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Song and Xiang (2006) developed an impulsive differential equations model for a two-prey
one-predator model with stage structure for the predator. They demonstrate the conditions
on the impulsive period for which a globally asymptotically stable pest-eradication periodic
solution exists, as well as conditions on the impulsive period for which the prey species is
permanently maintained under an economically acceptable threshold. We extend their
model by including stage structure for both predator and prey as well as by adding
stochastic elements in the birth rate of the prey. As in Song and Xiang (2006), we find the
conditions under which a globally asymptotically stable pest eradication periodic solution
exists. In addition, we numerically show the relationship between the stochastically
varying birth rate of the prey and the necessary efficacy of the pesticide for which the
probability of eradication of the prey species is above 90%. This is significant because
the model recognizes varying environmental and climatic conditions which affect the
resources needed for pest eradication.
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1. INTRODUCTION
It is well-known that a variety of pest species pose a serious
health risk to humans and pets, as well as causing great dam-
age to property and crops. For virtually all pest species, biological
eradication is biologically impossible or economically infeasible
(Zhang et al., 2007). However, it has been shown that with an inte-
grated pest management (IPM) approach, utilizing combinations
of pesticides, predator species, and prey disease, prey species can
be controlled at economically and environmentally feasible lev-
els. The IPM approach has been proven superior to either purely
biological control or chemical control (Song and Xiang, 2006).

A number of recent articles have mathematically modeled a
variety of IPM approaches using impulsive differential equations,
taking into account, for example, stage structure in the preda-
tor species and periodically varying environmental conditions
(Song and Xiang, 2006). In the current literature, similar models
also have been considered (Tang et al., 2005; Zhang et al., 2007).
These deterministic models assume fixed birth rates for the prey
species. As is more realistic in most ecosystems, we consider a ran-
dom birth rate following a prior distribution with a mean that
replaces the fixed birth rate of the previous models considered
in Zhang et al. (2003, 2005, 2007); Tang et al. (2005); Song and
Xiang (2006). This approach generalizes the model to accommo-
date random fluctuations, not just periodic fluctuations, in the
birth rate due to environmental and climatic factors. In ecosys-
tems, it is common for the reproductive behavior and fecundity of
insect species to be altered by varying environmental and climatic
factors such as temperature, light levels, and day length (Paulson
et al., 2009). The stochastic birth rate component in the proposed
model accommodates factors such as shortened day length and

lower temperatures, which may induce varying levels of egg pro-
duction (Paulson et al., 2009). Also, it recognizes that a fixed birth
rate really represents an “average” birth rate, which may produce
misleading results as to the resources necessary to ensure a high
probability of pest eradication. This is most important in cases in
which the population of the prey species is especially sensitive to
changes in the potency of the pesticide. This semi-deterministic
method is a novel approach. It can be applied to cases in which
a priori information is available for birth rate distributions, even
if it is not informative. The results we obtain will provide infor-
mation on the values of other parameters that will ensure a high
probability of eradication of the prey species under varying birth
rates of the prey species.

The present paper is organized as follows: In Section 2, we dis-
cuss our impulsive differential equations model, introducing the
essential variables and parameters. In Section 3, we use Floquet
theory and results from Song and Xiang (2006) to establish
conditions on the impulsive period for which our pest eradica-
tion solution is (i) locally asymptotically stable and (ii) globally
asymptotically stable. In Section 4, we introduce a right-skewed
distribution for the birth rate parameter b for the prey species.
We present numerical results showing the relationship between
the birth rate parameter b and value of E, the pesticide potency or
application effectiveness.

