUXLEY FORMALISM
We used the HH formalism as a design basis for our IC. Each
ionic channel is represented by a time and voltage-dependent
conductance: this electrophysiological description makes these
models particularly well-suited to an implementation involving
analog electronics. The main advantage of this formalism is that
it relies on biophysically realistic parameters and describes indi-
vidual ionic and synaptic conductances for each neuron in accor-
dance with the dynamics of ionic channels. Electrical activity of
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a neuron is the consequence of the diffusion of different ionic
species through its membrane. The HH formalism provides a
set of equations and an equivalent electrical circuit (Figure 2),
which describes the conductance interplay underlying the genesis
of action potentials.

The current flowing across the membrane is integrated on the
membrane capacitance, according to expression (1):

CM
dVM

dt
= −

∑
i

Ii + ILeak + IS (1)

where V M is the membrane potential, CM is the membrane capac-
itance, I i denotes the individual ionic currents of the model, I Leak

the leakage current, and I S is a stimulation or a synaptic current.
I i is the current for a given type of channel, and its associated
equation is:

Ii = gi · mp · hq · (VM − Ei) (2)

where g i is the maximum conductance; m and h are gating vari-
ables for activation and inactivation, respectively, representing the
fraction of open gates available at any given time and voltage.

E i is the ion-specific reversal potential and p and q are integers.
According to the first order differential Eq. 3, m relaxes back toward
its associated steady-state value m∞, which is a sigmoid function
of V M (4). The time constant for convergence is τm which is also
voltage-dependent of V M.

τm (VM)
dm

dt
= m∞ − m (3)

m∞ = 1

1 + exp
(
−VM−VOffset,m

VSlope,m

) . (4)

In (4), V Offset,m and V Slope,m are the offset and the slope of the
activation sigmoid respectively. The inactivation parameter h fol-
lows identical equations, except for the sign inside the brackets,
which is positive.

The original equations proposed by HH describe sodium,
potassium and leakage channels, with p = 3 and q = 1; p = 4 and
q = 0; p = 0 and q = 0 respectively, in expression (2). These chan-
nels are responsible for action potential generation. For more
complex activity patterns, such as bursting, rebound bursts or
the discharge of action potentials with adaptation phenomena,

FIGURE 2 | Equivalent electrical circuit of a neuron.

additional channels such as L-Type calcium channel for bursting
(p = 2 and q = 1), T-Type calcium channel for bursting (p = 2 and
q = 1) and slow potassium channel (p = 1 and q = 0) have to be
taken into account (Pospischil et al., 2008).

THE MODEL IMPLEMENTED IN OUR INTEGRATED CIRCUIT
We implemented in our chip the HH model with an approx-
imation: we use a fixed time constant in (3). We chose this
approximation to reduce the silicon area required by the neu-
ron implementation in the chip. Consequently the only difference
between the VLSI model and the HH models presented in Pospis-
chil et al. (2008) is the approximation used for the gating variable.
This approximation is obtained through the three following steps
(Chen et al., 2010):

(a) Calculating αx(V M) and βx(V M) from Pospischil et al. (2008)
over the range V M = [−100, 100] mV. The x subscript
represents the activation or the inactivation term.

(b) Identifying the V Offset,x and V Slope,x terms in the sigmoid
function that is equal to x∞ = αx(V M)/(αx(V M) + βx(V M)).

In addition, τx is calculated from τx = 1/(αx(V M) + βx(V M)) at
V M about −70 mV. Empirically, the choice of −70 mV is the best
value.

Four types of neurons (FS, RS, IB, and LTS) were emulated
in our experiments. Table 1 summarizes the parameter val-
ues extracted from Pospischil et al. (2008) and adapted for the
implementation in silicon.

