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Brain wave activity is known to correlate with decrements in behavioral performance as
individuals enter states of fatigue, boredom, or low alertness. Many BCI technologies
are adversely affected by these changes in user state, limiting their application and
constraining their use to relatively short temporal epochs where behavioral performance
is likely to be stable. Incorporating a passive BCI that detects when the user is
performing poorly at a primary task, and adapts accordingly may prove to increase
overall user performance. Here, we explore the potential for extending an established
method to generate continuous estimates of behavioral performance from ongoing
neural activity; evaluating the extended method by applying it to the original task
domain, simulated driving; and generalizing the method by applying it to a BCI-relevant
perceptual discrimination task. Specifically, we used EEG log power spectra and sequential
forward floating selection (SFFS) to estimate endogenous changes in behavior in both
a simulated driving task and a perceptual discrimination task. For the driving task
the average correlation coefficient between the actual and estimated lane deviation
was 0.37 ± 0.22 (μ ± σ ). For the perceptual discrimination task we generated
estimates of accuracy, reaction time, and button press duration for each participant.
The correlation coefficients between the actual and estimated behavior were similar for
these three metrics (accuracy = 0.25 ± 0.37, reaction time = 0.33 ± 0.23, button press
duration = 0.36 ± 0.30). These findings illustrate the potential for modeling time-on-task
decrements in performance from concurrent measures of neural activity.
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INTRODUCTION
Brain-Computer Interaction (BCI) technologies that enable com-
puter systems to adapt to the current cognitive or affective state of
the user provide a promising avenue for developing systems that
will improve human interaction with computers, the environ-
ment, and even each other (Zander and Kothe, 2011; Lance et al.,
2012). Among the broad range of BCI technologies, the major-
ity of systems and approaches have been within the active and
reactive BCI paradigms (see Zander and Kothe, 2011 for review).
These two classes of BCIs seek to decode volitionally induced or
externally elicited patterns of neural activity over a relatively short
timescale, on the order of milliseconds to seconds. In contrast,
passive BCIs utilize implicit or ongoing neural responses for the
purpose of detection an operator’s current cognitive or affective
state. Typically, passive BCIs assess change in neural activity over
relatively longer timescales, on the order of seconds to minutes. To
date, active and reactive BCI technologies have shown limited suc-
cess outside of specific patient populations. One reason for this is
a lack of robustness, partly due to the non-stationarity of neural
signals (Von Bünau et al., 2009; Liyanage et al., 2013). In addi-
tion to large inter-session variability, fatigue and other sources
of time-on-task decrements in performance can be reflected as
a non-stationarity in the neural activity. These effects can be

particularly pronounced for tasks that require sustained levels of
attention (Tonin et al., 2013). In fact, many active and reactive
BCI paradigms are specifically designed to minimize task-induced
fatigue and often operate on relatively short timescales (Gao et al.,
2014). In this study, we investigate the possibility of address-
ing this form of non-stationarity through the incorporation of
an algorithm designed to identify fatigue-based decrements in
performance.

The ability to detect changes in performance directly from
biological markers has been an area of growing interest over
recent decades. One particularly relevant application is the detec-
tion of fatigue, drowsiness, or reduced alertness during driving.
Because fatigue is a major cause of accidents and injury when
operating motor vehicles (Connor, 2002), robust identification
of fatigue before it impairs behavior would be of significant
value. To this end, numerous studies have identified indicators of
fatigue-induced changes in driver performance from both physi-
ological observables (Vural et al., 2009; Sommer and Golz, 2010;
Vogel et al., 2010) and neural signals (Borghini et al., 2012),
pre-dominately via electroencephalography (EEG). Furthermore,
research groups have recently developed systems for real-time
detection of attentional lapses, due to drowsiness or fatigue, from
concurrent measures of brain activity (Davidson et al., 2007; Lin
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et al., 2010a). These approaches fall within the broader passive
BCI framework, and are ideal for capturing slow fluctuations in
behavioral performance.

Unlike active and reactive BCI paradigms, sustained, and
monotonous tasks such as highway driving are used when investi-
gating time-on-task decrements in performance. With such tasks,
performance begins to degrade as a function of time, presumably
induced by fatigue or inattentiveness due to boredom. Features of
the EEG signal, such as fluctuations in power along certain fre-
quencies or changes in evoked amplitudes, can then be correlated
with this degradation in performance. Many studies exploring the
neural correlates of fatigue use changes in the EEG log power
spectrum as principal features in their analysis (Jung et al., 1997;
Lal and Craig, 2005; Jap et al., 2009; Balasubramanian et al.,
2011). This idea is based on a large body of literature that has
linked EEG frequency bands, such as theta (4 to 8 Hz) and alpha
(8 to 13 Hz) to changes in task-relevant behavior. In contrast, a
more general but potentially powerful approach was originally
proposed by Lin et al. (2005a). This approach takes an agnostic
view as to the a priori selection of frequency bands but rather
uses principal component analysis to identify the sets of frequen-
cies that explain the most variance in the EEG power spectrum.
The power distribution along these frequencies is then linearly
integrated, via a data-driven model, to produce a time-varying
estimate of behavior.

While identification of fatigue-induced decrements in driver
performance is of obvious importance, other perceptually
demanding tasks suffer similar time-on-task decrements, includ-
ing air-traffic control (Grandjean et al., 1971), and x-ray screening
(Basner et al., 2008). Importantly, it is for these types of tasks that
the next generation of reactive BCI technology is being developed.
However, less is known about the neural correlates of behav-
ior for these more complex tasks. As BCI technologies transition
into wider application domains and extended use scenarios, they
must be able to adapt to the inevitable fluctuations in human
performance. Accordingly, the first step in this process is to
understand the link between the neural state and corresponding
behavior in the context of time-on-task induced decrements in
performance.

Here, we sought to address this important issue by using
a data-driven approach to link endogenous changes in behav-
ioral performance to concurrent measures of neural activity. Our
goal was to use slow fluctuation in the EEG log power spec-
trum to estimate time-on-task decrements in performance, based
on an extension of a similar BCI paradigm used for drowsi-
ness detection (Lin et al., 2010a), and apply this method to
an image triage paradigm increasingly common in BCI tech-
nologies (Gerson et al., 2006; Sajda et al., 2010; Touryan et al.,
2011, 2013b; Yu et al., 2012). To accomplish this, we designed
a study in which participants engaged in both a monotonous
driving task and a prolonged rapid serial visual presentation
(RSVP) task. Importantly, to quantify the nature and degree of
the time-on-task decrements in performance, we acquired sub-
jective, behavioral, and neurophysiologic measures throughout
the experiment. We extended the behavior-estimation method
found in Lin et al. (2005a), evaluated the method using the
data from the simulated driving task, and applied it to the

RSVP image triage task. The results of this study suggest
that opportunistic identification of time-on-task performance
decrements within an event-based BCI is both feasible and
advantageous.

METHODS
Twenty-five participants were recruited from the general popula-
tion. They ranged in age from 21 to 57 (μ = 34.6) and included
ten males. Twenty-one of the participants were right handed,
two were left handed, and two were ambidextrous. All individ-
uals participated in a single multi-hour session containing three
phases and received compensation of $20 per hour. The volun-
tary, fully informed consent of the persons used in this research
was obtained as required by Title 32, Part 219 of the Code of
Federal Regulations and Army Regulation 70-25. The investiga-
tor adhered to the policies for the protection of human subjects
as prescribed in AR 70-25. None of the participants were excluded
from the analysis due to noise, movement artifacts, or low behav-
ioral performance. The study design involved 3 tasks (Figure 1):
calibration, driving, and rapid serial visual presentation (RSVP).
The calibration session was always performed first but the order
of the driving and RSVP alternated for each participant.

CALIBRATION
This task consisted of a standard driving simulator, developed
with SimCreator® (Real Time Technologies; Dearborn, MI), that
utilized steering wheel and foot pedal controls. In this task the
vehicle was moving down a straight highway at a constant speed
(computer controlled) in the rightmost lane. Participants were
asked to maintain the vehicle position within the current cruis-
ing lane by correcting for any perturbation or drift. At random
intervals a lateral perturbation to the right or left was applied to
the vehicle, causing it to begin to veer off course. The strength
of the perturbation increased until a corrective steering adjust-
ment (greater than 4◦) was made at which point the pertur-
bation ceased, allowing the participant to return the vehicle to
the center of the rightmost lane. The perturbations would only
resume once the vehicle was back in the cruising lane for at
least 8 s. If the vehicle drifted far beyond the edge of the simu-
lated roadway, participants would receive audible feedback (i.e.,
rumble strip noise). The simulated environment was minimal
and included no traffic or scenery in order to induce bore-
dom and task fatigue. The calibration task consisted of a single
15 min block and was designed for the acquisition of EEG baseline
activity.

DRIVING
This task was similar to the calibration task except that partici-
pants were now given control over the vehicle speed via acceler-
ator and brake pedals. Current vehicle speed was indicated by a
digital speedometer at the bottom of the screen. Participants were
asked to maintain both the vehicle position and speed. Speed limit
signs were posted at regular intervals with values of either 25 or
45 miles per hour. Again, the simulated environment was minimal
and included no traffic or scenery. The driving task consisted of
6 blocks of 10 min each with breaks of approximately one minute
between blocks.
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FIGURE 1 | Experimental overview. (A) Experiment timeline including
calibration, driving, and RSVP tasks (note that the order of the driving
and RSVP tasks alternate between participants). Vertical black lines

indicate block intervals where fatigue surveys were administered.
(B) Screenshot of driving simulator. (C) RSVP paradigm and example
images. Figure adapted from Touryan et al. (2013a).

