AUTHOR=Studer Bettina , Apergis-Schoute Annemieke , Robbins Trevor W., Clark Luke TITLE=What are the Odds? The Neural Correlates of Active Choice during Gambling JOURNAL=Frontiers in Neuroscience VOLUME=6 YEAR=2012 URL=https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2012.00046 DOI=10.3389/fnins.2012.00046 ISSN=1662-453X ABSTRACT=

Gambling is a widespread recreational activity and requires pitting the values of potential wins and losses against their probability of occurrence. Neuropsychological research showed that betting behavior on laboratory gambling tasks is highly sensitive to focal lesions to the ventromedial prefrontal cortex (vmPFC) and insula. In the current study, we assessed the neural basis of betting choices in healthy participants, using functional magnetic resonance imaging of the Roulette Betting Task. In half of the trials, participants actively chose their bets; in the other half, the computer dictated the bet size. Our results highlight the impact of volitional choice upon gambling-related brain activity: Neural activity in a distributed network – including key structures of the reward circuitry (midbrain, striatum) – was higher during active compared to computer-dictated bet selection. In line with neuropsychological data, the anterior insula and vmPFC were more activated during self-directed bet selection, and responses in these areas were differentially modulated by the odds of winning in the two choice conditions. In addition, responses in the vmPFC and ventral striatum were modulated by the bet size. Convergent with electrophysiological research in macaques, our results further implicate the inferior parietal cortex (IPC) in the processing of the likelihood of potential outcomes: Neural responses in the IPC bilaterally reflected the probability of winning during bet selection. Moreover, the IPC was particularly sensitive to the odds of winning in the active-choice condition, when the processing of this information was required to guide bet selection. Our results indicate an important role of the IPC in human decision-making under risk and help to integrate neuropsychological data of risk-taking following vmPFC and insula damage with models of choice derived from human neuroimaging and monkey electrophysiology.