Even though we validate the behavior of the chip with measure-
ments from biological cells, we also compare, thanks to MATLAB,
the software simulations of HH and the simplified models to verify
whether our approximation is accurate. Figure 3 presents the result
for the four neurons studied. We observe in Figure 3A that the sim-
plified FS model has dynamics comparable to the HH model, in
terms of frequency, voltage range. The main difference between
both lies in the waveform of the membrane voltage. Even though
its dynamic is similar apart from the action potential, the width
of the spike is larger for the HH simplified model. This differ-
ence appears for the four cases because we use similar values for
the sodium and potassium channels, which generate the action
potential and its shape. In Figure 3B, we see the behavior for
the RS neuron. The instantaneous frequencies at the beginning
are not the same even though the frequencies are identical after
the adaption. Moreover, we observe a difference for the adap-
tation time constant even though there is the same number of
spikes. This phenomenon is clearly due to the approximation of
the adaptation time constant. We have chosen to work in steady-
state conditions, which is justified mainly because cortical neurons
in vivo operate in states of intense and sustained firing activity
(Destexhe et al., 2003), in which case the adaptation mechanisms
are expected to be at steady-state most of the time. Considering
that the most important aspect is to obtain the same frequency
after the adaptation period, then this approximation is relevant.
The same observations about the initial and final frequencies can
be made for the IB neuron (see Figure 3C). The initial frequen-
cies are similar while the final frequencies are identical. For both
traces, there is the same number of spikes. As with the RS neuron,
our approximation is validated. Finally, we observe in Figure 3D
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Table 1 | Parameters of biological FS, RS, IB, and LTS neurons.

FS neuron RS neuron IB neuron LTS neuron

CM (μF/cm2) 1 1 1 1

Area (cm2) 1.4 × 10−4 2.9 × 10−4 2.9 × 10−4 2.9 × 10−4

gNa (mS/cm2) 50 50 50 50

ENa (mV) 50 50 50 50

τm (ms) 0.065 0.065 0.065 0.065

V offset,m (mV) −29.08 −29.08 −29.08 −29.08

V slope,m (mV) 6.61 6.17 6.44 6.54

τh (ms) 1.315 1.315 1.315 1.315

V offset,h (mV) −33.31 −33.31 −33.31 −33.31

V slope,h (mV) 3.98 3.91 3.98 3.98

gK (mS/cm2) 10 5 5 5

EK (mV) −90 −90 −90 −90

τn (ms) 1.066 1.066 1.066 1.066

V offset,n (mV) −29.08 −29.08 −29.08 −29.08

V slope,n (mV) 8.05 8.05 8.05 8.05

gLeak (mS/cm2) 0.15 0.1 0.01 0.01

ELeak (mV) −70 −70 −85 −85

gslowK (mS/cm2) 0.07 0.05 0.03

EslowK (mV) −90 −90 −90

τn (ms) 100 100 100

V offset,n (mV) −35.00 −35.00 −35.00

V slope,n (mV) 10.00 10.00 10.00

gCa (mS/cm2) 0.32 1.13

ECa (mV) 120 120

τq (ms) 1.422

V offset,q (mV) −33.00 −59.00

V slope,q (mV) 4.20 6.20

τr (ms) 448.7 21.00

V offset,r (mV) −57.51 −83.00

V slope,r (mV) 22.07 4.00

the LTS neuron response to depolarization stimulation current.
Even though the global behaviors are similar, we note that the
time when the spike occurs is different. We manually tried dif-
ferent values for the time constant of the calcium current (see
Table 1) and we choose the most acceptable. In the case of the
membrane voltage dynamics comparison, the approximations of
the time constants have a consequence on the spike shape and/or
on the spike frequency. We expected those differences, however,
as explained above, we compare the HH and simplified model
with software simulations to check if those approximations are
suitable. On the other hand, the validation of the neuromimetic
IC tuning will follow the protocol presented in Figure 1, which
shows a comparison of the IC measurements with electrophysio-
logical recordings, because we wish to emulate biological neurons
with our neuromimetic chip to build a bio-artificial network that
operates in real-time.

