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A passive Brain Computer Interface (BCI) is a system that responds to the spontaneously
produced brain activity of its user and could be used to develop interactive task support. A
human-machine system that could benefit from brain-based task support is the driver-car
interaction system. To investigate the feasibility of such a system to detect changes
in visuomotor workload, 34 drivers were exposed to several levels of driving demand
in a driving simulator. Driving demand was manipulated by varying driving speed and
by asking the drivers to comply to individually set lane keeping performance targets.
Differences in the individual driver’s workload levels were classified by applying the
Common Spatial Pattern (CSP) and Fisher’s linear discriminant analysis to frequency
filtered electroencephalogram (EEG) data during an off line classification study. Several
frequency ranges, EEG cap configurations, and condition pairs were explored. It was
found that classifications were most accurate when based on high frequencies, larger
electrode sets, and the frontal electrodes. Depending on these factors, classification
accuracies across participants reached about 95% on average. The association between
high accuracies and high frequencies suggests that part of the underlying information did
not originate directly from neuronal activity. Nonetheless, average classification accuracies
up to 75–80% were obtained from the lower EEG ranges that are likely to reflect neuronal
activity. For a system designer, this implies that a passive BCI system may use several
frequency ranges for workload classifications.

Keywords: passive brain computer interface, common spatial pattern, driving simulator, workload classification,

adaptive automation, lateral control

INTRODUCTION
In contrast to an active Brain-Computer Interface (BCI) which
allows users to engage in volitional thought control of a device,
several BCI researchers have proposed to advance human-
computer interaction by triggering machine actions based on
inferences of the user’s current mental state, known as passive
BCI (Kohlmorgen et al., 2007; Cutrell and Tan, 2008; Zander
et al., 2010; Zander and Kothe, 2011). For example, Kohlmorgen
et al. (2007) showed that it is possible to classify mental work-
load elicited by a secondary task mimicking cognitive processes in
a real driving environment. Moreover, these classifications were
then used to switch on and off a tertiary task that mimicked
an interaction with the vehicle’s electrical devices that in turn
improved performance on the secondary task.

In the human factors and ergonomics literature, which tradi-
tionally focuses on overall system performance and safety critical
tasks, the potentially detrimental effects of both mental under-
load and overload have been a major research topic for decades.
Mental workload can be defined as a “reaction to demand” and
“the proportion of capacity that is allocated for task perfor-
mance” (de Waard, 1996). Mental underload and overload both
represent compromised functional states during which a break-
down of primary task performance is more likely (e.g., Hockey,
1997, 2003; see also Brookhuis and de Waard, 2010). Preventing

these hazardous functional states by maintaining mental work-
load or task demand within an acceptable range in real-time has
been the central goal of adaptive automation since the seventies
(Chu and Rouse, 1979; Hancock and Chignell, 1988; Rouse, 1988;
Parasuraman et al., 1992; Kaber and Prinzel, 2006).

A large part of adaptive automation literature is devoted
to determining the right moment of providing or withdraw-
ing task support, and several types of triggers may be avail-
able to optimize performance of a human-machine system (e.g.,
critical events and human task performance; see Parasuraman
et al., 1992). Therefore, the question arises as to what physio-
logical measures could offer in terms of improving the overall
system’s performance. The most important argument for the
inclusion of physiological measures in a control loop is their
potential for detecting user states that would otherwise remain
hidden. Human beings may exhaust themselves to protect pri-
mary task performance in demanding situations. While perfor-
mance protection is important for dealing with short bursts of
task demand, when exposed to longer periods of high work-
load, it may have affective costs such as increases in anxiety,
but also compensatory performance costs, such as neglecting
secondary tasks (Hockey, 1997, 2003). Since straining effort
expenditure has a neurophysiological base, the ability to reli-
ably classify workload using physiological measures could be
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used to offload a person, before performance effects become
apparent.

Traditional research approaches might not be well suited for
uncovering the underlying neurophysiological mechanisms that
could be used in a support system. As pointed out by Fairclough
(2009), the fundamental problem of using physiological mea-
sures is the complex relationship between user states, such as
mental overload, and their associated physiological variables.
Specifically, four physiology-to-state mappings can be distin-
guished (Cacioppo et al., 2000). In the most straightforward case,
there is a unique one-to-one mapping between a physiological
variable and the psychological construct. Such a unique, one-to-
one mapping would be ideal for an interactive system. However,
a one-to-one mapping that holds true in both the laboratory
and the field has to date not yet been found. A many-to-one
mapping is more complicated as several signals are needed to
infer a mental state. For example, heart rate, heart rate vari-
ability and blood pressure have been combined to infer mental
workload (e.g., Mulder et al., 2009). In a one-to-many mapping,
one physiological signal responds to a range of user states. For
instance, systolic blood pressure information was found to be
sensitive to excitement, frustration, and stress (Cacioppo and
Gardner, 1999). Lastly, the most common finding is a many-to-
many mapping where many signals are in fact sensitive to many
mental states. Ultimately, in an implicit human-machine con-
trol loop, a one-to-one or a many-to-one relation is required.
As briefly mentioned, another factor complicating the relation-
ship between physiological measures and user state is lack of
generalizability outside the laboratory setting where a mapping
was found. Simply put, a relation between a physiological mea-
sure and a user state found in the laboratory may not hold true
in a real world setting where environmental conditions are less
controlled.

Furthermore, due to large individual differences in physio-
logical responsiveness, traditional statistical tests might not be
suitable to uncover relationships that are valuable for implicit
machine control. Even in a repeated measures analysis of vari-
ance, where the variations due to individual differences are partly
taken out of the error term, the directions of effects within the
individuals need some consistency across individuals to reach sta-
tistical significance. While significant effects on a group level are
interesting from a fundamental point of view, individual patterns
are more relevant, when physiology is applied in human-machine
systems. In this respect, the feature extraction and classification
algorithms used by BCI researchers offer a promising way of
dealing with these limitations.