RSVP
This task consisted of a rapid presentation of color photographs
(512 × 662 pixels) of indoor and outdoor scenes. The images were
presented at 5 Hz (200 ms per image) and subtended a visual
angle of approximately 9◦. Every 10 s a blank screen with the
word “blink” was presented to give participants a chance to blink
without missing stimuli. The RSVP task consisted of 6 blocks of
10 min each (to mirror the driving task). All scenes contained only
inanimate objects and were manually scaled and cropped. Some
scenes contained target objects and others did not. Before each
block participants were instructed as to the class of target objects
for that block. The target classes for this experiment were: stair,
container, poster, chair, and door. Before the task began, partic-
ipants were familiarized with exemplars from each target class.
During the RSVP, participants were instructed to press a button
only when they saw an object from the current target class. The
order of the target classes was randomly chosen for each partici-
pant (blocks 1–5); however, the last block (block six) always had
the same target class as the first block. In addition to target class,
target probability varied across each block. Six target probability
values (0.01, 0.03, 0.05, 0.07, 0.09, and 0.11), one for each block,
were randomly assigned at the beginning of the task.

Subjective measures
In addition to biographical information, various cognitive and
personality metrics were obtained, via standard questionnaires
or timed assessments at the beginning of the experiment. The
data from these cognitive and personality assessments was not
included in the present study. Self-reports of fatigue were
obtained using three different questionnaires: (i) the Visual
Analog Scale for Fatigue (VAS-F; Monk, 1989), (ii) the Task-
Induced Fatigue Scale (TIFS; Matthews and Desmond, 1998), and
(iii) the Karolinska Sleepiness Scale (KSS; Akerstedt and Gillberg,

1990). The VAS-F was administered once after each task (calibra-
tion, driving and RSVP). The TIFS and KSS were administered
once after the calibration task, after each 10 min block in the driv-
ing and RSVP tasks, and once at the end of the experiment. In
order to account for individual differences in basal fatigue level,
scores were normalized by the mean value over the experiment
for each participant.

Behavioral measures
During the driving simulator task, various vehicle state measures
were acquired at 100 Hz. Since the task objective was to main-
tain vehicle position within the rightmost lane, lane deviation
(the difference between the vehicle’s lateral position and the cen-
ter of the lane) was the metric used to assess driver performance.
During the RSVP task, participants pressed a button only when
they saw a target object. Accuracy, reaction time (RT) and press
duration were determined from this button response. Because the
image duration (200 ms) was much less than the average RT, but-
ton responses were assigned to images in the following manner.
For each button press, images within the time window of 300 to
1000 ms preceding the response were identified. If one or more of
these preceding images was a target, the button press was assigned
to the first (oldest) target image. RT was then calculated from
the onset of that target image. If no targets occurred within the
preceding time window, the button press was assigned to the non-
target image that preceded the button press by 600 ms (a standard
RT value). However, due to the ambiguity of assigning a button
press to a non-target image, RT statistics were not calculated for
non-target images and this assignment process was only used to
determine the false alarm rate.

For the RSVP task, behavioral responses were strongly influ-
enced by perceptual difficulty; some targets were obvious and
identified in all instances while other targets were subtle and

www.frontiersin.org June 2014 | Volume 8 | Article 155 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive


Touryan et al. Estimating endogenous changes in performance

only identified in some instances. The effect of perceptual dif-
ficulty was even evident at the aggregate level of target class
(see Table 3), where the average accuracy was greater for some
classes of target objects (e.g., chair) relative to others (e.g., poster).
Therefore, to mitigate the influence of perceptual difficulty, we
calculated a normalized behavioral metric. Specifically, average
accuracy, RT, and duration were calculated for each target image
across all participants (grand average). Then, for each instance of
that target within the RSVP stream this grand average was sub-
tracted from the behavioral response. This difference was then
added to the nominal value for each measure. For accuracy, the
nominal value was one: accuracy values greater than one indi-
cated the participant was more accurate than average for that
target image. For RT, the nominal value was 600 ms: RT val-
ues greater than 600 ms indicated the participant was slower
than average for that target image. Lastly, the nominal value
for duration was 300 ms: duration values greater than 300 ms
indicated the participant depressed the button longer than aver-
age for that target image. These nominal values were chosen as
round numbers that reflect the average behavioral response across
participants. In addition to perceptual difficulty, target probabil-
ity had a pronounced effect on RT and button press duration.
Across participants, both RT and duration decreased as target
probability increased (RT: slope = −262 ms, p < 0.05; duration:
slope = −277 ms, p < 0.05). Using the inverse of these slopes, we
adjusted both RT and duration as a function of target probability,
on a block-by-block basis.

To capture temporal fluctuations in performance during both
driving and RSVP tasks, we averaged the behavioral metrics (driv-
ing: absolute lane deviation, RSVP: accuracy, RT, and duration)
via a centered, 90 s mean filter (Jung et al., 1997; Lin et al., 2005b;
Chuang et al., 2012). This window size provided a robust, time-
varying estimate of accuracy, RT and duration (average number
of trials per window = 445) even when the target probability
was low. The filtered data were center-aligned such that each time
point included an average of data over the preceding and follow-
ing 45 s. The edges of the filtered data were padded with the first
and last valid value after smoothing (i.e., 45 s after the beginning
of the first block and 45 s before the end of the last block).

Electroencephalography measures
Electrophysiological recordings were digitally sampled at 1024 Hz
from 256 scalp electrodes over the entire cortex using a BioSemi
Active Two system (Amsterdam, Netherlands). External leads
were placed on the outer canthus, and above and below the orbital
fossa of the right eye to record electrooculography (EOG). For
power spectrum analysis, EEG was referenced to the average mas-
toids, down-sampled to 256 Hz, and digitally band-pass filtered
between 0.5 and 50 Hz using the EEGLAB toolbox (Delorme
and Makeig, 2004). A down-selected montage was created by (i)
identifying the subset of channels that matched the BioSemi 32
configuration and, (ii) averaging the electrodes directly adjacent
to those channels (between 5 and 8 depending on location). The
purpose of the neighborhood averaging was merely to mitigate
the influence of noise or high impedance from a single chan-
nel. In our approach, spatial filtering was accomplished through
principal component analysis (PCA, see below) rather than the

application of spherical Laplacian or identification of the inde-
pendent component.

Moving-average power spectra were based on an approach
described by Lin et al. (2005a). Briefly, the power spectral den-
sity (PSD) estimates were calculated in sliding 750-point epochs
(∼3 s) with a 500-point step size (∼2 s). Each epoch was subdi-
vided into 125-point Hanning windows with a 25-point step size.
A 256-point FFT was then used to calculate the power spectrum
for each window and a 5th order median filter was applied across
windows for artifact mitigation. The windowed spectra were then
averaged and converted into a logarithmic scale to produce the
time-varying PSD estimate for each channel. Frequencies between
1 and 40 Hz were kept for subsequent analysis. Finally, the power
estimates at these frequencies were smoothed with a 90 s mean
filter in the identical fashion as the behavioral metrics described
above. Figure 2 outlines the sequence of steps in the EEG prepro-
cessing, behavior integration, and model building components of
the analysis.

Regression models
Two modeling schemes were used for each participant and task,
a standard modeling scheme and an adaptive modeling scheme.
In the standard scheme, regression models were built with the
PSD estimates from four midline electrodes: Fz, Cz, Pz, and Oz.
PSD estimates from these channels were combined to form a
high-dimensional vector of the EEG log power spectrum.

X4 =
⎛
⎜⎝

(Fz1 . . . Fz40)1 · · · (Oz1 . . . Oz40)1
...

. . .
...

(Fz1 . . . Fz40)n · · · (Oz1 . . . Oz40)n

⎞
⎟⎠ (1)

Here, X4 is the matrix of combined PSD estimates from the 4
channels and n overlapping time epochs. PCA was then applied
to the combined PSD estimates (2). The set of eigenvectors V
that explained at least 1% of the variance were then selected to
represent the subspace of EEG log power (3),

CX = V

⎛
⎜⎝

λ1 · · · 0
...

. . .
...

0 · · · λ160

⎞
⎟⎠ V−1 (2)

V =
{

vi

∣∣∣∣ λi∑
λ

≥ 0.01

}
(3)

where CX is the covariance matrix of the combined PSD esti-
mates over the experiment (X4) and vi and λi correspond to the
ith eigenvector and eigenvalue respectively. A linear regression
model, with a least-squares-error cost function, was fit to the
behavioral data using the PSD projections onto these eigenvec-
tors. No explicit temporal offset or lag is included in the regression
model as the eigenvectors represent only a single PSD epoch.

For the adaptive modeling scheme, regression models were
built using a subset of electrodes selected from the entire 32
channel montage. A different number and subset of channels
was used for each participant and task to maximize the model’s
performance. Specifically, sequential forward floating selection
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FIGURE 2 | Flowchart of data preprocessing and model fitting. Central box encapsulates the iterative process of feature (channel) selection via the SFFS
algorithm. For the standard modeling scheme the feature selection component is replaced by the fixed midline montage: Fz, Cz, Pz, and Oz.

(SFFS) was utilized to rank channels in order of significance
(Pudil et al., 1994). An iterative process added and removed chan-
nels from the rank-ordering by maximizing the criterion function
J(Xk) at each step (Table 1). The criterion function, one over the
root-mean-squared error, was calculated as follows:

J(Xk) = 1(
1
n

∑n
i = 1

(
y − yest(Xk)

)2
)1/2

(4)

where Xk is the combined PSD from k channels, y is the actual
behavior, and yest (Xk) is the estimated behavior using these chan-
nels. During each iteration, PSD estimates from k channels were
combined to form a high-dimensional vector of EEG log power.
PCA was then applied to the combined PSD estimates. As in the
standard scheme, eigenvectors that explained at least 1% of the
variance were then selected to represent the subspace of EEG log
power. A linear regression, with a least-squares-error cost func-
tion, was fit to the behavioral data using the PSD projections onto
these eigenvectors.