NEUROMIMETIC CHIP AND DEDICATED BOARD
Our goal is to build a neural simulator based on a hardware
implementation able to reproduce the dynamics of the biological
neurons. Our system is composed of our most recent chip called
Galway (Figure 4) and the dedicated board named Ekerö. This chip

includes analog operators for the computation of the HH formal-
ism, and for the construction of neural networks, multi-synapses
that consist of gathering all synaptic inputs in one electronic input
(Alvado et al., 2003).

Analog memories have been embedded to allow the storage
of the parameter values determined by the HH formalism. Taking
into account integration constraints of the microelectronic design,
and in order to increase its dynamic range and noise immunity,
we applied a ×5 gain factor to the biological voltages:

VVLSI = 5 · VBio. (5)

Let CVLSI and CBio represent the membrane capacitances of
artificial and biological neurons, respectively. The conduc-
tance mapping is proportional to the capacitance ratio as
gVLSI/g Bio = CVLSI/CBio. The current mapping then equals the
product of the voltage and conductance mappings, i.e.,

IVLSI = IBio · 5
CVLSI

CBio
. (6)

With the Galway chip, CVLSI = 3.3 nF and the biological neu-
rons have CBio = CM·Area with CM and Area given in Table 1.
The chip was designed in full-custom mode, based on a BiCMOS
SiGe 0.35 μm technology process from austriamicrosystems. This
IC contains five neurons: one FS neuron with three conductances,
four RS neurons with four conductances, and for IB or LTS neuron,
one additional conductance which can be connected to the last RS
neuron. Tuning all the neurons involves setting 205 V parameters.

This IC is embedded in a six-layer full-custom board called
Ekerö. This board hosts four Galway ASICs, representing a total
of 20 neurons. Several Ekerö boards have already been designed
for the next neural network experiments. Digital synaptic inputs
and spike detection outputs are individually connected to a FPGA,
which is connected to a host computer. This allows the user to send
and receive data to/from the chips. Some of the coaxial connectors
are used to provide analog outputs for the observation of ionic
currents and membrane voltages on an oscilloscope. The others
are used for analog inputs to stimulate the silicon neuron or to
impose a membrane voltage.

AUTOMATED TUNING SYSTEM FOR THE NEUROMIMETIC CHIP
The HH model is complex, and is strongly dependent on non-
linear equations involving a large number of parameters, which
ranges from 15 parameters for the very simple model of a FS neu-
ron to 28 parameters for neurons with more complex behaviors
(Table 1). The tuning of this model, in order to reproduce a given
neuronal signal, is thus difficult. Moreover, due to the fabrication
process, there are significant differences between the expected and
actual outputs of the chips (Saïghi et al., 2008). It is therefore
necessary to further adjust the parameters in order for the neu-
romimetic circuits’ outputs to agree with the neuronal activity. As
hand tuning is very time-consuming, due to the model’s sensitivity
to these parameter values and due to the large number of variables,
an automated tuning of the parameters is mandatory. In Rossant
et al. (2010), there is a software solution for automatic fitting of
spiking neuron models to electrophysiological recordings but this
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FIGURE 3 | Membrane voltage software simulations of the Hodgkin–Huxley model (dotted line), and model implemented in VLSI (solid line) for (A) FS

neuron, (B) RS neuron, (C) IB neuron, and (D) LTS neuron.

FIGURE 4 | Microphotograph of the chip Galway. Where, P is the part for
analog memories, C for conductance, and N1 for neuron 1.

fitting procedure could be very time-consuming both in terms of
computer simulations and in terms of code writing. A Systematic
method for configuring VLSI Networks of Spiking Neurons was
proposed by Neftci et al. (2011) that describes a parameter map-
ping technique that permits an automatic configuration of VLSI
neural network. For single cell models such as the HH model, tech-
niques based on ionic current recordings can be used to estimate
the parameters. The most well known method is the “voltage-
clamp” introduced by Cole (1949), and later used by Hodgkin and
Huxley (1952). We developed a new estimation method for the
characterization of the HH formalism (Buhry et al., 2011). This
method is an alternative technique to the estimation methods asso-
ciated with voltage-clamp measurements. It uses recordings in the
voltage-clamp mode, but is based on an evolutionary algorithm:
the differential evolution (DE) algorithm (Storn and Price, 1997).
Like genetic algorithm, DE belongs to the class of Evolutionary
Algorithms. It uses mechanisms inspired by biological evolution:

