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The specification of motor neuron (MN) subtypes and columnar organization in developing
spinal cord is controlled by multiple transcription factors. FoxP1 drives specification of lat-
eral motor neuron (LMN) subtypes, and we demonstrated in our previous work that FoxP1
expression levels are regulated by the microRNA miR-9. Here we show that ectopic FoxP1
expression in the chick spinal cord can rescue Lhx3 and Hb9 expression in MNs altered by
miR-9 over-expression, demonstrating that FoxP1 is a critical functional interaction partner
for miR-9 in LMN development. Moreover, we have optimized a technique called a miRNA
sponge in vitro, to permit easy discovery of the role of individual miRNA in vivo using a
loss-of-function approach. We here show that narrow spacing between binding sites, inclu-
sion of a coding gene, and optimizing the number of miRNA binding sites can significantly
increase the blocking ability of a sponge. We go on to show that a miR-9 sponge reduces
detectable miR-9 in the ventral horn, preventing miR-9 silencing of FoxP1 in vivo, and in
turn modifies MN subtypes in the spinal cord. Our designs for optimized sponges provide
a knockdown tool that is ready to be used to study the function of miRNA in vivo, and in
particular for generating transgenic animal models.
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INTRODUCTION
In developing spinal cords, motor neurons (MNs) are specified
from progenitors under the control of cross-interactions of mul-
tiple transcription factors (Jessell, 2000; Goulding, 2009). MN
subtypes are further organized into columns that project axons
into distinct target muscles. For instance, medial motor col-
umn (MMC) neurons innervate axial muscles, and lateral motor
columns (LMC) innervate limb muscles (Dasen et al., 2003, 2005;
Shah et al., 2004; Wu et al., 2008; Jung et al., 2010). Previous
studies have shown that proper expression levels of FoxP1 are
critical for determining LMC or MMC MN fate (Dasen et al.,
2008; Rousso et al., 2008). Furthermore, our own work indi-
cates that microRNA (miRNA) miR-9 plays a role in optimizing
FoxP1 expression levels and subsequently modifying MN subtypes
(Otaegi et al., 2011).

MicroRNAs are a class of ∼22 nucleotides (nt) endogenous
non-coding RNAs (Lee et al., 1993; Wightman et al., 1993). Mature
miRNAs bind to complementary sequences in the 3′-untranslated
region (3′-UTR) of target messenger RNAs (mRNAs) and nega-
tively regulate these targets by degrading the mRNA or repressing
its translation (Carthew and Sontheimer, 2009; Kim et al., 2009).
Emerging studies have shown that miRNAs have a broad impact
on embryogenesis (Huang et al., 2011; Suh and Blelloch, 2011),
tumor formation (Esquela-Kerscher and Slack, 2006; Zhang et al.,
2007), and are implicated in numerous human diseases (Huang
et al., 2011).

Examining the functions of specific miRNAs, particularly using
genetic tools, has been challenging. The functions of several miR-
NAs have been demonstrated by generating miRNA knockout

mice (van Rooij et al., 2007; Xiao et al., 2007; Ventura et al., 2008;
Wang et al., 2008). However, many miRNAs are transcribed from
multiple loci, or have families with similar sequences. To avoid
functional compensation, one has to make double or triple knock-
out animals, which is costly and technically challenging. Further-
more, many miRNAs are transcribed or cleaved from intragenic
regions, complicating efforts to target them for deletion. Alter-
native approaches are required to investigate miRNA functions,
particularly in animal models.

A recent technological advance called the miRNA “sponge” has
been shown to block miRNA activity in both cultured cells and
animal models (Ebert et al., 2007; Gentner et al., 2008; Loya et al.,
2009; Ebert and Sharp, 2010). A miRNA sponge is an exogenous
transcript that contains multiple binding sites complementary
to a mature miRNA. The miRNA sponge can bind to endoge-
nous miRNA and block that miRNA’s silencing activity. Optimized
sponge design should block the activity of a whole miRNA family
that consists of identical or nearly identical isoforms of the mature
miRNA.