By iteratively including and excluding channels, the SFFS algo-
rithm avoids local maxima and can therefore be used to find
the globally optimal feature set. For this dataset, the criterion
function tended to peak well before all channels were included
in the rank-ordering. Therefore, to reduce computational time
we included a maximum-iteration number of 500 for our SFFS
implementation. With this value, the criterion function for each
participant achieved its peak value and an increase in iteration

number did not improve performance (data not shown). The
final behavioral estimate was generated using the set of channels
with the largest J (Xk). For the current study, k ranged between 1
and 12 channels.

For both the standard and adaptive modeling schemes,
the EEG and behavioral data were split into leave-one-out
cross-validation sets corresponding to the experimental blocks.
Specifically, models were built with data from five blocks and
tested on data from the remaining block. This cross-validation
procedure insured a temporal separation between the training
and testing sets roughly the size of the 90 s smoothing win-
dow (see Supplementary Material). The model performance was
quantified using Pearson’s correlation coefficient between the
actual (y) and estimated (yest) behavior.

R =
∑(

y − y
) ∗ (

yest − yest
)

√∑(
y − y

)2 ∗ ∑(
yest − yest

)2
(5)

Here, significance was established using a bootstrap reshuffling
technique. Specifically, values of the estimated behavior vector
(yest) were randomly permuted and then smoothed by a 90 s mean
filter. The correlation coefficient between the random estimate
and the actual behavior was then calculated. The correlation coef-
ficients from 1000 permutations were used to estimate the mean
and variance of the random distribution for each behavior vector
and establish a significance threshold (p < 0.05).
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To determine the spectral characteristics of the regression
model, we calculated the relative contribution of each frequency
component (1 to 40 Hz) to the overall behavioral estimate.
Specifically, the relative weight for each frequency would be
calculated as follows:

Table 1 | Sequential forward floating selection (SFFS) algorithm.

Step Operation

1. Let k = 0, Xk = {∅}

2. Select next most significant feature:
xk + 1 = arg maxx /∈ Xk

J
(
Xk + x

)
Xk + 1 = Xk + xk + 1

3. If J
(
Xk + 1 − xk + 1

) ≥ J
(
Xk + 1 − xj

)
, ∀j = 1, 2, . . . k, then

k = k + 1
go to step 2

Else, exclude least significant feature from Xk + 1

xr = arg maxx ∈ Xk
J

(
Xk − x

)
X

′
k = Xk + 1 − xr

4. Find least significant feature in X
′
k :

xs = arg maxx ∈ X ′
k

J
(
X

′
k − x

)

5. If J
(
X

′
k − xs

)
≤ J(Xk − 1), then

Xk = X
′
k

go to step 2

Else, exclude least significant feature from X
′
k

X
′
k − 1 = X

′
k − xs

k = k − 1
repeat steps 4 and 5

W(f ) = 1

‖β‖
∑M

i = 1
X̂(f )vi(f )βi (6)

Here, X̂(f ) and vi(f ) are the value of the average PSD and ith
eigenvector at frequency f, respectively. The average PSD and
eigenvector are weighted by the corresponding linear model coef-
ficient βi. The resulting sum is normalized by the magnitude of
the model coefficients to compare across participants. Relative
weights were calculated for all k channels and averaged across
training sets. We used the Benjamini and Hochberg (1995) false
discovery rate (FDR) algorithm to determine which frequencies
had relative weights significantly different from zero (p < 0.05)
across all channels and participants.

RESULTS
SUBJECTIVE MEASURES
Over the population, self-reported fatigue increased during both
the driving and RSVP tasks (Figure 3). To assess the signifi-
cance of this trend we performed repeated-measures ANOVA
for each task type and survey with block or interval as the
main factor (see Table 2). The Karolinska Sleepiness Scale (KSS)
showed significant time-on-task effects in the driving and RSVP
portion of the experiment (p < 0.001). Similarly, the Task-
Induced Fatigue Scale (TIFS) showed time-on-task effects along
3 of the 4 the dimensions (p < 0.001); this included bore-
dom, visual fatigue, and muscle fatigue. Malaise showed a sig-
nificant time-on-task effect for only the driving portion of
the experiment (p < 0.01). The TIFS also revealed a signif-
icant task type effect for boredom and visual fatigue (p <

0.01), where the driving task was perceived as more boring,
and the RSVP task was perceived as inducing more visual
fatigue.

FIGURE 3 | Average TIFS scores across participants (N = 25).

Grand average of the TIFS scores with standard error at every
block interval. The four dimensions of TIFS are represented

(boredom, visual fatigue, malaise, and muscle fatigue). Scores are
normalized by the mean of each participant and sorted for
alternating task order.
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Table 2 | ANOVA for KSS, VAS-F, and TIFS.

Factor df F p

KSS

Driving block 5,24 5.21 <0.001

RSVP block 5,24 7.72 <0.001

Task type 1,24 0.01 0.906

VAS-F

Interval 2,24 1.36 0.267

TIFS BOREDOM

Driving block 5,24 11.80 <0.001

RSVP block 5,24 12.15 <0.001

Task type 1,24 11.57 0.001

TIFS VISUAL FATIGUE

Driving block 5,24 9.05 <0.001

RSVP block 5,24 5.98 <0.001

Task type 1,24 30.49 <0.001

TIFS MALAISE

Driving block 5,24 3.65 0.004

RSVP block 5,24 1.69 0.142

Task type 1,24 7.14 0.008

TIFS MUSCLE FATIGUE

Driving block 5,24 6.95 <0.001

RSVP block 5,24 6.04 <0.001

Task type 1,24 0.05 0.820

Not surprisingly, many of the subjective measures seemed to
plateau or decrease prior to the last block of the task. In the begin-
ning of the experiment, participants were informed how many
blocks would be included in each task. Thus, individuals seemed
to experience an increased alertness as they neared the end of
the task, a phenomenon shown in previous studies (Lorist et al.,
2009). In contrast to the KSS and TIFS, the Visual Analog Scale for
Fatigue did not show a significant time-on-task effect. However,
this survey was only administered three times during the entire
experiment (at the beginning, once after the driving task, and
once after the RSVP task). Overall, the participant reports of
fatigue indicated that both the driving and RSVP task induced
fatigue and boredom.

BEHAVIORAL MEASURES
A number of previous studies have sought to quantify driver
performance with a range of metrics including lane position,
reaction time to perturbation onset, and corrective steering wheel
deflections, among others. For simplicity we used absolute lane
deviation as a general proxy for driver performance and level of
alertness (Sandberg et al., 2011). Across participants, there was
no significant increase in either the mean or standard deviation
of absolute lane deviation across blocks. However, we did observe
that lane deviation had a tendency to increase throughout each
block, returning back to a lower value at the beginning of the
subsequent block (Figure 6A). To quantify this effect, we fit a lin-
ear function to the absolute lane deviation within each block. We
found that this slope exhibited a time-on-task effect [F(5, 24) =
2.42, p < 0.05], with sharper increases in lane deviation during
later experimental blocks.

FIGURE 4 | RSVP behavior for participant S08. (A) Target detection
accuracy (hit rate) over the 6 experimental blocks (indicated by horizontal
blue lines). Each point represents a calculation of the metric over a 90 s
integration window representing approximately 445 trials (target and
non-target). Red lines indicate a significant (p < 0.05) linear relationship
between the behavior and time within the block. (B,C) Show the reaction
time (RT) and button duration over the same period.

Figure 4 shows the temporal dynamics of the three RSVP
behavioral metrics (accuracy, RT and button press duration) for
a typical participant. Notably, there were large fluctuations both
within and across blocks. Across blocks, these fluctuations could
be due to changes in either task parameters (target class or target
probability) or alertness level. Within block fluctuations, how-
ever, could only be precipitated from endogenous changes such
as perceptual learning, fatigue, or boredom. To further quantify
these fluctuations we calculated both the average behavioral per-
formance across each block and identified significant linear trends
within each block.

First, to assess the influence of the task parameters we per-
formed separate repeated-measures ANOVAs on accuracy, RT
and button press duration with block, target class, and tar-
get frequency as factors (see Table 3). Across participants, one
clear modulator of performance in the RSVP task was target
class. This was true for both accuracy and RT (p < 0.001 for
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both), and to a lesser extent button press duration (p < 0.05).
Likewise, target probability had a significant effect on RT and
duration (p < 0.001) but not accuracy. Although none of the raw
behavioral metrics showed a significant time-on-task effect across
blocks, most participants had at least one block with a signifi-
cant decrease in accuracy or increase in RT, reflecting a within
block time-on-task performance decrement. To quantify this, for
each participant we identified all blocks in which the accuracy
or RT had a significant linear trend (p < 0.05). Time-on-task
performance decrements were defined as blocks with either sig-
nificantly negative trends in accuracy or significantly positive
trends in RT. On average, participants exhibited this type of per-
formance decrement in multiple blocks (μ = 2.12 blocks per
participant). Similarly, performance improvements were defined
as blocks with either significantly positive trends in accuracy or
significantly negative trends in RT. In contrast to decrements,
participants exhibited these performance improvements far less

Table 3 | ANOVA for behavioral measures in the RSVP task.

Factor Raw Normalized

df F p df F p

ACCURACY

Block 5,24 1.63 0.157 5,24 4.26 0.001

Target class 4,24 31.17 <0.001 4,24 1.06 0.379

Target frequency 1,24 0.00 0.950 1,24 0.48 0.492

REACTION TIME

Block 5,24 1.57 0.173 5,24 1.28 0.279

Target class 4,24 9.09 <0.001 4,24 2.38 0.056

Target frequency 1,24 16.77 <0.001 1,24 0.00 0.953

BUTTON PRESS DURATION

Block 5,24 2.18 0.061 5,24 1.73 0.132

Target class 4,24 2.54 0.043 4,24 1.40 0.238

Target frequency 1,24 29.43 <0.001 1,24 0.09 0.766

often (μ = 0.52 blocks per participant). This difference was sig-
nificant across participants (p < 0.001; paired t-test), indicating
that fatigue or boredom had a more pronounced influence on
within block performance as compared with perceptual learning.