reproduction, mutation, recombination, and selection (Storn and
Price, 1997). Candidate solutions to the optimization problem play
the role of individuals in a population. DE consists in generating
a population of vectors which is the population of the whole indi-
viduals. The parameters contained in a vector are also called genes
that are, in our case, g i, τ, E i, V Offset, and V Slope. This population
is initialized randomly with a uniform law within the boundary
constraints of the model. Then, a new trial individual is built by
means of three operations: Differentiation, Recombination, and
Selection (Feoktistov and Janai, 2004).

The DE algorithm requires data recorded in voltage-clamp
mode, which involves the observation of one ionic current, when
membrane voltage levels are successively applied with different
steps. We use the host computer to control an oscilloscope and an
arbitrary waveform generator. The complete program has to drive
the instruments and the neuromorphic system, and also computes
the DE algorithm. Figure 5 shows a schematic diagram of the
experimental implementation described in the following steps:

– The user chooses the model set for the ionic current.
– The program successively transmits the population of parame-

ters and generates the different steps of the imposed voltage.
Each ionic channel is optimized separately.

– The computer stores the imposed voltages and the current
responses measured on the Ekerö board.

– The program calculates the theoretical current response, using
the model parameters and the measured imposed voltages. Then
it calculates the fitness or cost function to be minimized, that is
defined by the quadratic error between the theoretical current
response of an ionic channel and the current response of the
same ionic channel measured from the IC while the membrane
voltage is clamped.

– The program uses the DE algorithm (Differentiation, Recom-
bination, and Selection) to choose the new population of
parameters, before sending it back to the chip.
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FIGURE 5 | Schematic diagram of the automated tuning system.

However the chip tuning technique is not applied to the stim-
ulation current generator. Due to the process and component
mismatch, there is an error current between the expected and
actual current. Therefore, a conversion rule on the I Stim_Hard hard-
ware stimulation current is applied to compensate for that error
current. I Stim_Hard obeys the rule:

IStim_Hard = acomp · IVLSI + bcomp = 5acomp · IBio · CVLSI

CBio
+ bcomp.

(7)

We defined empirically acomp and bcomp parameters to match
the lowest and highest firing rates versus stimulation current in ref-
erence to the biological data. Finally, the hardware neuron model is
composed of the optimized parameters from the theoretical values
in Table 1, CVLSI and the pair acomp and bcomp from (7).

RESULTS
Pursuant to our goal of implementing the “prototypical” types of
neurons present in neocortex in VLSI hardware, we successively
consider the four different cell classes (FS, RS, IB, and LTS) and
show the results of our VLSI chip behavior after tuning. For the
comparison of the behaviors between the biological and the hard-
ware neurons, we implemented the parameters shown in Table 1,
in which all electronic values are converted into biological scale as
explained in Eqs 5–7, and all biological data are reproduced from
Pospischil et al. (2008).

FAST SPIKING NEURONS
The FS neurons correspond to inhibitory neurons. FS cells respond
to depolarizing pulses by producing high frequency trains of action
potentials without adaptation (Figure 6A). FS cells are also the
simplest kind of model, as only the conductances for generating
spikes (I Na, I K, I Leak) are needed. Figure 6B shows the hardware FS

FIGURE 6 | Membrane voltage of “fast spiking” neurons. (A) Response
of a fast spiking neuron based on ferret visual cortex in vitro (Pospischil
et al., 2008; experimental data from Thierry Bal, CNRS) to injection of a
depolarizing current pulse (0.7 nA). (B) Measurements of the FS hardware
neuron at a depolarizing current pulse (0.7 nA). The VLSI voltage
measurements are divided by 5 in the figure in accordance with (5).

neuron response with the application of a stimulation current. In
both cases, the stimulation current of 0.7 nA is applied for 125 ms.
We observe identical resting potential about −66 mV and similar
voltage range for the membrane voltage.