As shown by Kohlmorgen et al. (2007), driver support may
be linked to electroencephalogram (EEG) signals. Given the fact
that the driving task is increasingly demanding, due to increased
complexity of the road network, increased traffic intensity, and
the availability of potentially distracting in-vehicle information
systems, such as phones, (e.g., Carsten and Brookhuis, 2005),
accurate assessment of user state while driving might be used to
benefit driving performance. From driving behavior literature, it
is clear that besides mental workload, other, related psychologi-
cal constructs might be investigated for use in a support system.
At this point there is no consensus about the exact psychological

processes underlying driving behavior. Depending on the theo-
retical framework, the level of (subjective) risk, workload, or a
general feeling of comfort is either maintained or avoided (e.g.,
risk homeostasis theory, the zero-risk theory, risk allostasis the-
ory, safety margin model (Näätänen and Summala, 1976; Wilde,
1982; Fuller, 2005; Summala, 2005; see also: Lewis-Evans et al.,
2011). To make it even more complex, drivers alter the level of
workload in practice through behavioral adaptations. For exam-
ple, in demanding situations with high information density (e.g.,
complex variable message signs), narrow lanes or a winding road,
a driver may reduce speed, which will reduce the reaction time
requirements, and thereby avoids high workload levels (Hockey,
2003; Lewis-Evans and Charlton, 2006).

Ultimately, we would like to provide a proof of concept for a
passive brain-car interface that changes driving speed in response
to visuomotor workload, thereby keeping workload levels within
an acceptable range, similar to a human driver. However, in
preparation for this, we have first investigated the feasibility
of using EEG signals to classify between levels of lane keeping
demand in a driving simulator. For this, we applied subject-
specific Common Spatial Patterns (CSPs; e.g., Blankertz et al.,
2008). The main advantage of using the CSP technique is that it
maximizes the difference between two conditions by creating lin-
ear combinations of all included electrodes; spatial filters used to
produce CSP components. In this way, some electrodes contribute
more to the filtered signal(s) than others. These CSP components
are determined per participant and therefore, individual differ-
ences are accounted for. The most discriminative components are
then used to distinguish conditions.

Lane keeping demand was manipulated by changing driv-
ing speed, mimicking drivers’ natural behavior. Driving speed
was set relative to the participants’ comfortable speed, since the
effort that is required to keep the car safely on the road may
vary between drivers for absolute driving speeds. A relative high
driving speed is hypothesized to result in a relative high visuo-
motor workload. In addition, since the Standard Deviation of the
car’s Lateral Position (SDLP) reflects workload (e.g., Dijksterhuis
et al., 2011), an individually set target SDLP was presented to
the participants on the virtual windshield, urging drivers to show
less swerving behavior in the driving lane. A relative low tar-
get SDLP is hypothesized to result in a relative high workload
level.

MATERIALS AND METHODS
PARTICIPANTS
A total of 17 males and 17 females were recruited through social
media and poster announcements throughout the University of
Groningen and were paid 20 Euros for participation. A large
part of the participants were either Dutch or German students
at this university. Ages ranged from 21 to 34 years (M = 24.0;
SD = 3.0) and the participants had held their driver’s license for
3 to 15 years (M = 5.3; SD = 2.8). Self-reported total mileage
ranged from 3000 to 350,000 km (M = 53, 000; SD = 76, 000),
while the reported average annual mileage over the past 3 years
ranged from 1000 to 50,000 km (M = 9000; SD = 11, 000). None
of the participants reported on using prescribed drugs that might
affect driving behavior. The Ethical Committee of the Psychology
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Department of the University of Groningen has approved the
study.

SIMULATOR AND DRIVING ENVIRONMENT
The study was conducted using a fixed-base vehicle mock up with
functional steering wheel, indicators, and pedals. The simulator
runs on ST Software©which is capable of simulating fully inter-
active traffic. The three computers dedicated to the simulator
compute the road environment and traffic which are displayed
on three 32-inch plasma screens and provide a total view of the
driving environment of 210◦. In addition, three rear-view mirrors
are projected on the screens. A detailed description of the driving
simulator used can be found in Van Winsum and Van Wolffelaar
(1993).

For the experiment a two-lane road (each 2.75 m wide)
was prepared, without intersections and winding through rural
scenery. The road consisted mainly of easy curves (about 80%)
with a constant radius of 380 m and ranging in length from 120
to 800 m. The road surface was marked on the edges by a con-
tinuous line (0.20 m wide) and in the center by a discontinuous
(dashed) line (0.15 m wide). Outside the edges a soft shoulder was
present and there were no objects in the direct vicinity of the road.
In the driving direction of the participants, no traffic was present.
However, oncoming traffic, travelling between 76 and 84 km/h,
was generated with a random interval gap between 1 and 2 s,
resulting in 40 passing private vehicles per minute on average. The
speed of the participant’s vehicle was controlled by the simulator
for all rides during the experimental session, except for the initial
ride during which the participants drove the simulator car (width:
1.60 m) in automatic gear mode.

DESIGN AND PROCEDURE
Upon arrival at the experimental site of the University of
Groningen, a participant was informed in general terms with
respect to the experimental design, was requested to sign an
informed consent form, and asked to fill in a short questionnaire
mainly related to their driving experience. Hereafter, the partic-
ipant was given some time (ca. 7 min) to practice driving in the
simulator, before the sensors were attached. Next, a three minute
baseline recording was made while the participant sat in the sim-
ulator car chair and an aquatic movie played on the center screen
of the simulator.