Since the goal of this study was to identify endogenous changes
in performance, particularly task-induced fatigue or boredom, we
wanted to mitigate the influence of task parameters on behavior.
To accomplish this we normalized the behavior (accuracy, RT, and
duration) for perceptual difficulty and target probability. Figure 5
shows the results of this normalization process for all three behav-
ioral metrics. While a subtle time-on-task trend is evident in the
raw accuracy, it is masked by the effect of target class. In contrast,
with normalized accuracy the time-on-task trend becomes highly
significant (see Table 3). Interestingly, normalized RT and dura-
tion did not exhibit a similar time-on-task effect across blocks.
Using these normalized metrics, we then developed EEG-based
models of the RSVP behavior for each participant.

ESTIMATING PERFORMANCE FROM EEG
Previous studies have shown a clear relationship between the EEG
power spectrum and time-on-task decrements in performance,
especially in monotonous driving (Ting et al., 2008) or vigilance
tasks (Stikic et al., 2011). Less is known about the link between
the EEG power spectrum and behavior in perceptual tasks, such
as the RSVP paradigm described here. To explore this relation-
ship further, we constructed linear regression models to estimate
each participant’s behavior from their EEG power spectral den-
sity (PSD). A separate set of linear models were created from the
PSD for both the driving and RSVP tasks using an adaptive mod-
eling scheme. Figure 6A shows the actual and estimated behavior
(absolute lane deviation) for one participant in the driving task.
Notably, there was substantial variability in model performance
across blocks. This indicated that the underlying relationship
between the PSD and driving performance was variable between
training and testing sets (Apker et al., 2013). Figure 6B shows
the actual and estimated behavior (normalized accuracy) for one
participant in the RSVP task. As with the regression models of

FIGURE 5 | Raw and normalized RSVP behavioral measures. (A) Grand average target detection accuracy over blocks. (B) Grand average RT (ms). (C) Grand
average button press duration (ms). (D–F) Normalized accuracy, RT, and duration over the same blocks.
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FIGURE 6 | Continuous measure of driving and RSVP (target detection accuracy) behavior for participant S22. (A) Actual and estimated absolute lane
deviation (meters) over the 6 driving blocks. (B) Actual and estimated normalized accuracy over the 6 RSVP blocks. Horizontal bars indicate experiment blocks.

driving behavior, these models show some degree of variability
across blocks.

To quantify the accuracy of these estimates we calculated
Pearson’s correlation coefficient, between the actual and esti-
mated behavior, over the entire task. In line with our previous
studies (Touryan et al., 2013a), we found that we were able to
produce a behavioral estimate with a significant correlation coef-
ficient for the majority of participants (see Table 4). This was
true for both the driving (21 of 25 participants) and RSVP tasks
(14 of 25 participants). Across participants, there was no sig-
nificant difference in the accuracy of the behavioral estimate
in the two tasks (R = μ ± σ ; driving R = 0.374 ± 0.224, RSVP
R = 0.248 ± 0.368, p = 0.14; Wilcoxon signed-rank test). In con-
trast, these results were substantially better than could be achieved
using a standard, fixed-montage approach. Specifically, the stan-
dard modeling scheme only yielded significant estimates for 6
participants in the driving task and 4 participants in the RSVP
task. The average accuracy of the behavioral estimate was also
significantly lower than the adaptive approach for both the driv-
ing (R = 0.079 ± 0.224, p < 0.001) and RSVP (R = −0.137 ±
0.332, p < 0.001) tasks.

In addition to target detection accuracy, we wanted to quantify
the relationship between the PSD and the two other behav-
ioral measures within the RSVP task. To accomplish this, we
used the same adaptive modeling scheme described above to
fit regression models and construct estimates for both normal-
ized RT and button press duration. Figure 7B shows the actual
and estimated RT for one participant in the RSVP task, while
Figure 8B shows the actual and estimated button press dura-
tion for another participant. Here, estimates of lane deviation

from their corresponding driving tasks are included for compar-
ison (Figures 7A, 8A). Interestingly, our adaptive approach was
able to produce significant behavioral estimates for both the RT
and duration metrics in the majority of participants (RT n =
14, duration n = 17). The average correlation coefficients from
these behavioral estimates were similar (RT R = 0.332 ± 0.225,
duration R = 0.360 ± 0.302) to the normalized accuracy metric.

We observed no significant difference in the average correla-
tion coefficient from the three RSVP metrics. Likewise, estimation
accuracy from the three metrics was not significantly correlated
across participants. This suggests that substantial individual dif-
ferences exist in the link between the PSD and behavior in the
RSVP task. For example, we were able to generate highly sig-
nificant behavioral estimates along all three RSVP metrics for
some participants (Table 4, participant 6). In other cases, only
one of the three RSVP metrics produced a significant estimate
(Table 4, participant 2). Across the population, the adaptive mod-
eling scheme failed to produce a significant behavioral estimate
for only 2 of the 25 participants in the RSVP task. Together, all
participants had a least one significant estimate in either their
driving or RSVP tasks.

TOPOLOGICAL AND SPECTRAL FEATURES
Figure 9 shows the average topological distribution of included
channels in the adaptive modeling scheme for both the driving
and RSVP tasks. To quantify the gross features of this topol-
ogy, we used the following approach. First, for each participant
we normalized the channel distribution by the total number of
channels included in their optimal model (between 1 and 12).
We then separated the normalized distribution by hemisphere

www.frontiersin.org June 2014 | Volume 8 | Article 155 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive


Touryan et al. Estimating endogenous changes in performance

Table 4 | Regression model performance for the driving and RSVP tasks.

Participant Driving RSVP-accuracy RSVP-RT RSVP-duration

RMSEa R RMSEa R RMSEa R RMSEa R

1 0.78 0.63*** 0.92 0.40** 0.92 0.40** 0.98 0.30*

2 1.00 0.21* 0.81 0.59*** 1.13 −0.11 1.09 −0.03

3 0.85 0.54*** 0.84 0.54*** 1.01 0.17 0.95 0.36**

4 1.21 −0.22 0.88 0.48*** 0.82 0.58*** 0.87 0.52***

5 0.97 0.31** 0.99 0.20 0.98 0.36** 0.99 0.24

6 1.04 −0.03 0.58 0.82*** 0.77 0.64*** 0.81 0.58***

7 0.88 0.48*** 1.40 −0.80 1.08 0.06 1.09 −0.06

8 0.95 0.32*** 1.00 0.30* 0.81 0.60*** 1.01 0.16

9 1.03 0.17 1.05 0.13 1.02 0.10 1.00 0.26*

10 0.81 0.60*** 0.93 0.40** 1.01 0.19 1.08 −0.03

11 0.86 0.51*** 1.01 0.28* 0.93 0.39** 0.73 0.68***

12 0.96 0.32** 0.98 0.20 0.91 0.43** 0.85 0.52***

13 1.07 −0.08 1.03 0.15 0.83 0.57*** 0.78 0.63***

14 0.86 0.52*** 0.97 0.31* 1.05 0.16 1.03 0.17

15 0.91 0.42*** 0.97 0.30* 0.95 0.33* 0.94 0.35**

16 0.91 0.44*** 0.75 0.66*** 0.73 0.70*** 0.98 0.34**

17 0.91 0.43*** 1.01 0.18 1.07 0.09 0.92 0.46**

18 0.92 0.43*** 1.00 0.28* 1.05 0.24 0.70 0.72***

19 0.90 0.53*** 1.31 −0.12 0.83 0.58*** 1.17 −0.01

20 0.75 0.66*** 0.71 0.71*** 0.94 0.41** 0.80 0.61***

21 1.11 0.37** 0.81 0.59*** 1.05 0.16 0.77 0.64***

22 0.78 0.64*** 1.01 0.14 0.90 0.48*** 0.40 0.92***

23 0.96 0.31** 1.01 0.23 0.80 0.60*** 0.90 0.45**

24 0.89 0.46*** 1.21 −0.26 1.15 0.09 1.27 −0.37

25 0.92 0.39*** 1.30 −0.52 1.03 0.09 0.81 0.59***

Average 0.93 0.37 0.98 0.25 0.95 0.33 0.92 0.36

aRoot-mean-squared error (RMSE) values have been normalized by participant standard deviation for that task and metric.
*Denotes significance (*p < 0.05, **p < 0.01, ***p < 0.001).

in two ways: anterior-posterior and left-right. For the first com-
parison we utilized the driving and RSVP-accuracy distributions.
We performed an ANOVA with two factors (task × location)
but did not identify any significant topological effects between
tasks. We then performed an additional two factor ANOVA (met-
ric × location) for the distributions within the RSVP task. While
there was no significant clustering of channels across all metrics,
there was a significant interaction between metric and left-right
distribution [F(2, 24) = 3.497, p < 0.05]. Here, the accuracy and
duration models tended to select more channels from the right
hemisphere.

In addition to the topological distributions, we wanted to
quantify the spectral characteristics of the regression model. To
accomplish this we calculated the relative weight for each fre-
quency component within the linear model (1 to 40 Hz). Figure 9
shows the average spectrum of relative weights for both tasks.
For the driving task, we found that models tended to include an
inverse but balanced weighting of theta (4 to 7 Hz) and alpha
(8 to 12 Hz) bands, very similar to previous reports (Lin et al.,
2012). For the RSVP task, the accuracy and RT metrics exhib-
ited a near-opposite spectral weighting, including components of

both the alpha and beta (13 to 30 Hz) bands. This likely reflected
their complementary relationship to time-on-task changes in
performance (i.e., decreases in accuracy and increases in RT
over time). Interestingly, the spectral weights for the duration
metric included both positive and negative values within the
beta band.