However, the comparison of the electrical behavior of the arti-
ficial neuron with the biological target must go further. We also
apply different current pulses for plotting the frequency–current
relations (firing rates) of the FS as shown in Figure 7. The FS neu-
ron has no adaptation, and thus its frequency is constant during
the stimulation. We plot in Figure 7A the average of the firing
rates for 40 FS neurons after the tuning step, we also plot the
variability of data using the error bars. The stimulation current
follows the rule presented in (6) so far. We observe the effect of the
electronic leakage current on the curves dispersion. In Figure 7B,
we apply Eq. 7. The hardware data plotted are the average and
the SD for the 40 neurons. For the biological reference, we take
the mean frequency for each stimulation current from Figure 3B
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FIGURE 7 | Frequency versus stimulation current curves of FS neurons.

(A) 40 VLSI FS neurons tuned with model parameters fromTable 1 and
automated tuning technique. The stimulation current follows the rule

IVLSI = 5·IBio·CVLSI/CBio. (B) Biological measurements of FS neuron from
Pospischil et al. (2008) and the 40 VLSI neurons with the rule (7) for the
stimulation current.

Table 2 |Theoretical and implemented parameter values for 40 FS

neurons.

Theoretical values Implemented values

Average SD

gNa (mS/cm2) 50 34.32 5.17

ENa (mV) 50 65.07 16.50

V offset,m (mV) −29.08 −33.88 8.59

V slope,m (mV) 6.54 7.56 2.26

V offset,h (mV) −33.31 −38.59 10.92

V slope,h (mV) 3.98 2.99 1.54

gK (mS/cm2) 10 6.61 3.51

EK (mV) −90 −108.87 22.46

V offset,n (mV) −29.08 −38.08 16.03

V slope,n (mV) 8.05 6.75 2.28

acompbcomp – 0.203 0.050

– 0.5 2.7 × 10−11

in Pospischil et al. (2008). The biological data are composed only
of four points. For each of those points, the artificial neuron
frequency matches to that of the biological neuron.

We present in Table 2 the parameter values for 40 FS neurons.
We do not present the results for the time constants because the
implemented values depend on external capacitors for which we
did not measure the exact value. The theoretical values are pro-
vided by the model. The implemented values are computed by
the optimization algorithm. In any event, we observed a large dis-
crepancy for all parameters which confirms the necessity of the
tuning step. The results for the RS are similar because the sodium,
potassium, and leakage currents are the same except for three para-
meters and the four new parameters for the I slowK channel present
the same characteristics. Due to the scarcity of data for the LTS
and IB, the statistical results are not meaningful. That is why we
will not present the same table for the RS, IB, and LTS neurons.

Thanks to the comparison of the membrane voltage and the fre-
quency versus stimulation current between biological and analog
hardware neuron, we conclude that the simplification of the model

and its implementation in silicon are well-suited to reproduce the
behavior of the FS neuron.

REGULAR SPIKING NEURONS
Another common cell class in neocortex is called the RS neuron,
which is in general excitatory and most often corresponds to spiny
pyramidal-cell morphology. The typical responses of RS cells to
depolarizing current pulses are trains of spikes with adaptation,
as illustrated for a typical RS cell from ferret visual cortex in vitro
(Figure 8A). The simplest model of RS cells consists of conduc-
tances for generating spikes (I Na, I K, I Leak; Traub and Miles, 1991),
and in addition, a slow potassium current activated by depolariza-
tion (Yamada et al., 1989). This model reproduces the typical firing
characteristics of RS cells as recorded in ferret visual cortex in vitro.
After tuning our chip following this four conductance model, we
apply a stimulation current of 0.7 nA for 200 ms as in the biologi-
cal experiment to compare the electronic and biological behaviors
(Figure 8B).