After this baseline recording the participant completed 16
short rides. After each ride, the participant was requested to park
the vehicle on the side of the road and to provide an answer to two
brief questions (on subjective mental effort and estimated driving
speed). During the initial ride (140 s) the participant exerted both
longitudinal and lateral control over the vehicle and was asked to
find and drive at a speed that felt most natural and comfortable
in this situation while the speedometer was turned off to prevent
rule-based speed setting. The speedometer remained turned off
for the entire experiment. The mean speed and standard devia-
tion of the vehicle’s lateral position (SDLP) on the road during the
last 110 s of the initial ride represented the participant’s personal,
comfortable driving style. These parameters were saved and used
to set driving speed and target SDLP during the 15 remaining
rides.

During these 15 rides (130 s each), speed was set relative to
the participant’s comfortable speed (either −40, −20, 0, +20,
or +40 km/h). In addition, while speed was set at the comfort-
able driving speed, the participant was requested to keep SDLP
at either 0, −0.05, or −0.10 m relative to the initial SDLP, which
represent a normal, hard, or very hard task. For the other driving
speeds, the target SDLP was determined as follows. From a pilot
study (n = 9), using a similar roadway environment, it was found
that SDLP naturally increases as a function of speed. To compen-
sate for this effect and thereby creating five roughly comparable
steering challenges across speeds, another 0.03 m per speed level
was either added to or subtracted from the target SDLP. For exam-
ple, when driving 40 km/h slower than the comfortable speed
while the target SDLP condition was set at “very hard,” the
numerical target SDLP was set 0.10 + 2 × 0.03 = 0.16 m lower
than the comfortable SDLP as established during the initial ride.
Current values of SDLP were derived from a 15 s moving win-
dow which was updated every second and these were projected
onto the bottom of the windshield of the simulator while driving,
adjacent to the target SDLP. In this way a driver could moni-
tor real SDLP and compare it to the target. Accounting for the
time window and for the time the simulator needed to get to the
required speed, only the last 110 s of each ride was used in subse-
quent analyses. To be clear, the data used for this analysis were the
raw, not averaged, vehicle parameters. In total, the experimental
manipulations resulted in a within-subject design consisting of
two repeated measures factors with several levels: speed (5) and
target SDLP (3). The participants were exposed to these driving
conditions according to a randomized schedule.

After finishing the last ride, the baseline measurement
was repeated once more before all physiological sensors were
removed. Finally, the participants were debriefed and were paid
upon leaving.

DEALING WITH COLLISIONS
Occasionally, the participants were challenged to the point that
a collision with oncoming traffic could not be avoided. In total,
six participants were involved in 10 collisions which is 1.8% of
all experimental rides. Eight of these collisions occurred in a
+40 km/h speed condition. When a collision occurred, that par-
ticular ride was repeated. Data acquired during the crash rides
were not used for further analyses.

DATA ACQUISITION
Vehicle parameters
Driving speed and lateral position (LP) were sampled at 10 Hz.
LP is defined as the difference in meters between the center of the
participant’s car and the middle of the (right hand) driving lane.
Positive LP values correspond to deviations toward the right hand
shoulder and negative values correspond to deviations toward the
left hand shoulder. The sampled LP values were processed while
driving and used to calculate mean LP and SDLP for each of the
16 rides. In addition, LP values were used to feed current values
of SDLP back to the participant which were calculated by using
moving, overlapping time windows (see Design and Procedure
for more details), representing an indication of the participants
lane keeping performance.
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Subjective ratings
After each ride, a rating on the one-dimensional Rating Scale
Mental Effort (RSME) was requested (Zijlstra, 1993). The RSME
ranges from 0 to 150 and several effort indications are visible
alongside the scale which may guide the participant in mark-
ing the scale. Indications start with “absolutely no effort” (RSME
score of 2) and end with “extreme effort” (RSME score of 112).
The participants, who did not receive speed information from the
speedometer, were also asked to write down an estimate of the
driving speed they just experienced.

Physiological measures
Physiological signals were sampled at 250 Hz. Firstly, the electro-
cardiogram (ECG) was registered using three Ag-AgCl electrodes,
which were placed on the sternum (the ground electrode) and
on the right and left side between the lower ribs. However, given
the emphasis on brain activity in this paper, the ECG results
are not reported here. Secondly, the electro-oculogram (EOG)
was measured by Ag-AgCL electrodes attached next to the lat-
eral canthus of each eye and above and below either the right
or left eye. The EEG was measured using an electro-cap with
64 tin electrodes (at the following sites: FP1, FP2, Afz, F7, F5,
Fz, F4, F8, T7, C5, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, and
O2.) The amplifer was a REFA 8–72 (Twente Medical Systems
International, Enschede, The Netherlands). Portilab 2 software
was used to record all physiological signals. The ground electrode
used for the ECG recording also served as the participant’s ground
for the EEG recording. EEG and EOG signals were amplified
with a 1 s time constant (0.016 Hz high-pass). All EEG chan-
nels were referenced against the average activity of all channels
during the registrations. In addition, a reference electrode was
attached to each mastoid. Impedances were kept below 10 k� for
all electrodes.

EEG DATA PROCESSING
Starting from the raw EEG signals, the sampled EEG and EOG
data were first high-pass filtered (cutoff = 0.3 Hz, at 12 dB/Oct
Butterworth filter) before the EEG data segments of the 15 exper-
imental conditions (110 s each) were corrected for eye movements
and blinks, using Brain Vision Analyzer (Gratton et al., 1983). The
corrected data segments were then exported into binary files. No
data epochs were removed before further processing.