The topological distributions show some level of commonal-
ity in the electrodes selected by the adaptive modeling scheme for
both the driving and RSVP tasks. The most commonly selected
electrode was Oz for models estimating RT in the RSVP task
(Figure 9C). We wanted to determine the relative influence of
the most commonly selected channels in each task. To do this
we built fixed-montage models using the four most commonly
selected electrodes in each task and for all three RSVP metrics
(i.e., a different fixed-montage for each condition). We found that
the performance of these models was very similar to the stan-
dard modeling scheme (utilizing Fz, Cz, Pz, and Oz). For the
driving task, the models using the four most commonly selected
electrodes produced an average correlation coefficient of 0.081 ±
0.279, similar to the standard scheme (R = 0.079 ± 0.224). For
the RSVP task, the average correlation coefficients were similar
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FIGURE 7 | Continuous measure of driving and RSVP (reaction time) behavior for participant S08. (A) Actual and estimated absolute lane deviation
(meters) over the 6 driving blocks. (B) Actual and estimated normalized RT (ms) over the 6 RSVP blocks. Horizontal bars indicate experiment blocks.

FIGURE 8 | Continuous measure of driving and RSVP (button press

duration) behavior for participant S25. (A) Actual and estimated absolute
lane deviation (meters) over the 5 driving blocks. Note: last driving block not

included due to data acquisition malfunction. (B) Actual and estimated
normalized duration (ms) over the 6 RSVP blocks. Horizontal bars indicate
experiment blocks.

for accuracy (common electrodes: R = −0.051 ± 0.347, stan-
dard scheme: R = −0.137 ± 0.332), RT (common electrodes:
R = −0.004 ± 0.292, standard scheme: R = 0.031 ± 0.266), and
duration (common electrodes: R = −0.034 ± 0.388, standard

scheme: R = −0.073 ± 0.388). These results suggest that the
power of the adaptive modeling scheme is in the ability to cap-
ture the large, inter-subject variability in both electrode number
and location.
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FIGURE 9 | Topological and spectral distribution of the adaptive model

in the driving and RSVP tasks. (A) Grand average channel montage (left)
and spectrum of relative weights (right) for the optimal model in the
driving task. Size of circle indicates relative frequency of inclusion across

participants. Black shading indicates spectral weights with values
significantly different than zero (p < 0.05 with FDR correction). (B–D)

Channel montage and spectrum for the three behavioral metrics in the
RSVP task.

MODEL GENERALIZATION
The regression models described above are optimized for each
participant and task. However, some elements of these models
may have the ability to generalize across tasks. In particular, one of
the three behavioral metrics in the RSVP task may produce more
generalizable models than the others. To explore this, we used the
regression models from the driving task to estimate RSVP behav-
ior and models from the RSVP task to estimate driving behavior.
For each participant, we used the six models from the cross-
validation process and applied them to the entire PSD data from
the alternate task, resulting in six complete estimates of the behav-
ior for each participant and task. This process was repeated for
each of the behavioral metrics in the RSVP task: normalized target
detection accuracy, RT, and button press duration. Importantly,

we needed to scale the estimate to the new behavioral metric. For
driving, the metric (absolute lane deviation) typically increases
with time-on-task fatigue or boredom; in contrast, the RSVP
metric (target detection accuracy) typically decreases under the
same conditions. Thus, we added an additional linear transform,
slope, and offset, to match the novel behavioral metric. While this
additional transform corrects for the sign and scale of the linear
relationship it does not affect the magnitude of the correlation
coefficient (i.e., the measure of estimation accuracy). Figure 10
shows the distribution of these cross-task correlation coefficients
(mean and standard error) for all participants.

Across participants, regression models constructed from the
driving data were able to estimate some degree of the behavioral
variation in the RSVP task, and vice versa. Specifically, for the
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FIGURE 10 | Cross-task estimation accuracy. (A) Average correlation
coefficient between the cross-task estimated and actual behavior for each
participant using normalized accuracy as the RSVP behavioral metric. (B,C)

Average correlation coefficients using normalized RT and duration

respectively. Level of shading indicates significance: black = significant for
both conditions (p < 0.05), gray = significant for one condition (p < 0.05),
clear = not significant. Horizontal and vertical bars show the standard error
for the distribution of correlation coefficients.

regression models built on the driving task the average correla-
tion coefficient between the actual and estimated RSVP accuracy
was 0.195 ± 0.150. Only 7 of the 25 participants had significant
correlation coefficients. For the RSVP task models based on accu-
racy, the average correlation coefficient between the actual and
estimated lane deviation was 0.176 ± 0.140. In this instance a
different subset of participants (7 of the 25) had significant corre-
lation coefficients. For RT and duration, the results were similar.
The average correlation coefficient between the actual estimated
RSVP behavior was 0.183 ± 0.152 (5/25 significant) for RT and
0.259 ± 0.148 for duration (12/25 significant). Estimates of lane
deviation yielded average correlation coefficient of 0.218 ± 0.151
(11/25 significant) for RT-based models and 0.177 ± 0.123 (8/25
significant) for duration-based models. As the scatter plots sug-
gest (Figure 10), we did not observe a significant correlation
between the accuracy of the behavioral estimates within these two
tasks.

DISCUSSION
In this paper, we have extended an approach for modeling ele-
ments of instantaneous driver performance based on changes in
the EEG log power spectra, and we have evaluated this approach
by estimating continuous performance in a simulated driving
task. We were able to generalize this approach to estimate fluctua-
tions in RSVP behavior (target detection accuracy, RT, and button
press duration) to a similar degree. Furthermore, when regression
models fit under the driving paradigm were applied to the RSVP
task, explained variance remained significant for some partici-
pants, despite its reduction overall. Together, our results show the
potential for estimating time-on-task performance decrements in
current and future BCI-relevant paradigms. While average accu-
racy of the estimated driver performance was lower than previous
reports (Lin et al., 2005a,b), our results are from a larger cohort
of participants that were not particularly fatigued at the time
of the experiment. In addition, our driving simulator incorpo-
rated more complex vehicle dynamics, including operator control
over vehicle speed, which further extended the realism of this
study.

It is important to note that the major source of behavioral vari-
ance in our RSVP paradigm was not time-on-task. Despite strong
indicators of increasing subjective fatigue and boredom, target
class was a primary modulator of performance across blocks
(Figures 4, 5). This phenomenon was due to the difference in the
average perceptual difficulty in the identification of objects from
each target class. While target images from each class were roughly
matched along low-level visual dimensions such as luminance,
object size, and eccentricity, we observed a significant effect of tar-
get class in all three behavioral metrics (target detection accuracy,
RT and button press duration). Likewise, we observed a simi-
larly strong effect of target probability on both RT and duration.
Once we normalized the behavioral metrics for these factors, a
clear time-on-task effect was evident in target detection accuracy.
While RT and duration did not show the same effect at the block
level, significant linear trends were observed within experimen-
tal blocks. Interestingly, all three behavioral metrics were able to
produce models with similar explanatory power.

The adaptive modeling scheme produced topological distri-
butions (Figure 9) that reflect elements of the underlying neural
processes. The driving and RSVP tasks likely engaged a range of
brain networks with some degree of overlap between tasks. The
majority of work exploring the link between neural activity and
driver performance has focused on the central to occipital regions
(Borghini et al., 2012; Lin et al., 2012). In contrast, the majority of
RSVP target classification studies have implicated frontal-parietal
networks (Gerson et al., 2005; Luo and Sajda, 2009). Our results
indicated that a broad range of channels were selected in both
the driving and RSVP tasks. However, since the adaptive mod-
eling scheme was a primarily data-driving approach to behavior
estimation, inferences regarding the foci of underlying network
activity are limited. In general, the number of channels included
in each participant’s optimal model was small (driving = 3.72,
RSVP accuracy = 4.32, RSVP RT = 4.24, RSVP duration = 4.08).
SFFS ranks the channels based on cumulative predictive power,
thereby minimizing redundancy in the feature selection process.
Hence, the lowest ranking (most significant) channels tend not to
be spatially adjacent, obscuring the underlying scalp distribution.

www.frontiersin.org June 2014 | Volume 8 | Article 155 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive


Touryan et al. Estimating endogenous changes in performance

In addition, there was substantial variability in both the number
and location of selected channels, making average topological dis-
tributions difficult to interpret, even with a relatively large sample
size (N = 25).

In contrast to the topology, the spectral features showed some
commonality across participants. Every linear model contained
a set of weights associated with each eigenvector, which in turn
represents a combination of spectral features. By calculating the
relative weight for each frequency across all participants, we were
able to assess the spectral features associated with the behavior
in each task. Not surprisingly, the models for the driving task
incorporated the theta and alpha bands in their estimation of
lane deviation. This relative combination of theta and alpha was
very similar to previous reports linking neural activity to changes
in driver performance (Lin et al., 2010b, 2012; Chuang et al.,
2012). For the RSVP task, the spectral features were dependent
on the behavior of interest. Target detection accuracy was found
to be positively associated with frequencies in the alpha band.
This result is in contrast to previous research which has shown
that visual discrimination performance is negatively associated
with alpha power during pre-stimulus periods, primarily in the
bilateral parieto-occipital regions (Thut et al., 2006; Hanslmayr
et al., 2007; Romei et al., 2008; Van Dijk et al., 2008; Mathewson
et al., 2009, 2011). However, these studies support the notion
that pre-stimulus alpha activity can function as an attentional
gating mechanism by which task-irrelevant information is inhib-
ited (Jensen and Mazaheri, 2010; Foxe and Snyder, 2011). Thus,
the observed positive relation between alpha power and accuracy
may be a reflection of inhibitory responses to the relatively more
frequent non-target stimuli.