As for the FS neuron, we observe that the resting potential is
about −75 mV and the membrane voltage range is similar. More-
over, we observe in both cases a high frequency discharge on the
first part of the response and then the frequency decreases slowly
due to the adaptation phenomenon. The main difference between
the two traces in Figure 8 is the behavior during the period between
two spikes. We can also observe the same kind of difference in
Figure 1 from Pospischil et al. (2008). Thus we consider that the
hardware membrane voltage reproduces the biological behavior to
the utmost of its abilities.

The behavior of the two neurons has been investigated further.
We apply different current pulses for plotting the frequency–
current relations of the RS as shown in Figure 9. The RS neuron
has an adaptation channel, and thus we plot the instantaneous
frequency (inverse of the interspike time interval) for the first
and tenth spikes. Figure 9 shows the hardware firing rates for
the first and the tenth spikes from 20 RS neurons after apply-
ing the conversion rule presented in (7). We plot the average
and the SD for the 20 hardware RS neurons. For the biologi-
cal data, we plot the biological recordings presented in Figure 1
from Pospischil et al. (2008). The first spikes are similar for the
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FIGURE 8 | Membrane voltage of “Regular spiking” neurons.

(A) Intracellular recordings of regular spiking neurons in ferret visual cortex
in vitro (Pospischil et al., 2008; experimental data from Thierry Bal, CNRS).
Responses to injection of a depolarizing current pulse (0.7 nA). (B)

Measurements of the RS hardware neuron at a depolarizing current pulse
(0.7 nA) showing the typical response of a RS neuron, with spike-frequency
adaptation. The VLSI voltage measurements are divided by 5 in the figure in
accordance with Eq. 5.

hardware and the biological cells. The behavior for the tenth spike
is different, especially for the high frequency. However, one can
observe the same difference as with the original model in Figure 1
in Pospischil et al. (2008). The other intermediate instantaneous
frequencies do not match as well (not plotted here to avoid con-
fusing the figure). We can observe this phenomenon in Figure 8
where the firing frequencies at the beginning of the activity are
not identical. As explained in the section concerning the model
implementation in the chip, that behavior is the result of the
tradeoff between the firing rate after adaption and the adapta-
tion time constant to reach that adaptation. We decided to focus
more on the first feature. Despite the fixed adaptation time con-
stant, we reproduce the behavior of the RS neuron in terms of
the membrane voltage, and the spike frequencies before and after
adaptation.

FIGURE 9 | Frequency versus stimulation current curves of RS neurons.

Biological measurements of RS neuron from Pospischil et al. (2008) and the
20 VLSI neurons with the rule (7) for the stimulation current.

INTRINSICALLY BURSTING NEURONS
Another very common cell class is the IB neuron. The IB cells rep-
resent a few percent of the recorded cells in primary sensory cortex,
both in vivo and in vitro. This kind of neuron generates bursts of
action potentials following depolarizing stimuli and then the firing
rate decreases suddenly.

To generate the bursting behavior, we extended the previous
model of RS cell by adding the L-type calcium current. Because we
have few experimental recordings for this type of cell, the frequency
versus stimulation current may not be significant. For comparison,
we apply to biological and hardware neurons the same stimulation
currents in Figures 10A,B, respectively. For the weakest stimula-
tion currents (from 0 to 0.5 nA), we observe similar membrane
depolarization. For the 0.6-nA stimulation, we observe two spikes
in both cases even though the frequency in the biological cell is
higher. For the biggest stimulation currents (≥0.7 nA), we notice
an initial fast activity (the neuron repeatedly fires discrete groups
or bursts of spikes) followed by a train of action potentials. The
hardware neuron is in accordance with biological time scale. How-
ever, we can observe two differences. The first one is the behavior
of the membrane voltage between two spikes during the train of
action potentials. The VLSI membrane voltage has a hyperpolar-
ization behavior before a spike occurs. The second difference is
the duration of the initial fast activity. The high frequency lasts
longer for the VLSI neurons. Even though the membrane voltages
are comparable for the switching frequencies behavior, the effect
of the L-type calcium current is to suddenly bring the neuron from
one spiking frequency to another. As in Pospischil et al. (2008), we
reproduce the IB cell behavior to the detriment of the duration
of the first oscillatory phase and the membrane voltage behavior
during the second phase. Those two differences were also observed
in the original model on Figure 6 in Pospischil et al. (2008). Con-
sequently, we consider in this case that we adequately reproduce
the targeted biological behavior.
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FIGURE 10 | Membrane voltage of “Intrinsically bursting” neurons.