To examine miR-9 function in MN subtype formation, we have
developed optimized sponges to effectively block miR-9 silencing
activity in vitro and in vivo. We show that a shorter spacing between
binding sites and the inclusion of a coding gene in the transcript
increase the efficacy of the sponge, as does an optimized number
of binding sites. Moreover, we have found that miR-9 sponge can
repress the function of exogenous or endogenous miR-9 in vivo,
and can subsequently modify MN subtypes. Our studies provide a
guideline for investigating miRNA functions in cellular and animal
models using optimized miRNA sponge tools.
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MATERIALS AND METHODS
DNA CONSTRUCTS
For luciferase experiments, Gga-miR-9-1, Gga-miR-9-1-Mut, and
FoxP1 3′-UTR Luciferase constructs were used as described
(Otaegi et al., 2011). Briefly, a 289 nt genomic sequence
including the gga-miR-9-1 precursor was cloned into the
pCAGIG expression vector (mature miR-9 sequence: 5′-
TCTTTGGTTATCTAGCTGTATGA). The mutated version is iden-
tical except for three altered nucleotides in the seed sequences
of mature miR-9 and three matching nucleotides in the oppo-
site side of the precursor stem-loop (mutant miR-9 sequence:
5′-TCCTTAGGTATCTAGCTGTATGA). The FoxP1 3′-UTR con-
struct contains ∼1.8 kb of the chick FoxP1 3′-UTR including two
central predicted miR-9 binding sites.

For sponge oligo design, binding sites were designed as the
reverse complement of the full length mature miRNA sequence
with one deletion and two mismatches to create a bulge as
described in Gentner et al. (2008). Spacer regions of different
size were designed using the siRNA Wizard scrambled design
tool (http://www.sirnawizard.com/scrambled.php). Forward and
reverse oligos were ordered with one or two binding sites and
spacers of different lengths (Table 1). Oligos were annealed and
ligated together in pBSIIKS+ (Stratagene) at SpeI/XbaI sites. Con-
structs were sub-cloned into XbaI to finally contain 6, 12, or 24
binding sites. These sponges were then cloned into pCDNA3.1+
(Invitrogen) or attached to iCre as a 3′-UTR and then cloned
into pCDNA3.1+ for luciferase experiments. For in vivo electro-
poration experiments, all constructs were cloned into the pCAGIG
expression vector.

LUCIFERASE ASSAYS
Neuro2a cells were transfected using Lipofectamine 2000 (Invit-
rogen) using the manufacturer’s protocol. Plasmids were quan-
tified by UV spectrophotometry and used for transfection in a
3:1 ratio (miRNA:target luciferase constructs; Figure 2C); 9:3:1
ratio (sponge:miRNA:target luciferase constructs, Figures 2D and
3B,D); 1.5:3:1 ratio (sponge:miRNA:target luciferase constructs in
Figure 3F). pGL4.13 firefly luciferase (Promega) was used for 3′-
UTRs of targets. pGL4.73 renilla luciferase (Promega) was used as
a transfection control. Luciferase was measured using the Dual-
Luciferase Reporter Assay kit (Promega) using the manufacturer’s
protocol and read on a Victor3 1420 multilabel counter (Perkin
Elmer). Results are expressed as Firefly luciferase normalized to
Renilla.

IN OVO ELECTROPORATION
Electroporation was performed as previously described (Otaegi
et al., 2011). Briefly, Hamburger and Hamilton (HH) stage 10–12
chick embryos were electroporated unilaterally (five 50-ms pulses

at 25 V) with 1–3 μg/μl DNA or as indicated, using an ECM830
electro-squareporator (BTX). Embryos were analyzed 24 h later at
HH20, or 48 h later at HH24.

TISSUE PREPARATION AND IMMUNOHISTOCHEMISTRY
Spinal cord tissues from the chick embryos were fixed in 4%
paraformaldehyde (PFA) in PBS overnight, incubated in 30%
sucrose in PBS, embedded in OCT, and stored at −80˚C until
use. The spinal cords were sectioned (14–18 μm) using a cryostat.