The exported data files were processed using MATLAB
R2010a (The MathWorks, Inc., USA, www.mathworks.com).
After importing two data sets (two rides or conditions) of a
particular participant, the EEG was band-passed filtered in the
frequency domain (FFT filter) of interest, using an edge frequency
of 1 Hz below and above the lower and upper frequency band
limit respectively. The imported data (110 s for each condition)
were then segmented into one second epochs and baselined rel-
ative to each mean activity. The first and last 10% of the epochs
were omitted, leaving the 88 middle, non-overlapping, epochs per
condition in the cross-validation design. This entailed a repeated
(50 times) random portioning of two data classes (a condition
pair) into a set of 66 training epochs (75%) and a set of 22 test
epochs for each data class. The training sets were used to train
the participant-specific classifier that was subsequently used to

classify the testing epochs of each data class. This iteration process
was carried out for each included participant, frequency band,
EEG cap configuration, and data pair. The accuracies reported
in the result section reflect the average accuracies across all 50
iterations and all included participants.

To improve discriminatory power of the data classifier, the
contrast between two data classes was optimized by using the CSP
technique. This technique determines CSP filters in such a way
that they maximize the variances of spatially filtered signals for
one training set while minimizing them for the other (Blankertz
et al., 2008). A CSP filter is a coefficient vector by which the orig-
inal channels can be transformed. This results in a new spatially
filtered channel (a CSP component) which is a linear combination
of all original channels, and the total number of filters and there-
fore, the number components, is equal to the number of original
channels. The matrix of CSP filters is determined by solving a
generalized eigen-value problem. The filter corresponding to the
largest eigen-value yields a high variance signal in one condition,
while producing a low variance signal in the other; and vice versa
for the filters corresponding to the smallest eigen-value. The CSP
filters are therefore ranked according to these eigen-values and
the first and last filters in this sorted W matrix are usually used
for further classification. To be more specific, in the current study,
the two, four, or six filters (always an equal number from each side
of the sorted W matrix) that resulted in the largest difference in
variance between two training sets was used. Next, the total vari-
ance per training epoch and per CSP component was calculated
and their logarithms were taken before entered into Fisher’s lin-
ear discriminant analysis. This analysis again transforms the data
by determining the linear weights of the discriminant function
that combines data points of the two training sets in such a way
that maximizes the distance between them. Finally, the CSP filters
and classifier weights were used to classify the remaining testing
epochs of the two conditions.

A wide range of EEG frequency bands were explored to inves-
tigate where useful discriminatory information might be present.
Four frequency search strategies were deployed. The first fre-
quency search strategy was characterized by both an increasing
high pass cut-off point (increasing 1 Hz for each iteration) and
an increasing frequency bandwidth (1.5 times the low frequency
band limit). At the first iteration, frequencies between 3 and
4.5 Hz were passed. At the last iteration, frequencies between 72
and 108 Hz were passed. The second strategy entailed exploring
all frequencies between 3 and 70 Hz using a fixed bandwidth of
1 Hz. For the third strategy, bandwidth was set to 4 Hz and iter-
ations ran from 4 to 72 Hz. Lastly, data was filtered in broad
bands to classify between conditions; 8–30, 32–54, 56–78, and
80–102 Hz.

In addition, several EEG cap configurations were explored.
To start with, all 21 EEG channels were included. To explore
whether classification accuracy may differ between scalp regions,
several subsets were defined and tested. Firstly, a peripheral set
was defined, consisting of 14 electrodes, (FP1, FP2, Afz, F7, F5,
F4, F8, T7, C5, T8, P7, P8, O1, and O2). Secondly, a frontal set
consisting of 7 electrodes (FP1, FP2, F7, F5, Fz, F4, and F8), which
are associated with executive functions that are important in driv-
ing. Thirdly, a posterior set consisting of 7 electrodes (P7, P5, Pz,
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P4, P8, O1, and O2), containing electrodes associated to visuo-
motor processing. Lastly, the electrode set identified by Prinzel III
et al. (2001) (P3, Pz, P4, Cz), which has often been used in adap-
tive automation research to get the “engagement index” [defined
as the ratio; beta/(alpha + theta)].

Lastly, five condition pairs were selected from a total of 105
possible combinations (15!/2!(15–2)!). An experimental condi-
tion can be defined in terms of its driving speed level and
target SDLP difficulty level. To improve comparability one fac-
tor was kept constant for each condition pair. In this way, four
speed differences for the normal target level were classified: −40
vs. +40 km/h, −20 vs. +20 km/h, −20 vs. 0 km/h, and 0 vs.
+20 km/h. The normal target level was chosen since this tar-
get resembles the individuals’ natural driving behavior. Focusing
on classifying between speed differences in this way was done
because of the envisioned application. A brain-based adaptive
cruise control would change speeds and therefore, the effect
of speed interventions has to be assessed. In addition, as it
turned out, the very hard target conditions required more sub-
jective effort compared to the normal target level, and therefore,
these two conditions were compared in the 0 km/h relative speed
condition.

Due to data anomalies such as missing channels, eight partic-
ipants were excluded from the offline classification phase of this
study. Despite a smaller participant pool, the number of condition
pair comparisons is very large: 161 frequency bands × 5 con-
dition pairs × 5 EEG cap configurations × 26 participants × 3
numbers of components = 313,950. Given these large numbers,
only a selection of aggregated classification accuracy values can be
reported (Figures 2, 3) next to examples of scalp topographies of
CSP components (see Figure 4 for an impression) reflecting how

the information sources project to the scalp (retrieved from the
inverse of W; see Blankertz et al., 2008).

RESULTS
VEHICLE PARAMETERS AND SUBJECTIVE RATINGS
Subjective ratings and vehicle parameters are shown in Figure 1
and their test outcomes are listed in Table 1. To begin with,
the participants’ preferred speed during the initial ride ranged
between 62 and 120 km/h, averaging at 90 km/h (see the black
dot in Figure 1A). This is slightly faster than estimated for this
ride (M = 74 km/h; Figure 1B). This pattern of underestimating
driving speed is present for all speed levels (Pearson’s product
moment correlation =0.99 over all conditions).