2. THE DETERMINISTIC MODEL
Our deterministic model consists of a prey species with a juve-
nile class x1 and a mature class x2, and a predator species with a
juvenile class y1 and a mature class y2. The prey species is born
periodically at time intervals of length T via a Ricker-type birth
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pulse b exp(−(x1(nT) + x2(nT))x2(nT), where b is the growth
parameter, as considered in the model in Tang and Chen (2002).
Immediately after the births, pesticide is sprayed, which kills a
fraction E of both the juvenile and mature prey classes, whereas
the two predator classes y1 and y2 are augmented by p1 and p2,
respectively. The prey population is also decreased due to pre-
dation by the mature predators only, with parameter r > 0. The
handling time of both x1 and x2 by the predator is h, and the
conversion rate of killed prey in excess of what is needed for main-
tenance into births of new predators is λ. For instance, if λ = 0,
then there is no effect of kills on predator births. Similarly, for
very small positive values of λ, the efficiency of conversion is min-
imal. This conversion rate expression was also used in the models
in Tang et al. (2005); Song and Xiang (2006). The maturity
rates for the prey and predator species are mx and my, respec-
tively. That is, 1/mi is the mean length of the juvenile period.
The death rate of the predator is μ. The model equations are
given by

x′
1(t) = −mxx1(t) − rx1y2(t)

x′
2(t) = mxx1(t) − rx2y2(t)

y′
1(t) = λr(x1(t) + x2(t))y2(t)

1 + rh(x1(t) + x2(t))
− (my + μ)y1(t)

y′
2(t) = myy1(t) − μy2(t)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

t �= nT,

x1(t+) = (x1(t) + b exp(−(x1(t)
+ x2(t))x2(t)))(1 − E)

x2(t+) = x2(t)(1 − E)

y1(t+) = y1(t) + p1

y2(t+) = y2(t) + p2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

t = nT. (1)

This is a system of impulsive differential equations, which
we consider only in the biologically meaningful domain D =
{(x1, x2, y1, y2) | x1 ≥ 0, x2 ≥ 0, y1 ≥ 0, y2 ≥ 0}. For details on
the theory of impulsive differential equations, we refer to the
reader to the monograph (Lakshmikantham et al., 1989). For
periodic solutions of such impulsive differential equations, see
Bainov and Simenov (1993). Furthermore, Lemmas 3.1 and 3.2
provide simple examples of such periodic solutions.

3. STABILITY
We will need the following lemmas for the arguments in this
section.

Lemma 3.1 (Song and Xiang, 2006). The system

u′(t) = a − bu(t), t �= nT

u1(t+) = u1(t) + p, t = nT (2)

u1(0+) = u0 ≥ 0

has a unique positive, periodic, globally asymptotic solution ũ with
period T, given by

ũ = a

b
+ p exp(−b(t − nT))

1 − exp(−bT)
, nT < t ≤ (n + 1)T, n ∈ N,

and

ũ(0+) = a

b
+ p

1 − exp(−bT)
.

For any other solution u(t) of the system, we have |u(t) − ũ(t)| → 0
as t → ∞.

Lemma 3.2 (Song and Xiang, 2006). Consider the subsystem

y′
1(t) = −(my + μ)y1(t)

y′
2(t) = myy1(t) − μy2(t)

}
t �= nT

y1(t+) = y1(t) + p1

y2(t+) = y2(t) + p2

}
t = nT. (3)

The subsystem (3) has the positive, periodic, globally asymptotic
solution

ỹ1(t) = p1 exp(−(my + μ)(t − nT))

1 − exp(−(my + μ)T)

ỹ2(t) = (p1 + p2) exp(−μ(t − nT))

1 − exp(−μT)

− p1 exp(−(my + μ)(t − nT))

1 − exp(−(my + μ)T)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

nT < t ≤ (n + 1)T,

with initial values

ỹ1(0+) = p1

1 − exp(−(my + μ)T)

ỹ2(0+) = p1 + p2

1 − exp(−μT)
− p1

1 − exp(−(my + μ)T)
.

⎫⎪⎪⎬
⎪⎪⎭ (4)

Theorem 3.1. The pest eradication periodic solution
(0, 0, ỹ1(t), ỹ2(t)) of system (1) is locally asymptotically stable if

T <
1

mx
ln

(
(b − 1)(1 − E) + exp(−rN)(1 − E)2

(1 − E)(1 + b) − exp(rN)

)
,

or equivalently, if

b <
(1 − exp(−rN)(1 − E))(1 − exp(−mxT − rN)(1 − E))

exp(−rN)(1 − exp(−mxT))(1 − E)
,

and globally asymptotically stable if

b <
1 − exp(−rN)(1 − E)

exp(−rN)(1 − E)
,

where

N = μp2 + my(p1 + p2)

μ(my + μ)
.