For antigen recovery, sections were incubated in heated (95–
100˚C) antigen recovery solution (1 mM EDTA and 5 mM Tris,
pH 8.0) for 20 min and cooled down for 20–30 min. Before apply-
ing antibodies, sections were blocked in 10% normal goat serum
in PBS with 0.1% Tween 20 for 1 h. Sections were incubated with
primary antibodies at 4˚C overnight and visualized using goat anti-
rabbit IgG Alexa Fluor 488, goat anti-mouse IgG Alexa Fluor 594,
or anti-guinea pig IgG Alexa Fluor 594 (1:350; Invitrogen) for 1 h
at room temperature. Images were captured using a Leica digital
camera under a fluorescent microscope (Leica). Primary antibod-
ies against the following antigens were used: Lhx3 (1:20, Develop-
mental Studies Hybridoma Bank), FoxP1 (1:100; kindly provided
by Dr. B. Novitch, University of California, Los Angeles, Los Ange-
les, CA, USA), green fluorescent protein (GFP; 1:500; Rockland),
and HB9 (1:20; Developmental Studies Hybridoma Bank).

MOTOR NEURON QUANTIFICATION
The total number of labeled motor neurons on electroporated and
non-electroporated sides of the spinal cord was quantified from
at least four sections (14–16 μm) showing strong eGFP expres-
sion collected from at least five electroporated embryos. Data is
shown as the difference in total number of a specific MN sub-
type between the electroporated and non-electroporated side of
the spinal cord. Statistical significance between experimental and
control groups was analyzed by two-tailed t -test. Data were shown
as mean ± SEM.

FoxP1 fluorescence intensity was measured in at least three
sections from each of at least three embryos. At HH stages 20 and
24, FoxP1 is expressed only in the ventral horn throughout the
cervical, thoracic, and lumbar regions of the spinal cord. Fluores-
cence intensity was measured using ImageJ (NIH) in identically
sized regions encompassing all FoxP1+ neurons in the ventral horn
and recorded as the intensity of the electroporated side divided by
that of the non-electroporated side of each sample.

RESULTS
FoxP1 IS A SPECIFIC TARGET FOR miR-9 IN MOTOR NEURON
DEVELOPMENT
Our previous work showed that miR-9 regulates MN subtypes by
targeting chick FoxP1 (cFoxP1) via two miR-9 binding sites in its

Table 1 | Sequences of oligos used to create miR-9 sponges.

miR-9 sponge-28 nt Forward: gacACTAGTtcatacagctagtgaccaaagaGAATATtcatacagctagtgaccaaagaTCTAGAcag

Reverse: ctgTCTAGAtctttggtcactagctgtatgaATATTCtctttggtcactagctgtatgaACTAGTgtc

miR-9 sponge-51 nt Forward: gacACTAGTtcatacagctagtgaccaaagaGTTCAGTAATTTCCAAACTCAGAATATAAtctagaCAG

Reverse: CTGtctagaTTATATTCTGAGTTTGGAAATTACTGAACtctttggtcactagctgtatgaACTAGTgtc

miR-9 sponge-64 nt Forward: gacACTAGTtcatacagctagtgaccaaagaGAAACATCATAGTATTGCTCGTAATTGGAGATATATTTAACAtctagaGAC

Reverse: GTCtctagaTGTTAAATATATCTCCAATTACGAGCAATACTATGATGTTTCtctttggtcactagctgtatgaACTAGTgtc
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3′-UTR (Figure 1A; Otaegi et al., 2011). Over-expression of miR-
9 significantly decreased numbers of FoxP1+ MNs but increased
Lhx3+ and HB9+ MNs in chick spinal cords, electroporated at
HH stages 10–11, and analyzed at stage 24 (Figures 1B,C,F,G).
As previously reported, we observed a reduction in the number of
FoxP1+ cells, and corresponding increases in the number of Lhx3+
and Hb9+ cells on the electroporated side of the spinal cord. If
FoxP1 is the critical target of miR-9, then restoring the FoxP1 cod-
ing sequence (CDS) alone, without its miR-9-sensitive 3′-UTR in
miR-9 over-expressing spinal cords should rescue altered MN sub-
types. Co-electroporating miR-9 with a small amount of FoxP1
CDS was able to rescue miR-9’s effects on MN production, as
detected by a reduced increase in the number of Lhx3+ and HB9+
MNs, compared to miR-9 alone (Figures 1D,F,G). We next elec-
troporated FoxP1 CDS alone. Consistent with previous results
(Dasen et al., 2008; Rousso et al., 2008), over-expression of FoxP1
CDS reduced Lhx3+ and HB9+ MNs (Figures 1E,H). Our results
indicate that miR-9 and FoxP1 have opposite effects on MN pro-
duction and FoxP1 CDS specifically rescues miR-9 effects on MN
subtypes.