The dimensions of the vehicle and driving lane allowed for
0.58 m of swerving margin on both sides of the vehicle. As can
be seen in Figure 1C, the participants stayed well within their
driving lane on average and positioned the vehicle slightly toward
the right hand shoulder (0.07 m on average). As can be read in
Table 1, there was a significant effect of speed on LP. The partic-
ipants’ mean position on the road curves toward the right-hand
shoulder, both when driving slower and faster than the preferred
speed (polynomial contrasts showed a quadratic trend; [F(1, 33) =
15.35, p < 0.001, η2

p = 0.317]. Next, as speed increased, so did
the participants’ mean SDLP (see Figure 1D), representing swerv-
ing behavior, from 0.18 m during the slowest speed to 0.30 m
during the fastest speed. This is mainly a linear increase [F(1, 33) =
182.81, p < 0.001, η2

p = 0.847], although SDLP increases slightly
more rapidly toward the higher speeds [quadratic trend; F(1,33) =
24.33, p < 0.001, η2

p = 0.424]. Note that the factor; target SDLP,
indicating the difficulty of keeping current SDLP values under
the target SDLP while driving, had no effect on the actual SDLP.

FIGURE 1 | Vehicle parameters and subjective ratings as a function of

set driving speed condition. (A) Real driving speed. (B) Estimated driving
speed. (C) Lateral Position (LP). (D) Standard Deviation of the Lateral Position
(SDLP). (E) Rating Scale Mental Effort (RSME). On the x-axes, values for the
initial ride (black dots) are shown in addition to five driving speeds that were
set, relative to the individual’s preferred driving speed established during the

initial ride. Error bars represent the standard error. LP values represent the
middle of the car (car width = 1.60 m) in relation to the middle of the right
(driving) lane (width = 2.75 m). Normal, hard, and very hard indicate the
difficulty of keeping current SDLP values under the target SDLP: see section
Design and Procedure for details. Positive LP values indicate a position to the
right hand of the lane mid. Maximum score for mental effort is 150. n = 34.
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Table 1 | Multivariate test results for vehicle parameters and subjective effort ratings (Figure 1).

Vehicle parameters and subjective ratings

Effect LP SDLP RSME score

F (df1,df2) p η2
p F (df1,df2) p η2

p F (df1,df2) p η2
p

Speed (S) 4.46 (4,30) 0.006 0.373 45.40 (4,30) <0.001 0.858 21.10 (4,30) <0.001 0.748

Target (T) 0.26 (2,32) 0.974 0.002 1.32 (2,32) 0.283 0.076 08.49 (2,32) 0.001 0.347

S ×T 0.77 (8,26) 0.633 0.191 1.22 (8,26) 0.324 0.274 1.25 (8,26) 0.309 0.278

LP, Lateral Position; SDLP, Standard Deviation Lateral Position; RSME, Rating Scale Mental Effort. Significant effects (p < 0.05) are shown in bold. Speed effect

relates to speed condition, Target to SDLP target.

FIGURE 2 | Average classification accuracies of the Fisher’s linear

discriminant analyses after spatial filtering for several condition

pairs. (A–F) The accuracy values represent the average subject-specific
classification accuracy over all participants that resulted from the
cross-validation scheme. Classifications were based on applying the two
most contrasting CSP components to the EEG channels. N = 26. For
each row of subfigures, a different EEG cap configuration was used.
For the left column (A,D), the frequency bandwidth is 1.5 times the

start frequency (step size 1 Hz), starting at 3–4.5 Hz and ending at
43–64.5 Hz. For the middle column (B,E), 4 Hz bands were used and a
stepsize of 4. For the right column (C,F), a broad band frequency
search (22 Hz) was deployed. All electrodes: FP1, FP2, Afz, F7, F5, Fz,
F4, F8, T7, C5, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, O2. Peripheral
set: FP1, FP2, Afz, F7, F5, F4, F8, T7, C5, T8, P7, P8, O1, O2. Frontal
set: FP1, FP2, F7, F5, Fz, F4, F8. Posterior set: P7, P5, Pz, P4, P8, O1,
O2. Engagement index (EI) set: P3, Pz, P4, Cz.

In addition, interactions between speed and target SDLP are not
present in the data.

Figure 1E shows that the mental effort ratings increased from
between “a little effort” and “some effort” (a mean RSME score
of 33) for the slowest speeds to between “rather much effort”
and “considerable effort” (a mean RSME score of 34) for the
fastest speeds [linear trend; F(1, 33) = 88.48, p < 0.001, η2

p =
0.728]. Also, similar to SDLP, this increase is stronger toward
the faster speeds [quadratic trend; F(1, 33) = 86.04, p < 0.001,
η2

p = 0.327]. In addition, even though target SDLP did not have
an effect on vehicle parameters, there was a main effect on
mental effort ratings. Bonferroni corrected pairwise comparisons
revealed that the “very hard” level was perceived as more difficult

than the other two, while “normal” and “hard” did not show a
difference.

CLASSIFICATION RESULTS
Averages classification accuracies
In Figure 2, the classification accuracies for several condition
pairs are shown. Figure 2 (and Figure 3) only shows the aver-
age classification accuracies for two data pairs (−20 km/h vs.
+20 km/h and normal performance target vs. very hard perfor-
mance target). Although more extreme driving speed conditions
could have been shown (e.g., 40 vs. +40 km/h), we feel that
more similar speed conditions better reflect real driving circum-
stances and are therefore more relevant. Also, accuracy levels
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FIGURE 3 | The cumulative frequencies of classification accuracies.