Proof. We first prove that the solution is locally asymptotically
stable using Floquet Theory for impulsive differential equa-
tions (see Bainov and Simenov, 1993). We begin by taking a
small amplitude perturbation (u1(t), u2(t), ỹ1(t) + v1(t), ỹ2(t) +
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v2(t)) of the pest eradication solution (0, 0, ỹ1(t), ỹ2(t)).
Linearizing, we obtain the system

d�(t)

dt
=

⎡
⎢⎢⎣

−mx − rỹ2(t) 0 0 0
mx −rỹ2(t) 0 0

λrỹ2(t) λrỹ2(t) −(my + μ) 0
0 0 my −μ

⎤
⎥⎥⎦�(t),

where �(t) is the fundamental solution matrix of the system
with �(0) = I, the identity matrix. The linearization of the pulse
behavior is given by

P =

⎡
⎢⎢⎣

1 − E b(1 − E) 0 0
0 1 − E 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

Hence, the monodromy matrix of the system is

M = P�(T)

=
⎡
⎣ (φ1 + b(φ2 − φ1))(1 − E) bφ2(1 − E) 0 0

(φ2 − φ1)(1 − E) φ2(1 − E) 0 0
∗∗ ∗ exp(−(my + μ)T) 0
∗∗ ∗ ∗ exp(−μT)

⎤
⎦ ,

(5)

where

φ1 = exp

(
−
∫ T

0
(mx + rỹ2(t))

)
dt

and

φ2 = exp

(
−
∫ T

0
rỹ2(t)

)
dt.

By Floquet Theory, the solution is locally asymptotically stable if
the absolute values of the eigenvalues of M are less than one. This
is always the case for the two eigenvalues exp(−(my + μ)T) and
exp(−μT). The other two eigenvalues are the eigenvalues of the
submatrix

M =
[

(φ1 + b(φ2 − φ1))(1 − E) bφ2(1 − E)

(φ2 − φ1)(1 − E) φ2(1 − E)

]
. (6)

The two eigenvalues of the matrix M are less than one in absolute
value if (see Li and Yang, 2011)

det(M) = φ1φ2(1 − E)2 < 1 (7)

trace(M) − 1 − det(M) = (φ1 + φ2 + b(φ2 − φ1))(1 − E)

−1 − φ1φ2(1 − E)2 < 0. (8)

Clearly, inequality (7) is always satisfied, and inequality (8) is
satisfied by the hypothesis. Hence, the solution is locally asymp-
totically stable.

We next prove the global attractivity of our solution following
the technique in Song and Xiang (2006). Choose ε1 > 0 and ε2 >

0 sufficiently small so that

δ = (1 − E)(1 + b)

exp

(
rε2T − r

(
p1 + p2

μ
− p1

my + μ
− myε1T

μ

))
< 1.

We observe that

ỹ′
1(t) ≥ −(my + μ)y1(t),

and consider the following comparison impulsive differential
equation:

z′
1(t) = −(my + μ)z1(t), t �= nT

z1(t+) = z1(t) + p1, t = nT (9)

z1(0+) = y1(0+) ≥ 0.

By Lemma 3.1, system (9) has a globally asymptotically stable,
positive, periodic solution

z̃1(t) = p1 exp(−(my + μ)(t − nT))

1 − exp(−(my + μ)T)
, nT < t ≤ (n + 1)T.

By the Comparison Lemma for impulsive differential equations
(see Lakshmikantham et al., 1989), we have

y1(t) ≥ z1(t) > z̃1(t) − ε1. (10)

From this inequality, we obtain

y′
2(t) ≥ my(z̃1(t) − ε) − μy2(t).

We next consider the comparison system

z′
2(t) = −my(z̃1(t) − ε) − μz2(t), t �= nT

z2(t+) = z2(t) + p2, t = nT (11)

z2(0+) = y2(0+) ≥ 0.