BLOCKING miR-9 SILENCING ACTIVITIES USING A miRNA SPONGE
MicroRNA sponges, transcripts with complementary sequence to
mature miRNAs, have been used as a loss-of-function approach
to study miRNA function in vitro and in vivo (Ebert et al., 2007;
Gentner et al., 2008; Loya et al., 2009; Ebert and Sharp, 2010).
Previous work has shown that sponges containing bulged miRNA
binding sites can block a miRNA from silencing its endogenous
targets (Figure 2A).

To block miR-9 silencing activities in vitro and in vivo, we
designed a complementary sequence called miR-9 sponge, which
contains no other predicted miRNA binding sequences (Figure 2B;
Table 1). We first tested miR-9 targeting effects on FoxP1 3′-UTR
using luciferase assays. The 3′-UTR of cFoxP1 was cloned into a
luciferase construct. The activity of luciferase was greatly reduced
by miR-9, but not by a miR-9 construct with three deactivating
mutations in the seed sequence (miR-9-Mut), when the luciferase
construct contained the cFoxP1 3′-UTR (Figure 2C). Luciferase
constructs containing no 3′-UTR were unaffected by miR-9. Our
results indicate that miR-9 specifically targets FoxP1 3′-UTR.

Since miRNA sponges are able to block miRNA repression of
a target gene, we next co-transfected miR-9 and miR-9 sponge
in a luciferase assay. The miR-9 sponge transcript containing six
closely spaced (6 nt spacer) binding sites was able to rescue the
knockdown effect of miR-9 on FoxP1 3′-UTR, while a similarly
designed sponge construct with scrambled binding sites had no
effect (Figure 2D). These results indicate that miRNA sponges can
be used to block miRNA silencing activities on target genes.

OPTIMIZATION OF miR-9 SPONGE DESIGN TO BLOCK miR-9 SILENCING
ACTIVITY
In order to achieve the most effective and repeatable knockdown
of endogenous miRNA activities in vitro and in vivo using miRNA
sponges, we optimized sponge design using miR-9 sponge as an
example.

Existing sponges have used 6–8 nt separation space between
miRNA binding sites. A recent study has shown that the RNA

induced silencing complex (RISC) provides RNase protection for
46–62 nt in the 3′-UTR of target mRNAs (Chi et al., 2009).
This suggests that using increased spacing between miRNA bind-
ing sites in sponge design might allow more RISCs to bind
and thus increase miRNA knockdown effects. To test this, we
generated miR-9 sponge constructs with 6, 29, and 42 nt spac-
ers separating miR-9 binding sites (the spacers contain no
miRNA binding sites). These spacers created binding sites of
different lengths for the RISC: 28, 51, and 64 nt respectively
(Figure 3A). Luciferase assays demonstrated that all three sponge
constructs were able to interfere with miR-9 induced silencing
activity (Figure 3B). There was no discernable blockade of miR-
9 silencing from sponges with scrambled binding sites. Oppo-
site to our prediction, using a shorter spacer between binding
sites in miR-9 sponges generated a stronger blockade of miR-9
activities.

Some sponge designs have put miRNA binding sites in the 3′-
UTR of a coding gene (typically a reporter such as GFP), while oth-
ers have simply generated a non-coding transcript. To test whether
a coding gene is able to maximize sponge function, we generated
miR-9 sponge constructs with and without a coding gene, here
using improved Cre (iCre) as an example. Using the most effec-
tive 6 nt spacer sponges we tested relative luciferase activity using
iCre-miR-9 sponge or miR-9 sponge alone (Figure 3C). miR-9
sponge alone was able to interfere with miR-9 silencing effects. But
the presence of the coding gene iCre resulted in stronger rescue
(Figure 3D).