The spectral profile of the RT models exhibited a near-opposite
weighting compared with models of accuracy. This is consistent
with the observed behavior, where RT and accuracy showed a
complementary relationship to time-on-task changes in perfor-
mance. Again, our results are in contrast to previous research
relating pre-stimulus alpha to decreased accuracy and increased
RT. However, there is a clear difference between pre-stimulus
measures of spectral power and PSD estimates calculated dur-
ing the RSVP (Macdonald et al., 2011). The steady state visually
evoked potential (SSVEP) has a strong influence on the spectral
profile and produces peaks at the presentation frequency (in this
case 5 Hz) and corresponding harmonics. In addition, the SSVEP
itself is modulated by the attentional state of the participant (Kim
et al., 2007). Thus, the spectral features contained within the
models of RSVP behavior likely reflect an interaction between the
SSVEP and endogenous changes in oscillatory activity.

For button duration, a negative relationship was observed in
the alpha and low beta bands while a positive relationship was
observed in the high beta band. This finding appears consistent
with the event-related alpha desynchronization/synchronization
(ERD/ERS) and post-movement beta synchronization literature.
Previous research has consistently shown alpha (10 to 12 Hz
mu rhythm) and a harmonic beta (20 to 24 Hz) desynchro-
nization preceding finger movements, as well as post-movement
beta synchronization in the 12 to 16 Hz and 26 to 30 Hz bands
(Pfurtscheller and Lopes da Silva, 1999). However, as with accu-
racy and RT, these results may reflect a complex interaction

between stimulus- and response-related activities. Further exper-
imentation is required in order to differentiate the neural and
functional sources of the spectral features contained within our
behavior estimation models.

Given the nature of our adaptive modeling scheme, explor-
ing the link between the topological and spectral distributions
would be a substantial challenge. The relative spectral weights are
extracted from the eigenvector loadings. The spatially distributed
channels that constitute each model are therefore spectrally linked
through the PCA process. Thus, determining the independent
influence of PSD spectra at each spatial location would be dif-
ficult. In contrast, alternative approaches often have an initial,
separate feature selection process. For example, other groups have
used independent component analysis (ICA) to first identify a
small number of components with unique scalp topologies that
are maximally correlated with the behavior of interest (Lin et al.,
2012). Similarly, other groups first calculate the average power
within established frequency bands: most notably delta, theta, and
alpha (Balasubramanian et al., 2011). While substantially limit-
ing the dimensionality of the feature space, these initial selection
processes allow for a more direct association between spatial or
spectral features and changes in behavior.

LINEAR MODEL CONSIDERATIONS
Interestingly, there was substantial variability in model perfor-
mance across blocks (Figure 6). This may have resulted from
several factors. First, the relationship between the neural signa-
ture of fatigue and the resulting behavior may have itself changed
over time. During the course of the task, participants could have
engaged in different compensatory strategies for perceived time-
on-task fatigue (Hockey, 1997) and these strategies could have
differentially affected the observed behavior. This was especially
true for the RSVP task in which there was a tradeoff between
the speed and accuracy of the response. Second, the observed
increase in perceived boredom over each task could have nega-
tively influenced the motivation of participants to mitigate fatigue
induced performance decrements. For example, the time it takes
to return the vehicle to the cruising lane after the onset of a per-
turbation (i.e., response time) could have been negatively affected
by motivation. In turn, this would have had a large impact on
the smoothed lane deviation values with only an indirect link to
time-on-task fatigue. Finally, while our PSD estimation process
utilized band-pass filters and the power spectra were smoothed
over a 90 s integration window, external noise and muscle artifacts
could have degraded the model fitting process. Indeed, ICA has
been used in similar approaches to mitigate artifacts and improve
the signal-to-noise ratio (Lin et al., 2005b, 2006, 2012).

While the current study employed a data-driven approach
designed to estimate changes in observed behavior, we sought
to constrain the dimensionality of the problem and leverage
previous work within this area. Several studies have identified
the general time course of behavioral fluctuation from endoge-
nous sources such as fatigue or alertness level (Jung et al., 1997;
Lin et al., 2005b; Chuang et al., 2012). Our 90 s mean filter
was directly borrowed from this previous work. However, this
parameter imposes a constraint on the distribution of random
correlation coefficients. Low-pass filtered random signals can
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achieve spurious correlations of relatively high magnitude. While
a broader temporal integration window would likely increase the
average accuracy, it would equivalently increase the significance
threshold. Thus, given that our results predominately captured
slow changes in performance (e.g., across blocks), our integra-
tion window was well suited to the nature of the behavioral
fluctuations we attempted to estimate.

The analytical approach described here employs a relatively
simple model, combined with feature selection, to generate con-
tinuous estimates of behavior. Similar approaches have been
extended to incorporate ICA (Lin et al., 2005b) and fuzzy neural-
networks (Lin et al., 2006, 2012). However, the linear approach
still represents a solid and interpretable framework for explor-
ing the relationship between the EEG power spectra and behavior
in a variety of tasks. In addition, this method is computation-
ally simple and utilizes universal signal processing components
such as continuous PSD estimation from channel data. Thus,
as we have demonstrated here, it remains a practical approach
for an embedded application in current BCI systems (Lin et al.,
2010a).

A number of other approaches for predicting changes in per-
formance, due to fatigue or workload, have targeted specific fre-
quency bands within the PSD (e.g., alpha and theta). As described
above, the benefit of this more directed approach is the substan-
tial reduction in the dimensionality of the feature space. In turn,
this allows for the creation of more robust models with less data
and a tractable exploration of frequency band interactions (e.g.,
theta-alpha ratio). However, a priori selection of features can limit
a model’s explanatory power by averaging over or ignoring PSD
features that potentially contain information. The method uti-
lized here, in contrast, takes a data-driven approach to feature
selection, both in the channel montage and PSD components.
While this more flexible approach is ideal for catching variations
across individuals, it may be constrained in its ability to estimate
behavior in novel tasks.

INCREASING BCI ROBUSTNESS
As BCI technologies improve, one potential application of
this approach is as an opportunistic tool (Lance et al., 2012)
within current and future applications, such as an image triage
BCI system (Gerson et al., 2006; Sajda et al., 2010). While
driver performance estimation systems that seek to use EEG
must significantly outperform other approaches and modali-
ties in order to justify the imposition of EEG signal acquisi-
tion, active and reactive BCI systems already include real-time
neural signal processing. Thus, the addition of time-on-task
behavior estimation algorithms would opportunistically take
advantage of that data at little or no additional cost. The
results of this study provide an initial proof-of-concept show-
ing that existing fatigue-based performance estimation algo-
rithms can be repurposed for additional BCI-specific tasks. This
BCI-within-a-BCI framework potentially opens several future
possibilities, most notably by using the performance estima-
tion algorithm to increase the robustness of extended use
active or reactive BCI technologies through a variety of miti-
gation methods (Zander and Kothe, 2011; Zander and Jatzev,
2012).

There are many possible approaches to developing these mit-
igation methods. One is to have different target-detection clas-
sifiers optimized to match individual fatigue levels. Another is
to use the performance estimation algorithm to adapt the RSVP
task to the user’s current performance level; for example by re-
presenting images seen during periods of low performance or
simply slowing the presentation rate. It should also be possible
to affect the interaction of an RSVP BCI with a computer vision
(CV) system, such as the system described in Gerson et al. (2006)
or Touryan et al. (2013b); for example by weighting the target
labels provided by the CV system more highly when the user is
in a period of low performance. A related hybrid approach, com-
bining measures of covert spatial attention with a motor imagery
BCI, was recently proposed by Tonin et al. (2013).

CONCLUSION AND FUTURE WORK
Typically, EEG-based performance estimation algorithms, like the
one described here, are designed for tracking slow fluctuations
in behavior. These approaches are intended to provide an objec-
tive measure of changes in task-induced fatigue (Lin et al., 2012)
or mental workload (Kohlmorgen et al., 2007; Brouwer et al.,
2012) that directly affect behavior over longer periods of time.
In this study, we adapted one such approach and extended its
application into a novel task paradigm. Our results show the
potential for using performance estimation algorithms to inform
current and future BCI applications by addressing some of the
non-stationarities inherent within neural signals. By identify-
ing time-on-task performance decrements, this approach could
ultimately lead to more robust BCI systems.

Unfortunately, while our adaptive approach produced sig-
nificant behavioral estimates in each task, a challenge remains
in developing a universal, task-independent model of perfor-
mance decrements. The adaptive modeling scheme described
here is optimized for a particular individual, task, and behav-
ior. However, brain activity clearly varies between individuals,
across tasks and over time. Thus, behavioral models based on a
particular ensemble of EEG data tend to degrade in their abil-
ity to extrapolate across these factors. However, there are analysis
methods such as transfer learning (Pan and Yang, 2010), that
may improve this extrapolation process. These techniques have
recently been applied to BCIs (Lu et al., 2009; Jin et al., 2013;
Samek et al., 2013; Wu et al., 2013), and provide a potential next
step for extending this work.