(A–L) Colors represent the number of participants for whom a particular
accuracy was found or better (max = 26 participants) in the accuracy
category displayed on the x-axes. Subfigure columns are arranged by EEG
cap configuration (all electrodes or the frontal set) and by classified condition
pair. All electrodes: FP1, FP2, Afz, F7, F5, Fz, F4, F8, T7, C5, C3, Cz, C4, T8,
P7, P3, Pz, P4, P8, O1, and O2. Frontal electrodes: FP1, FP2, F7, F5, Fz, F4,
and F8. “−20 km/h vs. +20 km/h” indicate set driving speeds relative to the

participants’ preferred speed as determined during the initial ride (at normal
target level). “Normal target vs. hard target” indicate performance target
difficulty (at relative speed = 0 km/h). For each row of subfigures, a different
frequency search strategy was used. (A–D) For the top row of subfigures, the
frequency bandwidth is 1.5 times the begin frequency (step size 1 Hz),
starting at 3–4.5 Hz and ending at 44–66 Hz. (E–H) For the middle row of
subfigures, 4 Hz bands were used and a step size of 4. (I–L) For the bottom
row, a broad band frequency (22 Hz) search was deployed.

across condition pairs tended to be similar, and therefore the
number of shown condition pairs was limited.

The graphs in Figure 2 reveal several general trends. Firstly,
accuracy tends to increase as frequency increases. This can be seen
across electrode sets and condition pairs with accuracies reach-
ing levels of 95% on average over all participants when a relative
high number of electrodes is included (21 and 14). This increase is
most pronounced in the frequencies from 5 to 20 Hz, after which
it continues to rise more gradually indicating a ceiling effect (see
for example Figure 2A). This ceiling is about 5–10% lower for
the middle column of subplots in Figure 2 (displaying the 4 Hz
search strategy). Secondly, a broader frequency band tends to
yield higher accuracies, which is most apparent when compar-
ing the middle column (Figures 2B,E; 4 Hz frequency bands) to
the right column (Figures 2C, 3F; 22 Hz frequency bands). For
example, when including all electrodes, the 4 Hz frequency bands
in the 8–32 Hz range in Figure 2B range produced about 15%

less accuracy when compared to the first broad band (8–30 Hz)
in Figure 2C. Thirdly, there are distinct differences in accura-
cies as a result of using different channel sets. For example, the
larger electrode sets (21 and 14 electrodes) yielded very compara-
ble high accuracies, while the smallest (4 electrodes) consistently
resulted in lower classification accuracies (about 15–25% less,
depending on frequency band). Such differences can be under-
stood in part from the fact that more channels provide a richer,
higher-dimension database for the CSP technique to extract use-
ful discriminatory power. Note however, that the seven frontal
electrodes outperformed the seven posterior electrodes by about
5–15%, again depending on frequency band. The shape of the
frontal curve in all subfigures (the red lines) reflect the upper
two curves (all electrodes and 14 peripheral electrodes), while
the posterior curves resemble the bottom EI curves. Finally, when
focusing on the somewhat lower EEG frequency of Figures 2A,D
ranges (e.g., 10–21 Hz), which are more likely to reflect neuronal
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activity, the mean accuracy in that range over both subfigures
is 80% for the larger two electrode sets. The frontal set led to
a classification of 76% on average, while the posterior and the
engagement index set resulted in 62 and 55% respectively.

Cumulative classification accuracies
In Figure 3, cumulative classification accuracies are shown for a
selection of classification results. This figure indicates the con-
sistency of classification accuracies across all 26 included partic-
ipants. For instance, Figure 3A shows that in the high frequency
range (e.g., 43–64.5 Hz), test data from 10 participants were accu-
rately classified 99% of the time or better. Figure 4 confirms
that higher frequencies usually yield better accuracies as the top
frequencies in all subfigures display more red/yellow than the
bottom frequencies. The green/yellow colors indicate that about
half to two third of the participants were above the classification
threshold indicated on the x-axes. When viewing these colors in
Figure 3 through the eyelashes, it can be seen that, especially for
the larger electrode set (Figures 3A,E,I and 3C,G,K), data from a

FIGURE 4 | Examples of CSP analyses. (A–D) The scalp topography of the
components illustrate how the physiological sources project to the scalp.
The components are determined such that projected signals are optimally
discriminative. The filters and topographies correspond to the first and last
vector of the sorted W matrix and its inverse respectively (see section
Design and Procedure for more details). Absolute coloring is arbitrary,
however, dense red or blue areas show where the greatest differences in
the projected signals’ amplitudes were found, between the −20 km/h and
the +20 km/h set driving speed (at normal target level). These driving
speeds were set relative to the participants’ preferred speed as determined
during the initial ride. Included electrodes: FP1, FP2, Afz, F7, F5, Fz, F4, F8,
T7, C5, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, and O2. (A) Subject = 13,
frequency band = 72–108 Hz, classification accuracy = 100%. (B) Subject
= 27, frequency band = 8–12 Hz, classification accuracy = 98%. (C) Subject
= 21, frequency band = 24–28 Hz, classification accuracy = 82%. (D)

Subject = 25, frequency band = 8–30 Hz, classification accuracy = 74%.
Please note that in the CSP literature, a scalp topography of a component is
usually referred to as a spatial pattern.

substantial number of participants still yielded 85% + accuracy in
the lower (alpha and beta) frequency ranges (e.g., 10–20/30 Hz).
For instance, the classifier could accurately classify (85% or bet-
ter) between −20 and +20 km/h in the 16–20 Hz frequency range
for 16 out of 26 participants (Figure 3G). For the smaller, frontal
electrode set (Figures 3B,F,J and 3D,H,L) the number of partic-
ipants yielding highly accurate classifications is somewhat less in
the lower frequency range; as indicated by the larger presence of
blue colors.