Previous studies have shown blocking effects using different
numbers of binding sites in miRNA sponges, typically ranging
from 4 to 16 binding sites (Ebert and Sharp, 2010). To test whether
the number of binding sites in a sponge may affect the sponge’s
blocking ability, we generated constructs containing 6, 12, or 24
binding sites per sponge transcript (Figure 3E). miR-9 sponge
with 12 binding sites showed higher rescue effect on miR-9 silenc-
ing activity than sponges with 6 binding sites. miR-9 sponge
with 24 binding sites did not display the highest rescue effect
(Figure 3F). Moreover, when a higher concentration of sponges
was used, all three constructs were able to fully rescue miR-9
silencing activity (data not shown). These results suggest that the
optimal number of binding sites is greater than 6, and somewhere
around 12.

Taken together these results show that a miR-9 sponge opti-
mized for the most efficient function in vitro contains more than
6 but fewer than 24 binding sites, short spacers between binding
sites, and is expressed as the 3′-UTR of a coding gene.

miR-9 SPONGE BLOCKS miR-9 ACTIVITIES IN MN SUBTYPE
SPECIFICATION
To test whether miR-9 sponge functions in vivo, we examined
the effect of miR-9 and miR-9 sponge on FoxP1 expression levels
and MN subtype development in the chick spinal cord. A sponge
containing six miR-9 binding sites with the shortest spacers or
a similar scrambled control sponge were first co-electroporated
with miR-9 in the chick neural tube at stage HH10–12 and
analyzed at stage HH 24. Consistent with our previous results,
over-expressing miR-9 with control sponges caused a significant
reduction in the number of FoxP1+ MNs and subsequently a great
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FIGURE 1 | miR-9 regulates MN subtypes by a specific interaction with

FoxP1 in chick spinal cords. (A) Schematic of miR-9 binding sites in the
3′-UTR of chick FoxP1 (cFoxP1). The 3′-UTR of cFoxP1 is 3877 nt with miR-9
binding sites at positions 1881 and 2075. (B) In ovo electroporation
performed in chick spinal cords at HH stages 10–11 and analyzed at stage 24.
The electroporated side can be visualized by a reporter eGFP expression. In all
subsequent images the highlighted area in the spinal cord is shown and “+”
indicates the electroporated side of the spinal cord. (C) Over-expression of
miR-9 caused reduced numbers of FoxP1+ and increased numbers of Lhx3+

and HB9+ MNs. (D) Adding FoxP1 using co-electroporation of miR-9 and
FoxP1 coding sequence (CDS) restored numbers of Lhx3+ and HB9+ MNs
closer to control numbers. Co-electroporation of inactive mutated-miR-9
(miR-9-Mut) and FoxP1 caused similar phenotypes to expression of FoxP1
alone. (E) Over-expression of FoxP1 caused a significant reduction in Lhx3+

and HB9+ MNs. (F,G) Quantification of MN numbers affected by miR-9 or
miR-9-Mut alone or co-expressed with FoxP1 CDS. n > 5, Lhx3, *p < 0.02;
HB9, *p < 0.03. (H) Quantification of MN marker changes due to FoxP1
over-expression. n > 5, ***p < 0.002, *p < 0.05.
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FIGURE 2 | miR-9 sponges prevent miR-9 from silencing its targets. (A) A
scheme of miRNA sponge function. Under normal circumstances, miRNA
such as miR-9, loaded in RNA induced silencing complexes (RISCs), will bind
to their endogenous targets and silence target genes. In the presence of
sponge transcripts, however, miR-9 will bind to the exogenous binding sites
and be unavailable for silencing endogenous targets. (B) A miR-9 sponge

binding site, designed with an internal bulge, permits a specific interaction
with endogenous miR-9. (C) FoxP1 3′-UTR luciferase activity was significantly
reduced when co-expressed with miR-9, but not miR-9 mutation (miR-9-Mut).
n = 3, **p < 0.002. (D) miR-9 sponges, but not sponges with scrambled
binding sites (scr sponge), were able to relieve repression of miR-9 on FoxP1
3′-UTR, as detected by increased luciferase activity. n = 3, **p < 0.001.