ACKNOWLEDGMENTS
Research was sponsored by the Army Research Laboratory
and was accomplished under Cooperative Agreement Number
W911NF-12-2-0019. The views and conclusions contained in this
document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied,
of the Army Research Laboratory or U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright nota-
tion herein. The authors would like to thank T. Johnson, M.
Cannon, M. Jaswa, C. Manteuffel, and J. Sidman for their help
developing the driving simulator. We would also like to thank P.
Weber for developing the RSVP display software; L. Gibson and

www.frontiersin.org June 2014 | Volume 8 | Article 155 | 15

http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive


Touryan et al. Estimating endogenous changes in performance

K. Turner for creating the RSVP stimuli; C. Argys, K. Corby and
T. Chiappone for running the experiments.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fnins.2014.
00155/abstract

REFERENCES
Akerstedt, T., and Gillberg, M. (1990). Subjective and objective sleepiness in

the active individual. Int. J. Neurosci. 52, 29–37. doi: 10.3109/0020745900
8994241

Apker, G., Lance, B., Kerick, S., and McDowell, K. (2013). “Combined linear
regression and quadratic classification approach for an EEG-based prediction
of driver performance,” in Foundations of Augmented Cognition Lecture Notes
in Computer Science, eds D. D. Schmorrow and C. M. Fidopiastis (Berlin;
Heidelberg: Springer), 231–240. Available online at: http://link.springer.com/
chapter/10.1007/978-3-642-39454-624

Balasubramanian, V., Adalarasu, K., and Gupta, A. (2011). EEG based analysis of
cognitive fatigue during simulated driving. Int. J. Ind. Syst. Eng. 7, 135–149. doi:
10.1504/IJISE.2011.038563

Basner, M., Rubinstein, J., Fomberstein, K. M., Coble, M. C., Ecker, A., Avinash,
D., et al. (2008). Effects of night work, sleep loss and time on task on simulated
threat detection performance. Sleep 31, 1251–1259.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a prac-
tical and powerful approach to multiple testing. J. R. Stat. Soc. B Methodol. 55,
289–300.

Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., and Babiloni, F. (2012).
Measuring neurophysiological signals in aircraft pilots and car drivers for the
assessment of mental workload, fatigue and drowsiness. Neurosci. Biobehav. Rev.
doi: 10.1016/j.neubiorev.2012.10.003. [Epub ahead of print].

Brouwer, A.-M., Hogervorst, M. A., van Erp, J. B. F., Heffelaar, T., Zimmerman,
P. H., and Oostenveld, R. (2012). Estimating workload using EEG spectral
power and ERPs in the n-back task. J. Neural Eng. 9:045008. doi: 10.1088/1741-
2560/9/4/045008

Chuang, S.-W., Ko, L.-W., Lin, Y.-P., Huang, R.-S., Jung, T.-P., and Lin,
C.-T. (2012). Co-modulatory spectral changes in independent brain pro-
cesses are correlated with task performance. Neuroimage 62, 1469–1477. doi:
10.1016/j.neuroimage.2012.05.035

Connor, J. (2002). Driver sleepiness and risk of serious injury to car occu-
pants: population based case control study. BMJ 324, 1125–1125. doi:
10.1136/bmj.324.7346.1125

Davidson, P. R., Jones, R. D., and Peiris, M. T. R. (2007). EEG-based lapse detec-
tion with high temporal resolution. IEEE Trans. Biomed. Eng. 54, 832–839. doi:
10.1109/TBME.2007.893452

Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for anal-
ysis of single-trial EEG dynamics including independent component analysis.
J. Neurosci. Methods 134, 9–21. doi: 10.1016/j.jneumeth.2003.10.009

Foxe, J. J., and Snyder, A. C. (2011). The role of alpha-band brain oscillations as a
sensory suppression mechanism during selective attention. Front. Psychol. 2:154.
doi: 10.3389/fpsyg.2011.00154

Gao, S., Wang, Y., Gao, X., and Hong, B. (2014). Visual and auditory brain-
computer interfaces. IEEE Trans. Biomed. Eng. 61, 1436–1447. doi: 10.1109/
TBME.2014.2300164

Gerson, A. D., Parra, L. C., and Sajda, P. (2005). Cortical origins of response
time variability during rapid discrimination of visual objects. Neuroimage 28,
342–353. doi: 10.1016/j.neuroimage.2005.06.026

Gerson, A. D., Parra, L. C., and Sajda, P. (2006). Cortically coupled computer vision
for rapid image search. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 174–179. doi:
10.1109/TNSRE.2006.875550

Grandjean, E. P., Wotzka, G., Schaad, R., and Gilgen, A. (1971). Fatigue and stress
in air traffic controllers. Ergonomics 14, 159–165. doi: 10.1080/0014013710
8931234

Hanslmayr, S., Aslan, A., Staudigl, T., Klimesch, W., Herrmann, C. S., and
Bäuml, K.-H. (2007). Prestimulus oscillations predict visual perception per-
formance between and within subjects. Neuroimage 37, 1465–1473. doi:
10.1016/j.neuroimage.2007.07.011

Hockey, G. R. J. (1997). Compensatory control in the regulation of human perfor-
mance under stress and high workload: a cognitive-energetical framework. Biol.
Psychol. 45, 73–93. doi: 10.1016/S0301-0511(96)05223-4

Jap, B. T., Lal, S., Fischer, P., and Bekiaris, E. (2009). Using EEG spectral compo-
nents to assess algorithms for detecting fatigue. Expert Syst. Appl. 36, 2352–2359.
doi: 10.1016/j.eswa.2007.12.043

Jensen, O., and Mazaheri, A. (2010). Shaping functional architecture by oscil-
latory alpha activity: gating by inhibition. Front. Hum. Neurosci. 4:186. doi:
10.3389/fnhum.2010.00186

Jin, J., Sellers, E. W., Zhang, Y., Daly, I., Wang, X., and Cichocki, A. (2013). Whether
generic model works for rapid ERP-based BCI calibration. J. Neurosci. Methods
212, 94–99. doi: 10.1016/j.jneumeth.2012.09.020

Jung, T.-P., Makeig, S., Stensmo, M., and Sejnowski, T. J. (1997). Estimating alert-
ness from the EEG power spectrum. IEEE Trans. Biomed. Eng. 44, 60–69. doi:
10.1109/10.553713

Kim, Y. J., Grabowecky, M., Paller, K. A., Muthu, K., and Suzuki, S. (2007).
Attention induces synchronization-based response gain in steady-state visual
evoked potentials. Nat. Neurosci. 10, 117–125. doi: 10.1038/nn1821

Kohlmorgen, J., Dornhege, G., Braun, M., Blankertz, B., Müller, K.-R., Curio, G.,
et al. (2007). “Improving human performance in a real operating environ-
ment through real-time mental workload detection,” in Toward Brain-Computer
Interfacing (Cambridge, MA: MIT Press), 409–422.

Lal, S. K. L., and Craig, A. (2005). Reproducibility of the spectral components of the
electroencephalogram during driver fatigue. Int. J. Psychophysiol. 55, 137–143.
doi: 10.1016/j.ijpsycho.2004.07.001

Lance, B. J., Kerick, S. E., Ries, A. J., Oie, K. S., and McDowell, K. (2012).
Brain-computer interface technologies in the coming decades. Proc. IEEE 100,
1585–1599. doi: 10.1109/JPROC.2012.2184830

Lin, C.-T., Chang, C.-J., Lin, B.-S., Hung, S.-H., Chao, C.-F., and Wang, I.-J.
(2010a). A real-time wireless brain-computer interface system for drowsiness
detection. IEEE Trans. Biomed. Circuits Syst. 4, 214–222. doi: 10.1109/TBCAS.
2010.2046415

Lin, C.-T., Huang, K.-C., Chao, C.-F., Chen, J.-A., Chiu, T.-W., Ko, L.-W.,
et al. (2010b). Tonic and phasic EEG and behavioral changes induced
by arousing feedback. Neuroimage 52, 633–642. doi: 10.1016/j.neuroimage.
2010.04.250

Lin, C.-T., Ko, L.-W., Chung, I.-F., Huang, T.-Y., Chen, Y.-C., Jung, T.-P., et al.
(2006). Adaptive EEG-based alertness estimation system by using ICA-based
fuzzy neural networks. IEEE Trans. Circuits Syst. Regul. Pap. 53, 2469–2476. doi:
10.1109/TCSI.2006.884408

Lin, C. T., Wu, R. C., Jung, T. P., Liang, S. F., and Huang, T. Y. (2005a). Estimating
driving performance based on EEG spectrum analysis. EURASIP J. Adv. Signal
Process. 2005, 3165–3174. doi: 10.1155/ASP.2005.3165

Lin, C. T., Wu, R. C., Liang, S. F., Chao, W. H., Chen, Y. J., and Jung, T. P.
(2005b). EEG-based drowsiness estimation for safety driving using independent
component analysis. Circuits Syst. Regul. Pap. IEEE Trans. 52, 2726–2738. doi:
10.1109/TCSI.2005.857555

Lin, F.-C., Ko, L.-W., Chuang, C.-H., Su, T.-P., and Lin, C.-T. (2012). Generalized
EEG-based drowsiness prediction system by using a self-organizing neu-
ral fuzzy system. IEEE Trans. Circuits Syst. Regul. Pap. 59, 2044–2055. doi:
10.1109/TCSI.2012.2185290

Liyanage, S. R., Guan, C., Zhang, H., Ang, K. K., Xu, J., and Lee, T. H.
(2013). Dynamically weighted ensemble classification for non-stationary
EEG processing. J. Neural Eng. 10:036007. doi: 10.1088/1741-2560/10/3/
036007

Lorist, M. M., Bezdan, E., ten Caat, M., Span, M. M., Roerdink, J. B. T. M., and
Maurits, N. M. (2009). The influence of mental fatigue and motivation on neu-
ral network dynamics; an EEG coherence study. Brain Res. 1270, 95–106. doi:
10.1016/j.brainres.2009.03.015

Lu, S., Guan, C., and Zhang, H. (2009). Unsupervised brain computer
interface based on intersubject information and online adaptation. IEEE
Trans. Neural Syst. Rehabil. Eng. 17, 135–145. doi: 10.1109/TNSRE.2009.
2015197

Luo, A., and Sajda, P. (2009). Comparing neural correlates of visual target detection
in serial visual presentations having different temporal correlations. Front. Hum.
Neurosci. 3:5. doi: 10.3389/neuro.09.005.2009

Macdonald, J. S. P., Mathan, S., and Yeung, N. (2011). Trial-by-trial variations
in subjective attentional state are reflected in ongoing prestimulus EEG alpha
oscillations. Front. Psychol. 2:82. doi: 10.3389/fpsyg.2011.00082