Example common spatial pattern analysis
Figure 4 displays several CSP filter-topography pairs which are
meant to illustrate the diversity of CSP scalp topographies. A
common topography across participants, reflecting how the neu-
rological sources project to the scalp, was not identified. However,
we selected these topographies based on their resulting classifi-
cation accuracies and/or the fact that the frequencies are within
the normal EEG range. To start with, Figure 4A shows that for
participant 13, the perfect classification accuracy in the broad
72–108 frequency range originates mainly from the frontal elec-
trodes (Fp1 and Fp2) which were highly specific for the -20 km/h
driving condition, and from C5 which was highly specific for
the +20 km/h driving condition. This is illustrative for the gen-
eral finding that the frontal electrodes were often the main
contributors to very high classification accuracies. The other sub-
figures show topographies linked to frequencies below 30 Hz. In
Figure 4B, topographies are shown that resulted in an unusu-
ally accurate classification for this relative low frequency band
(98% in the 8–12 Hz, alpha, frequency band). In this case, the
topographies are more distributed over the scalp, although the
left temporal and frontal regions were important physiological
sources for discriminating between the two data classes. The scalp
topography for the +20 km/h condition in Figure 4C shows a
central-parietal distribution, illustrating that the EI electrodes:
P3, Pz, and P5 contributed to the 82% classification accuracy
in the high beta range of participant 21. The −20 km/h topog-
raphy suggests that C5 was by far the most distinctive electrode
when maximizing the variance of the projected signals in this
data class while minimizing it for the other. Finally, Figure 4D
shows the CSP resulting in 74% classification accuracy for sub-
ject 25 in the broad 8–30 (alpha plus beta) Hz frequency band.
These topographies suggest that discriminative power was dis-
tributed over the posterior electrodes in the −20 km/h condition
and more evenly distributed over the scalp in the +20 km/h
condition.

DISCUSSION
The aim of the study was to investigate the feasibility of using
EEG for monitoring the level of visuomotor workload in a driving
environment, which can potentially be used by an user adap-
tive driver support system. To manipulate workload, we exposed
drivers to five levels of driving speed that were set relative to their
preferred driving speed. In addition, since increasing steering
effort normally decreases swerving behavior within the driving
lane given a particular speed, participants were presented with
three explicit swerving performance targets represented as the
standard deviation of the lateral position of the car with respect to
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the driving lane. To distinguish between workload levels, subject-
specific CSP and linear discriminant analysis based classification
models were used.

To begin with, subjective mental effort data show that driv-
ing at a higher speed is indeed experienced as requiring more
effort. Furthermore, estimated driving speed was slightly lower
than the real driving speed. Previous research has shown that
driving speed in a simulator, when driving on straight roads or
easy curves, tends to be higher than it would be on real roads
(e.g., Bella, 2008). This effect could be caused by a difference in
speed perception between the real world and (fixed-base) driv-
ing simulators due to the absence of several speed cues, such as
car movements and stereoscopic depth perception. During the
current study these factors may also have contributed to misjudg-
ing driving speed, especially since the speedometer was hidden
from view at all times. The standard deviation of the lateral
position (SDLP), indicating lane keeping performance, increased
as function of speed, which is normal (e.g., Peng et al., 2013).
However, the performance target (target SDLP) did not have
an effect on vehicle parameters, suggesting that this manipula-
tion failed since a decrease of SDLP was expected if participants
were exposed to more difficult target SDLPs. However, partic-
ipants did rate the “very hard” target SDLP condition as the
most difficult, perhaps demonstrating that participants were try-
ing hard but could not manage. Also, EEG data from the very
hard SDLP condition could be accurately discriminated from data
acquired during the normal SDLP condition which is another
indication that participants did not simply ignore the instruc-
tions. Since other task manipulations aimed at increasing steering
difficulty, such as decreasing lane width, have proven to affect
SDLP (e.g., Dijksterhuis et al., 2011), the absence of an effect
on SDLP may be explained by this particular manipulation. In
contrast to the automatic nature of the steering task during
normal driving participants had to actively engage themselves
in transferring numerical information about their lane keeping
behavior, as presented on their windshield, to steering wheel
movements.

EEG activities during the experimental conditions were clas-
sified, yielding several interesting results. Firstly, applying CSP
to a variety of frequencies and frequency band widths revealed
that, overall, broader bands and higher frequencies result in
higher classification accuracies. This could be taken to suggest
that neuronal gamma synchronization correlated with the task
manipulations in which case these results are in line with other
research suggesting that activity in the gamma frequencies reflects
sensory-motor coordination (Schoffelen et al., 2005; see also Fries
et al., 2007). However, this conclusion should be drawn with cau-
tion since muscle activity as represented in the EMG has power in
the same frequencies, which is picked up by EEG electrodes as well
(Whitham et al., 2007; Muthukumaraswamy and Singh, 2013).
This view of muscular activities contributing to high classification
accuracies in the gamma band is confirmed by graphs showing
the projections of the CSP components. Figure 4A demonstrates
just one case where the perfect classification for high frequen-
cies can mostly be traced to the EEG electrodes close to the
eyes. However, a relative high contribution of the peripheral elec-
trodes for extremely high classification accuracies is an emerging

pattern. Moreover, when performing a semi-real task, such as
driving in a simulator, EMG activity can be expected to be more
dominantly present compared to more controlled laboratory
tasks, making classifications based on neuronal gamma activities
less likely.

High accuracies were also found for a substantial number of
participants in the lower frequency ranges, as shown in Figures 2
and 3, and these are unlikely to be confounded by EMG activ-
ity. As shown by Whitham et al. (2007), who recorded EEG
during paralysis by neuromuscular blockade, EMG activity is
largely absent from frequencies below 20 Hz. Therefore, we sug-
gest that classifications in the lower frequency ranges were likely
determined by underlying neuronal activity.