increase of Lhx3+ and HB9+ MNs (Figures 4A,E). Interestingly,
co-electroporation of miR-9 sponge and miR-9 was able to par-
tially rescue the reduction of FoxP1+ MN numbers and resulted
in milder changes of Lhx3+ and HB9+ MNs, suggesting that miR-
9 sponge can block exogenous miR-9 silencing activities on the
target gene FoxP1 (Figures 4B,E). miR-9 sponge and scrambled
control sponge were next co-electroporated with miR-9-Mut con-
struct in the spinal cord. Neither miR-9-Mut nor scrambled sponge
displayed significant activity on FoxP1, Lhx3, or HB9 expression
(Figures 4C,E). However, miR-9 sponge caused an increase in
FoxP1 expression levels, as detected by FoxP1 fluorescent signal
intensity on the electroporated side of the spinal cord compared to
the non-electroporated side (Figure 4D). At the same time, slightly

fewer Lhx3+ MNs were detected (Figure 4E). Furthermore, in situ
hybridization for miR-9 showed that detectable miR-9 was reduced
in the ventral horn on the electroporated side of the spinal cord
in the presence of miR-9 sponge (Figure 4F). Together, these data
suggest that the sponge may be leading to a reduced concentra-
tion of mature miR-9, permitting higher expression of FoxP1 and
altering specification of Lhx3+ spinal MNs.

To further examine this finding, chick embryos were electro-
porated with mir-9 sponge alone or scrambled sponge alone at
low (0.5 μg/μl) and high (1.5 μg/μl) concentrations, evaluated at
HH 20, a time when FoxP1 expression is present, but endogenous
miR-9 is weak or absent; and at HH 24, when both are expressed
(Otaegi et al., 2011). FoxP1 fluorescent intensity was quantified
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FIGURE 3 | Optimization of miRNA sponge designs. (A) A scheme of
miR-9 sponge constructs with different spacers (separation) in between
binding sites. The CMV promoter was used to drive sponge expression. 6, 29,
or 42 nucleotides (nt) spacers with a 22 nt binding site permit a 28, 51, or 64
nt region respectively for one RISC to bind. (B) All miR-9 sponges blocked
miR-9 silencing activity on FoxP1 3′-UTR in luciferase assays. Shorter spacers

provided stronger blockade. n > 6, **p < 0.005. (C) Schematics of miR-9
sponge constructs with or without a coding gene. (D) Sponge constructs with
a coding gene showed significantly stronger blockade than those without.
n = 3, **p < 0.001. (E) Schematics of miR-9 sponge constructs with 6, 12, or
24 binding sites. (F) All sponges showed significant rescue with the optimal
number of binding sites being 12. n = 3, **p < 0.001.

in a region containing all FoxP1+ MNs in the ventral horn on
the electroporated versus non-electroporated side. FoxP1 inten-
sity was not changed by sponges on the electroporated side at HH
20, when miR-9 is weak or absent (Figures 5A,C,I). At HH 24, a
low concentration of miR-9 Sponge was unable to create an effect
(Figures 5E,I), but at high concentration, FoxP1 intensity was sig-
nificantly increased (Figures 5G,I). Scrambled sponge showed no
effect in any condition (Figures 5B,D,F,H,I). This demonstrates
that ectopic expression of miR-9 sponge blocks endogenous miR-
9 activity in a concentration dependent manner, and releases its
silencing of target gene FoxP1.

Together, these results indicate that miR-9 sponge reduces miR-
9 presence, effectively blocking its silencing activity in vivo and
revealing the role of endogenous miR-9 in MN fate decisions
(Figure 6).

DISCUSSION
Designing strategies to manipulate miRNA expression levels
in vivo is critical to understanding their function. In this study
we have optimized the design of miRNA sponges that can be used
to block miRNA silencing activity in vitro and in vivo. We have
used these sponges to block the function of miR-9 in the chick
spinal cord, revealing miR-9’s role as a direct regulator of FoxP1
expression and MN development. Our results are consistent with
previous reports showing that FoxP1 upregulation leads to altered
specification of the LMC (Dasen et al., 2008; Rousso et al., 2008).
Furthermore, our results provide a useful tool for further exam-
ination of miRNA function using loss-of-function approaches in
animal models.