(A) Intrinsically bursting (IB) cell from guinea-pig somatosensory cortex
in vitro modified from Pospischil et al., 2008; experimental data from
Cyril Monier and Yves Frégnac, CNRS). Response to different

depolarizing current pulses. (B) Measurements of the IB hardware
neuron at same depolarizing current pulses. The VLSI voltage
measurements are divided by 5 in the figure. The stimulation current
follows the rule (6).

LOW-THRESHOLD SPIKING NEURONS
In Destexhe et al. (2001),LTS activities are described in a significant
fraction (about 10%) of intracellularly recorded cells in cat asso-
ciation cortex in vivo. These LTS neurons generate adapting trains
of action potentials in response to depolarizing current injection,
similar to the classic“regular spiking”response of cortical neurons.
In addition, they generate a burst of action potentials in response
to injection of hyperpolarizing current pulses (Figure 11C). This
property was also identified in deep layers of guinea-pig cerebral
cortex in vitro (De la Peña and Geijo-Barrientos, 1996) and was
shown to be due to the presence of the T-type (low-threshold)
calcium current.

In this case, we extended the previous model of the RS cell by
adding the T-type calcium current. As for the IB, the recordings
obtained from the LTS neuron are rare. The main comparison is
also the behavior of the membrane voltage. The positive stimula-
tion currents in Figures 11A,B show the“regular spiking”behavior
of the LTS cell. The firing rate decreases while the stimulation cur-
rent is applied. In both cases, the initial value of the membrane
voltage is equal to −70 mV for a DC current equal to −0.11 nA.
As for the RS cell, the frequency of the hardware neuron is higher
than the biological cell. This behavior is consistent due to the
very similar parameters of RS and LTS cells in Table 1. The neg-
ative stimulation currents produce the rebound burst activity in
Figures 11C,D. The initial values of the biological cell are different
in Figures 11A,C due to different DC stimulation current, which

are equal to −0.056 and −0.11 nA for the biological and VLSI
neuron, respectively. When the stimulation current is applied,
the hardware LTS is less depolarized than the biological neuron.
However, when the stimulation ends, our hardware LTS neuron
reproduces the same behavior than the biological cell. We also
observe a slightly higher depolarization for the hardware neu-
ron with −0.09 and −0.24 nA current stimulation. For −0.36 nA,
one spike occurs in both cases. We consider that we adequately
reproduce the targeted biological behavior of the LTS cell.

DISCUSSION
The understanding of neuronal circuits is a great challenge which
involves a large number of researchers from different disciplinary
fields. All strategies, including neuromorphic engineering, con-
tribute to that understanding. Even though Mead (1989) defined
neuromorphic engineering as the use of the characteristics of
analog components for neuronal computation, modern neuro-
morphic designers implement analog, digital, or mixed systems.
Among all neuromorphic designs, we notice that a few groups
use conductance-based-model, which belongs to the most bio-
logically plausible single point model, with parameters tuned
to understand the biology (Shin and Koch, 1999; Simoni et al.,
2004; Rasche and Douglas, 2007; Yu and Cauwenberghs, 2010).
However these neuromimetic designs were never compared to
biological data. Additionally, we notice that the chip tuning of
neuromimetic circuits is also used with integrate and fire model
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FIGURE 11 | Measurements of LTS-Bursting behavior. Response of
biological LTS cells from rat somatosensory cortex in vitro (Pospischil et al.,
2008; experimental data from Maria Toledo-Rodriguez and Henry Markram,
EPFL) to (A) depolarizing and (C) hyperpolarizing stimulation pulses.