By direct calculation, we observe that for nT < t ≤ (n + 1)T,

z̃2(t) = −p1 exp(−(my + μ)(t − nT))

1 − exp(−(my + μ)T)

+ (p1 + p2) exp(−(μ(t − nT)))

1 − exp(−μT)
− myε1

μ

is a positive, periodic, globally asymptotically stable solution of
system (11). Again by the Comparison Lemma, we have

y2(t) ≥ z2(t) > z̃2(t) − ε2 (12)

for sufficiently large t.
Now let w(t) = x1(t) + x2(t). From the first two equations of

system (1), we obtain

w′(t) ≤ −rw(t)(z̃2(t) − ε2) (13)
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for nT < t ≤ (n + 1)T, and

w(t+) ≤ w(t)(1 + b exp(−w(t)))(1 − E) (14)

≤ w(t)(1 + b)(1 − E) (15)

for t = nT. For w(t), we consider the comparison system

z′
3(t) = −rz3(t)(z̃2(t) − ε2), t �= nT

z3(t+) = z3(t)(1 + b)(1 − E), t = nT (16)

z3(0+) = w(0+) = x1(0+) + x2(0+) ≥ 0.

By integrating from t = nT+ to t = (n + 1)T, we obtain

z3((n + 1)T) = z3(nT+) exp

(
rε2T − r

∫ (n+1)T

nT
z̃2(t)dt

)
, (17)

where ∫ (n+1)T

nT
z̃2(t)dt = (p1 + p2)

μ
− p1

my + μ
− mε1T

μ
.

We now obtain the stroboscopic map

z3((n + 1)T+) = z3(nT+)(1 + b)(1 − E)

exp

(
rε2T − r

∫ (n+1)T

nT
z̃2(t)dt

)

= z3(nT+)δ. (18)

Hence, z3(nT+) = δnz3(0+), and z3(nT+) → 0 as n → ∞.
Equation (18) has the unique equilibrium z∗

3 = 0, which is
globally asymptotically stable. Thus, system (16) has the glob-
ally asymptotically stable solution z̃3(t) = 0. We can con-
clude that limt→∞ w(t) = 0, and hence limt→∞ x1(t) = 0 and
limt→∞ x2(t) = 0, since x1(t) ≥ 0 and x2(t) ≥ 0.

We next show that limt→∞ y1(t) = 0 and limt→∞ y2(t) = 0.
For sufficiently small ε3 > 0, there exists T1 > 0 such that 0 <

x1(t) < ε3 and 0 < x2(t) < ε3 for all t > T1. The function

λr w(t)

1 + rh w(t)

is monotonically increasing for w(t) ≥ 0. Let

K = λrε3M

1 + rhε3
.

We now have
y1(t) ≤ K − (my + μ)y1(t).

Consider the comparison system

z′
4(t) = K − (my + μ)z4(t), t �= nT

z4(t+) = z4(t) + p1, t = nT (19)

z4(0+) = y1(0+) ≥ 0.

By Lemma 3.1, this comparison system has the positive, periodic,
globally asymptotically stable solution

z̃4(t) = p1 exp(−(my + μ)(t − nT))

1 − exp(−(my + μ)T
+ K

my + μ
.

Hence, for sufficiently small ε4 > 0 and large enough t, we have

y1(t) ≤ z4(t) < z̃4(t) + ε4. (20)

From the inequalities (10) and (20), we obtain

z̃1(t) − ε1 < y1(t) < z̃4(t) + ε4

for sufficiently large t. Letting ε1 → 0, ε3 → 0, and ε4 → 0,
we obtain z̃1(t) → ỹ1(t) and z̃4(t) → ỹ1(t) as t → ∞. Hence,
limt→∞ y1(t) = ỹ1(t).

Using the fourth equation from system (1) and the inequal-
ity (20), we obtain the inequality

y′
2(t) ≤ my(z̃4(t) + ε4) − μy2(t).

For this inequality, we consider the comparison system

z′
5(t) = my(z̃4(t) + ε4) − μz5(t), t �= nT

z5(t+) = z5(t) + p2, t = nT (21)

z5(0+) = y2(0+) ≥ 0.