Frontiers in Neuroscience | Neuroprosthetics June 2014 | Volume 8 | Article 155 | 16

http://www.frontiersin.org/journal/10.3389/fnins.2014.00155/abstract
http://www.frontiersin.org/journal/10.3389/fnins.2014.00155/abstract
http://link.springer.com/chapter/10.1007/978-3-642-39454-6_24
http://link.springer.com/chapter/10.1007/978-3-642-39454-6_24
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Touryan et al. Estimating endogenous changes in performance

Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M., and Ro, T. (2009). To
see or not to see: prestimulus α phase predicts visual awareness. J. Neurosci. 29,
2725–2732. doi: 10.1523/JNEUROSCI.3963-08.2009

Mathewson, K. E., Lleras, A., Beck, D. M., Fabiani, M., Ro, T., and Gratton,
G. (2011). Pulsed out of awareness: eeg alpha oscillations represent a
pulsed-inhibition of ongoing cortical processing. Front. Psychol. 2:99. doi:
10.3389/fpsyg.2011.00099

Matthews, G., and Desmond, P. A. (1998). Personality and multiple dimensions
of task-induced fatigue: a study of simulated driving. Pers. Individ. Differ. 25,
443–458. doi: 10.1016/S0191-8869(98)00045-2

Monk, T. H. (1989). A visual analogue scale technique to measure global vigor and
affect. Psychiatry Res. 27, 89–99. doi: 10.1016/0165-1781(89)90013-9

Pan, S. J., and Yang, Q. (2010). A survey on transfer learning. IEEE Trans. Knowl.
Data Eng. 22, 1345–1359. doi: 10.1109/TKDE.2009.191

Pfurtscheller, G., and Lopes da Silva, F. H. (1999). Event-related EEG/MEG syn-
chronization and desynchronization: basic principles. Clin. Neurophysiol. 110,
1842–1857. doi: 10.1016/S1388-2457(99)00141-8

Pudil, P., Novovièová, J., and Kittler, J. (1994). Floating search methods in
feature selection. Pattern Recognit. Lett. 15, 1119–1125. doi: 10.1016/0167-
8655(94)90127-9

Romei, V., Brodbeck, V., Michel, C., Amedi, A., Pascual-Leone, A., and Thut, G.
(2008). Spontaneous fluctuations in posterior α-band EEG activity reflect vari-
ability in excitability of human visual areas. Cereb. Cortex 18, 2010–2018. doi:
10.1093/cercor/bhm229

Sajda, P., Pohlmeyer, E., Wang, J., Parra, L. C., Christoforou, C., Dmochowski, J.,
et al. (2010). In a blink of an eye and a switch of a transistor: cortically coupled
computer vision. Proc. IEEE 98, 462–478. doi: 10.1109/JPROC.2009.2038406

Samek, W., Meinecke, F. C., and Muller, K.-R. (2013). Transferring subspaces
between subjects in brain-computer interfacing. IEEE Trans. Biomed. Eng. 60,
2289–2298. doi: 10.1109/TBME.2013.2253608

Sandberg, D., Akerstedt, T., Anund, A., Kecklund, G., and Wahde, M. (2011).
Detecting driver sleepiness using optimized nonlinear combinations of
sleepiness indicators. IEEE Trans. Intell. Transp. Syst. 12, 97–108. doi:
10.1109/TITS.2010.2077281

Sommer, D., and Golz, M. (2010). “Evaluation of PERCLOS based current fatigue
monitoring technologies,” in 2010 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC) (Buenos Aires), 4456–4459.
doi: 10.1109/IEMBS.2010.5625960

Stikic, M., Johnson, R. R., Levendowski, D. J., Popovic, D. P., Olmstead, R. E.,
and Berka, C. (2011). EEG-derived estimators of present and future cognitive
performance. Front. Hum. Neurosci. 5:70. doi: 10.3389/fnhum.2011.00070

Thut, G., Nietzel, A., Brandt, S. A., and Pascual-Leone, A. (2006). α-Band elec-
troencephalographic activity over occipital cortex indexes visuospatial attention
bias and predicts visual target detection. J. Neurosci. 26, 9494–9502. doi:
10.1523/JNEUROSCI.0875-06.2006

Ting, P.-H., Hwang, J.-R., Doong, J.-L., and Jeng, M.-C. (2008). Driver fatigue
and highway driving: a simulator study. Physiol. Behav. 94, 448–453. doi:
10.1016/j.physbeh.2008.02.015

Tonin, L., Leeb, R., Sobolewski, A., and Millán Jdel, R. (2013). An online EEG
BCI based on covert visuospatial attention in absence of exogenous stimulation.
J. Neural Eng. 10:056007. doi: 10.1088/1741-2560/10/5/056007

Touryan, J., Apker, G., Kerick, S., Lance, B., Ries, A. J., and McDowell, K.
(2013a). “Translation of EEG-based performance prediction models to rapid
serial visual presentation tasks,” in Foundations of Augmented Cognition Lecture
Notesin Computer Science, eds D. D. Schmorrow and C. M. Fidopiastis (Berlin;

Heidelberg: Springer), 521–530. Available online at: http://link.springer.com/
chapter/10.1007/978-3-642-39454-6_56

Touryan, J., Gibson, L., Horne, J. H., and Weber, P. (2011). Real-time measurement
of face recognition in rapid serial visual presentation. Front. Psychol. 2:42. doi:
10.3389/fpsyg.2011.00042

Touryan, J., Ries, A. J., Weber, P., and Gibson, L. (2013b). “Integration of auto-
mated neural processing into an army-relevant multitasking simulation envi-
ronment,” in Foundations of Augmented Cognition Lecture Notes in Computer
Science, eds D. D. Schmorrow and C. M. Fidopiastis (Berlin; Heidelberg:
Springer), 774–782. Available online at: http://link.springer.com/chapter/10.
1007/978-3-642-39454-6_83

Van Dijk, H., Schoffelen, J.-M., Oostenveld, R., and Jensen, O. (2008). Prestimulus
oscillatory activity in the alpha band predicts visual discrimination ability.
J. Neurosci. 28, 1816–1823. doi: 10.1523/JNEUROSCI.1853-07.2008

Vogel, A. P., Fletcher, J., and Maruff, P. (2010). Acoustic analysis of the effects
of sustained wakefulness on speech. J. Acoust. Soc. Am. 128, 3747–3756. doi:
10.1121/1.3506349

Von Bünau, P., Meinecke, F. C., Király, F. C., and Müller, K.-R. (2009). Finding
stationary subspaces in multivariate time series. Phys. Rev. Lett. 103:214101. doi:
10.1103/PhysRevLett.103.214101

Vural, E., Çetin, M., Erçil, A., Littlewort, G., Bartlett, M., and Movellan, J. (2009).
“Machine learning systems for detecting driver drowsiness,” in In-Vehicle Corpus
and Signal Processing for Driver Behavior, eds K. Takeda, H. Erdogan, J. H.
L. Hansen, and H. Abut (Springer), 97–110. Available online at: http://link.

springer.com/chapter/10.1007/978-0-387-79582-98
Wu, D., Lance, B. J., and Parsons, T. D. (2013). Collaborative filtering for brain-

computer interaction using transfer learning and active class selection. PLoS
ONE 8:e56624. doi: 10.1371/journal.pone.0056624

Yu, K., Shen, K., Shao, S., Ng, W. C., and Li, X. (2012). Bilinear common spatial pat-
tern for single-trial ERP-based rapid serial visual presentation triage. J. Neural
Eng. 9:046013. doi: 10.1088/1741-2560/9/4/046013

Zander, T. O., and Jatzev, S. (2012). Context-aware brain–computer interfaces:
exploring the information space of user, technical system and environment.
J. Neural Eng. 9:016003. doi: 10.1088/1741-2560/9/1/016003

Zander, T. O., and Kothe, C. (2011). Towards passive brain–computer interfaces:
applying brain–computer interface technology to human–machine systems in
general. J. Neural Eng. 8:025005. doi: 10.1088/1741-2560/8/2/025005

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 04 February 2014; accepted: 25 May 2014; published online: 13 June 2014.
Citation: Touryan J, Apker G, Lance BJ, Kerick SE, Ries AJ and McDowell K (2014)
Estimating endogenous changes in task performance from EEG. Front. Neurosci. 8:155.
doi: 10.3389/fnins.2014.00155
This article was submitted to Neuroprosthetics, a section of the journal Frontiers in
Neuroscience.
Copyright © 2014 Touryan, Apker, Lance, Kerick, Ries and McDowell. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permit-
ted, provided the original author(s) or licensor are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

www.frontiersin.org June 2014 | Volume 8 | Article 155 | 17

http://link.springer.com/chapter/10.1007/978-3-642-39454-6_56
http://link.springer.com/chapter/10.1007/978-3-642-39454-6_56
http://link.springer.com/chapter/10.1007/978-3-642-39454-6_83
http://link.springer.com/chapter/10.1007/978-3-642-39454-6_83
http://link.springer.com/chapter/10.1007/978-0-387-79582-9_8
http://link.springer.com/chapter/10.1007/978-0-387-79582-9_8
http://dx.doi.org/10.3389/fnins.2014.00155
http://dx.doi.org/10.3389/fnins.2014.00155
http://dx.doi.org/10.3389/fnins.2014.00155
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive

	Estimating endogenous changes in task performance from EEG
	Introduction
	Methods
	Calibration
	Driving
	RSVP
	Subjective measures
	Behavioral measures
	Electroencephalography measures
	Regression models


	Results
	Subjective Measures
	Behavioral Measures
	Estimating Performance from EEG
	Topological and Spectral Features
	Model Generalization

	Discussion
	Linear Model Considerations
	Increasing BCI Robustness

	Conclusion and Future Work
	Acknowledgments
	Supplementary Material
	References