CSP component topographies showed no readily discernible
degree of consistency across participants, as illustrated in
Figure 4. This indicates that the effects of changes in psycholog-
ical construct such as mental workload on electrical activities on
the scalp is very subject dependent, which confirms that indi-
vidually tuned classification approaches are required for accurate
classifications. In case of high frequencies this implies that the,
perhaps subconsciously produced muscular activities, show large
inter-individual variations. In case of the lower frequencies, it is
likely that also on a neurological level, there are large variations.
Finding consistent topographies would have been promising for
future applications. For example, it could lead to a theory-driven
pre-selection of scalp locations, thereby excluding possible irrel-
evant information from the classification model. Yet, it may be
expected to find a large inter-individual variability when clas-
sifying rather abstract mental states compared to, for example,
classifying the difference between left and right hand motor
imagery for which the neuroanatomical base is much clearer.

A limitation of the current study is that the experimental con-
ditions (rides) could not be randomized within each participant.
e.g., changing speed conditions every couple of seconds would
have resulted in a highly unnatural driving experience. The draw-
back of the used approach is that there was an average of about
15 min between one condition and the other within each condi-
tion pair that was used for the classifications. Since neighboring
epochs can be similar to each other, a difference in time may
have led to an inflation of the classification accuracies. For future
research, it is advised to repeat conditions within subjects to assess
the potential effects of time dependencies. For example, by train-
ing the classifier on one condition pair and validating it on the
other, identical condition pair. While it is important to realize that
time dependencies cannot be ruled out, it should also be noted
that it probably did not affect other effects, such as the accuracy
difference between the parietal and frontal electrode set or the
difference between low and high EEG frequencies.

Overall, these findings imply that the subject-specific CSP
approach provides very good discriminatory power between
visuomotor workload conditions over a large range of frequency
bands. With respect to the high (gamma) frequency ranges it
is important to realize that major contributions from muscular
activities cannot be ruled out. Moreover, this will probably be
true for most passive BCI applications as real life tasks, such as
driving a car, usually require a lot of motor activity. A workload
classification strategy based on EMG activity would therefore be
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worthwhile investigating in future research, which requires a rela-
tive low number of electrodes. However, high classification accu-
racies were also found for the lower EEG frequencies, implying a
large contribution of neurological activities. These high accura-
cies are promising for future applications, however, several issues
need to be addressed before a system is working from the user’s
point of view. Some of these issues will be further discussed below.

Even if classification accuracies of up to 80% may be consid-
ered quite high for 1-s epochs, it raises the issue of applicabil-
ity; especially when performing a safety-critical task, this seems
insufficient. However, depending on the temporal responsiveness
requirements of an application, these accuracy levels might suf-
fice. For example, using longer data epochs can be expected to
result in more accurate classifications, since more information is
available to the classifier (e.g., Brouwer et al., 2012). Although not
further reported in the result section, increasing the epoch length
from 1 to 2 s was found to increase accuracies with about 3% for
the lower frequency ranges. Another option would be to combine
several successive small data epochs. As an illustration, assuming
that successive classifications are independent and applying a sim-
ple binomial chance distribution, then combining five successive
epochs, each having a 80% chance of accurately being classified,
would lead to a 94% accuracy when using a majority vote (i.e.,
three or more epochs are classified correctly). This would decrease
the negative effects of small periods of noisy data which may be
expected in real life tasks and which should improve a system’s
behavior from the users point of view.

Another important issue that needs to be solved before reliable
applications can be build are the so-called non-stationarities in
EEG signals, which refer to shifts in EEG signals between the ini-
tial calibration session during which a model is trained and online
application. Non-stationarities negatively impact the transfer of
classification accuracies between calibration and application of
a model (e.g., Shenoy et al., 2006). One solution to this issue
could be to update the classification model from time to time
by adding additional calibration periods when the task at hand
allows for it. Another solution are adaptive classifiers, which use
data that are acquired while the user is interacting with the sys-
tem in real-time (Shenoy et al., 2006). The drawback of using an
adaptive classifier is that it requires immediate labeling of new,
incoming data while the user is engaged in task performance. In
some active BCI systems, for example, when controlling a game,
it is plausible that the required information is available. In case
of a passive BCI system however, this is most likely not the case.
Again, using longer periods of time may offer a solution to this

problem. For example, assuming that mental workload does not
vary every second, all EEG data measured over a somewhat longer
period reflect one particular level of workload. If the classifier
therefore classifies most epochs as data class A, then all epochs
in that period could be labeled as such and subsequently used
to update the classification model. Finding acceptable and robust
methods of updating the classification model is likely to be a nec-
essary development before (passive) BCI systems can be applied
to task situations.

For the viability of future applications it is also important that
the binary approach of discriminating between two data classes
is expanded to the multiclass situation. For instance, workload
levels during task performance may be either too high, too low
or within an acceptable range. In an adaptive system, where sup-
port may be changed, activated, or deactivated based on workload
classifications it is therefore of equal importance that the con-
ditions for no change are defined. Thus, in terms a passive BCI
application, a homeostatic system aimed at keeping workload at
or around optimal levels, must also “know” when not to initiate
changes. One way to accomplish multi-class analyses is to com-
bine several pairwise classifications through voting procedures
(Friedman, 1996; see also Dornhege et al., 2004; Grosse-Wentrup
and Buss, 2008).

In conclusion, depending on temporal responsiveness require-
ments, a system’s designer may have the option to either focus on
high EEG frequencies and accept that muscular activities likely
contribute to classification accuracies, or to focus on lower EEG
frequencies that mainly reflect neurological activities but accept
slightly lower accuracies. Although it is clear that the very high
classification accuracies found in this offline study by themselves
do not guarantee a well-functioning online system, it is a promis-
ing start in realizing a CSP based passive BCI system that can
reliably be used to monitor visuomotor load in real-time.
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