This system has a periodic, globally asymptotically stable solution

z̃5(t) = −p1 exp(−(my + μ)(t − nT)

1 − exp(−(−my + μ)T)

+ (p1 + p2) exp(−μ(t − nT))

1 − exp(−μT)
+ my

μ

(
K

my + μ
+ ε4

)

for nT < t ≤ (n + 1)T. By the Comparison Lemma, we have

y2(t) ≤ z5(t) < z̃5(t) + ε5 (22)

for sufficiently large t. The inequalities (12) and (22) imply that

z̃2(t) − ε2 < y2(t) < z̃5(t) + ε5

for sufficiently large t. Letting ε2 → 0, ε3 → 0, and ε5 → 0,
we obtain z̃2(t) → ỹ2(t) and z̃5(t) → ỹ2(t) as t → ∞. Hence,
limt→∞ y2(t) = ỹ2(t). �
4. DISCUSSION
4.1. STOCHASTIC BIRTH RATE MODEL
In this paper, we consider an integrated pest management (IPM)
model with two stages for both predator and prey, where prey
births occur according to a birth pulse. We found conditions for
global stability of the pest eradication periodic solution. In par-
ticular, we express this relationship in terms of an upper bound
on b, the parameter in the birth pulse expression.

We now turn to the stochastic model. Specifically, we consider
the birth rate parameter b of the prey species given in system (1)
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FIGURE 1 | Three views of the percentage of runs with eradication for ordered pairs (E, b), where b is stochastic and E is deterministic.

to be random. As special case, we consider b to follow a right-
skewed distribution reflecting the ecosystem where small birth
rates are prevalent, while due to climatic changes, infrequent but
large spikes in the birth rate are probable. However, the approach
employed here can be easily implemented if a priori information
indicates a different birth rate behavior. In fact, even if no infor-
mation regarding the nature of the birth rate of the prey species
is available, one can still implement the model given herein by
simply using a uniform distribution for the birth rate, where all
possible values of the birth rate are equally likely.

The model in Song and Xiang (2006) considers only period-
ically varying environments, where the environmental and cli-
matic conditions follow a predictable pattern. Our model includes
the behavior of this model as a particular instance. In other words,
we extend the model given in Song and Xiang (2006) such that
environmental and climatic conditions of a more random nature
can be modeled.

5. CONCLUSIONS AND REMARKS
Here we seek a value of E, the pesticide potency or application
effectiveness, under randomly varying birth rates in an attempt
to maximize the eradication probability. Our approach with
stochastic birth rate parameter forms a class of models, which
accommodate a wide spectrum of cases where the eradication
probability depends not only on the pesticide use but also on the
abundance of the prey species.

In a model with deterministic birth rate, whether the erad-
ication occurs depends on the model parameters. Using our
model, with the introduction of a stochastic parameter, we cap-
ture the process of varying birth rates that result in a real-
ization for b, while holding all other values fixed and then
compute the probability of eradication. To be more specific,
we simulate a population of exponentially distributed birth rate

parameters with mean b. Next we check the proportion of
runs for which the total pest population is below a predeter-
mined tolerance after a given length of time, which we define
as eradication. Figure 1 depicts the probability of eradication
for given values of E and mean of b values. In this particular
case when the magnitude of the prey birth rate follows a right-
skewed random behavior with varying averages, the pesticide
amount or potency may be determined based on the eradica-
tion probability. As expected, large pesticide values while the
birth rates vary around a small mean result in high eradication
probability.

The graph in Figure 1 is obtained using arbitrarily chosen
fixed parameter values mx = 0.8, my = 0.7, r = 0.1, μ = 0.2,
h = 0.5, λ = 0.1, p1 = 0.4, p2 = 0.3, and T = 1. With these val-
ues and E = 0.5, local asymptotic stability of the pest eradication
solution occurs when b < 2.5985428. This is consistent with the
results shown in Figure 1.

We began this study by considering an integrated pest man-
agement IPM model in which prey births occur according to a
deterministic birth pulse. We established conditions for global
stability of the pest eradication solution in terms of the birth rate
parameter b of the prey species. We modified the model by con-
sidering b to be random. The stochastic version of our model
extends the model in Song and Xiang (2006) by allowing for
random environmental and climatic conditions. The stochastic
model more clearly explains the relationship between the birth
rate parameter b and the efficacy of the pesticide E needed for
pest eradication.
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