Accumulating evidence has demonstrated the importance of
miRNAs in normal development and under disease conditions.
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FIGURE 4 | miR-9 sponges block miR-9 silencing activity in specifying

MN subtypes in developing spinal cord. (A) Co-electroporation of a
scrambled (scr) sponge with miR-9 caused a decrease in numbers of
FoxP1+ MNs and corresponding increase in Lhx3+ and HB9+ MNs. (B)

Co-electroporation of a miR-9 sponge with miR-9 partially rescued the
silencing effects of miR-9, as detected by increased numbers of FoxP1+

MNs and decreased numbers of Lhx3+ MNs. Numbers of HB9+ MNs
appeared to be less increased. (C) Co-electroporation of a scrambled
sponge with mutated-miR-9 (miR-9-Mut) caused no changes in MN
numbers or FoxP1 intensity (arrowheads). (D) Co-electroporation of a miR-9
sponge with miR-9-Mut was able to block endogenous miR-9 and caused
increased FoxP1 expression levels (arrowheads). (E) Quantification of MN
numbers affected by miR-9 sponge or scrambled sponges when
co-electroporated with miR-9 or miR-9-Mut. n > 5, FoxP1, **p < 0.007;
Lhx3 (with miR-9), **p < 0.006; Lhx3 (with miR-9-Mut), *p < 0.04. (F)

Electroporation of miR-9 sponge alone. In situ hybridization for miR-9
detected miR-9 in the ventral horn (arrowheads) of the non-electroporated
side, but was unable to detect miR-9 on the electroporated side.

Our previous work and this study have shown that the fate deter-
mination of MN subtypes in the spinal cord is controlled by
both transcription factors and interactions between miRNAs and
target genes (Otaegi et al., 2011). FoxP1 expression level is impor-
tant for specifying LMC MNs. It appears that the proper protein
output of FoxP1 is tuned by miR-9, which has overlapping expres-
sion with FoxP1 in LMC MNs. Over-expression of miR-9 silences
FoxP1 translation and causes a reduction in LMC MNs (Otaegi
et al., 2011). In this study, we have developed a miRNA sponge
tool to block endogenous miR-9 activity. Blocking endogenous
miR-9 allows stronger expression of FoxP1 and a mild reduction

FIGURE 5 | miR-9 sponges release repression by endogenous miR-9 in

a concentration dependent manner. (A + B) Electroporation of miR-9
sponges or scrambled sponges at low concentration (0.5 μg/μl) showed no
difference at HH 20. (C + D) Electroporation of miR-9 sponges or scrambled
sponges at high concentration (1.5 μg/μl) showed no difference at HH 20.
(E + F) Electroporation of miR-9 sponges or scrambled sponges at low
concentration showed no difference at HH 24. (G + H) Electroporation of
miR-9 or scrambled sponges at high concentration. miR-9 sponge showed
a significant increase in FoxP1 signal intensity at HH 24 (arrows). (I)

Quantification of pixel intensity on the electroporated side compared to the
non-electroporated side of the same spinal cord section. n > 5, **p < 0.01.

in Lhx3-expressing MNs. miR-9 expression mostly overlaps with
FoxP1 expressing MNs in the LMC, so it is not unexpected that the
LMC MN fate is not grossly altered by blockade of miR-9. Never-
theless, the subtle changes we see demonstrate that we are able to
increase and decrease the activity of a specific miRNA in animal
tissues to study its function in vivo (Figure 6).
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FIGURE 6 | Summary of techniques for manipulation of miRNA

expression levels in vivo. Over-expression of miR-9 silences endogenous
FoxP1, causing increases in numbers of Lhx3+ and HB9+ MNs,
demonstrating the ability of miR-9 to target those pathways. Conversely,
miR-9 sponges are able to block miR-9 silencing of endogenous FoxP1,
causing increased FoxP1 expression levels and a reduction in Lhx3+ MNs.
These design principles can be used for generating tools to investigate the
roles of miRNA in systems to which they can be introduced.