Measurements of the LTS hardware neuron with the same (B) depolarizing
and (D) hyperpolarizing stimulation currents applied. The VLSI voltage
measurements are divided by 5 in the figure. The stimulation current follows
the rule (7).

(Orchard et al., 2008; Russel et al., 2010) and adaptive exponential
integrate and fire model (Brüderle, 2010) to reproduce biological
network activities.

In our case, we wish to insert silicon neurons among biological
neurons. We decided to qualitatively compare the dynamics of our
silicon circuit to biological cells with a level of details that was never
done with silicon neuron. To reach our goal, we propose a simpli-
fied version of the HH formalism and the appropriate parameter
sets of the FS, RS, IB, and LTS neurons that can be implemented in
our analog neuromimetic chip. The models considered here are the
simplest types of biophysical models where the intrinsic properties
arise from voltage-dependent conductances which are described
by differential equations (HH type models). The main motivation
for this model type is the strong correspondence of their parame-
ters with those in biology. We used the fixed time constant for the
gating variables to simplify the model and validated this simpli-
fied model thanks to the comparison with software simulations
for the four neuron types. We then tuned our chip following those
models and a full-custom and dedicated technique. This optimiza-
tion method, based on the DE algorithm proposed in Buhry et al.
(2011), is an alternative to the estimation methods associated with
voltage-clamp measurements. In any event, we observed a large
discrepancy for all parameters which confirms the necessity of the
tuning step. As with any circular problem, we chose an arbitrary

starting point to solve it. Even though the optimization phase of
our tunable chip is time-consuming, we will save time in the emu-
lation phase thanks to three features. First, our chip requires only
one tuning of its parameters. The parameter sets are then stored
in a database and the required parameters are loaded into the chip
as needed to emulate any given cell type. Second, the model para-
meters can be modified on-line at any time. Third, the neuron
type can also be modified on-line by connecting/disconnecting an
ionic channel and/or modifying a few parameters. For example, the
burst in IB cell can be modulated by the value of the conductance
or time constants of the calcium current. All these on-line changes
take only a few microseconds. This will enable the user to alter
parameters in order to study their effect on the dynamic of the bio-
logical network. Finally,we tested the parameters obtained by com-
paring the behavior of the membrane voltage in the recordings of
biological cells with membrane voltages simulated with our chip.
This comparison is doable thanks to the translations rules between
biological and hardware neurons based on the chip characteris-
tics. We directly compare the behavior of our chip with biological
recordings. Our results show that our system is able to reproduce
the main features of four common classes of cortical cells.

In the near future, we plan to tune hundreds of neurons and
create a large artificial network composed of 10% of IB and LTS,
20% of FS and the remainder of RS neurons. These neuromimetic
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chips will be embedded in a full-custom system that will allow us
to scale up the neuromimetic network to about 100 real-time and
biophysically realistic neurons. This system will help be useful for
understanding neural network dynamics using the hybrid tech-
nique. The hybrid technique has already provided some valuable
results at the single cell and small network levels. Any extension of
the hybrid technique to larger networks should contribute to the
understanding of neuronal circuit function. The following charac-
teristics are necessary: (a) operate in biological real-time, (b) use
biophysically realistic models, and (c) permit tuning. Thanks to
the parallel nature of the computations, the analog design can eas-
ily have real-time characteristics even for the most accurate neural
models. However, for the system to be truly useful, the chip design-
ers must propose an associated tuning technique for it. All of these
specifications are included into our system. Then compared with
the original hybrid technique where one artificial neuron was con-
nected to one biological cell (Le Masson et al., 2002), a network this

large will be enough to employ the hybrid technique with Micro-
Electrode Arrays composed of 64 electrodes. Due to the parallel
nature of the circuit, the real-time properties of our system will
easily be preserved independently the number and the complexity
of the emulated neurons. This extension of hybrid technique has
never been done.
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