Investigating the role of miRNA in development using a loss-
of-function approach is a powerful tool. Modified oligos antisense
to the mature miRNAs have been successfully transfected into cul-
tured cells (Meister et al., 2004; Cheng, 2005). A similar technique
using tiny locked nucleic acids (LNAs) antisense to the mature
miRNA has shown some promise in animal models, but the oli-
gos cannot reach some tissues, most notably the central nervous
system (CNS; Obad et al., 2011). Cell permeable antisense oligos
called antagomirs have also been used to study short term loss of
miRNA functions in many animal tissues. However, like tiny LNAs,
antagomirs will not reach cells in the brain due to the blood–brain
barrier (Krützfeldt et al., 2005).

MicroRNA sponges offer a promising technique for gaining
insight into miRNA functions in vitro and in vivo. Many model
systems would readily express sponges, transcripts with sequence
complementary to a specific miRNA. The sponges are able to
reduce the amount of detectable miRNA in the cell, prevent-
ing the miRNA from regulating its putative targets. Due to the
highly similar sequences of mature miRNAs from different pre-
cursors, a single miRNA sponge can allow blockade of a whole
family of miRNAs. Moreover, because miRNA sponges can be eas-
ily cloned into plasmid DNA, sponges allow transfection in cells,
electroporation of tissues, and generation of transgenic animals
to block miRNA activity in vivo. For example, a miR-223 sponge
was introduced into mouse hematopoietic stem cells using a viral
transgene insertion (Gentner et al., 2008). Also, conditional trans-
genic flies were generated by ectopic expression of miR-8 sponges
driven by a UAS/Gal4 system (Loya et al., 2009). Plasmid based
sponges do have some of the delivery limitations of the oligo-based
approaches. However, because they are not chemically modified,
sponges can be expressed as transgenes, electroporated into tissues,
or infected into cultured cells for sustained expression.

Early attempts at sponge technology have used a fragment of
a target gene’s 3′-UTR, or a transcript containing a number of
sites designed to be targeted by the miRNA (Ebert and Sharp,
2010). We have worked to improve on sponge designs to gen-
erate the strongest blockade of miRNA induced silencing using
miR-9 as an example. We have hypothesized that due to the
RISC footprint previously published in RNase protection assays
(Chi et al., 2009), a larger spacer in between binding sites could
provide more efficient rescue. Our results tell a different story,
however, with shorter spacing producing stronger miRNA block-
ade. This could be due to changes in the outcome of miRNA
binding. With high complementarity to the miRNA, it is likely
that sponges get cleaved and degraded not long after being bound
by one or a few miRNA. Perhaps with the binding sites so close
together, there is some folding required to permit more RISCs to
bind, which prevents or delays sponge transcript degradation. This
could permit longer sequestration of a larger number of mature
miRNAs.

Moreover, we have predicted that attaching sponge binding sites
to the 3′-UTR of a coding gene would provide stronger miRNA
blockade than just as a free-floating transcript. As we expected,
this is the case. This result may be due to increased stability of the
transcript, or an improved ability to be transported to the cyto-
plasm where most silencing takes place (Ohrt et al., 2008). Finally,
we considered whether adding more binding sites per sponge tran-
script would allow stronger blockade. This also is the case up to a
point. It appears that a medial number of binding sites, such as 12
copies, is sufficient to significantly block miRNA silencing activity
in vitro. More binding sites do not seem to show stronger blockade.
Perhaps as predicted in previous work, more binding sites per tran-
script might lead to faster sponge degradation and lower blocking
ability (Ebert and Sharp, 2010). On the other hand, we have found
that a construct with only a few binding sites can fully rescue
miRNA silencing activity when it is expressed at a high concen-
tration. Therefore, to achieve high blockade of miRNA activities,
a high expression level of miRNA sponges is required in cells and
in tissues.

All of the designs we show here are able to partially relieve miR-
9 silencing in vitro, but some designs showed stronger blockade
than others. Achieving the strongest possible blockade is critical
for in vivo applications, and one of our designs is able to block
endogenous miR-9 activity in vivo. miRNA’s seed sequence based
targeting mechanism is fairly well conserved, so this result suggests
that our design could work for most miRNAs in most systems.
Once properly designed, a sponge can be constitutively expressed
in specific tissues in animal models using electroporation, or a
wealth of genetic tools, such as the Cre/loxP system in mice, to
achieve functional blockade of specific miRNAs in a spatial and
temporal manner opening up a new way to investigate miRNA
functions in development and diseases.
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