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The design of efficient neuroprosthetic devices has become a major challenge for the
long-term goal of restoring autonomy to motor-impaired patients. One approach for brain
control of actuators consists in decoding the activity pattern obtained by simultaneously
recording large neuronal ensembles in order to predict in real-time the subject’s intention,
and move the prosthesis accordingly. An alternative way is to assign the output of one
or a few neurons by operant conditioning to control the prosthesis with rules defined
by the experimenter, and rely on the functional adaptation of these neurons during
learning to reach the desired behavioral outcome. Here, several motor cortex neurons
were recorded simultaneously in head-fixed awake rats and were conditioned, one at
a time, to modulate their firing rate up and down in order to control the speed and
direction of a one-dimensional actuator carrying a water bottle. The goal was to maintain
the bottle in front of the rat’s mouth, allowing it to drink. After learning, all conditioned
neurons modulated their firing rate, effectively controlling the bottle position so that the
drinking time was increased relative to chance. The mean firing rate averaged over all
bottle trajectories depended non-linearly on position, so that the mouth position operated
as an attractor. Some modifications of mean firing rate were observed in the surrounding
neurons, but to a lesser extent. Notably, the conditioned neuron reacted faster and led
to a better control than surrounding neurons, as calculated by using the activity of those
neurons to generate simulated bottle trajectories. Our study demonstrates the feasibility,
even in the rodent, of using a motor cortex neuron to control a prosthesis in real-time
bidirectionally. The learning process includes modifications of the activity of neighboring
cortical neurons, while the conditioned neuron selectively leads the activity patterns
associated with the prosthesis control.
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INTRODUCTION
Neuronal operant conditioning consists in training a freely behav-
ing animal so that the firing rate of a preselected neuron, recorded
simultaneously to the behavior, modulates to achieve goals set by
the experimenter. Provided that the human or animal is properly
rewarded, it has been shown that the activity of neurons could be
conditioned in different zones of the brain (Olds, 1965; Shinkman
et al., 1974; Marzullo et al., 2006; Cerf et al., 2010; Kobayashi et al.,
2010; Schafer and Moore, 2011; Sakurai and Takahashi, 2013),
including the motor cortex (Fetz, 1969), and with high success
and short training time in the monkey (Moritz et al., 2008; Moritz
and Fetz, 2011). This plastic capability of the neuron to adapt to a
new task, and display relatively fast and precise modulations has
been proposed to be usable to drive real-time prosthetic devices
for a long time (Schmidt, 1980). However, it was only in 2008 that
operant conditioning of one neuron served as a way to control, by
electrical stimulation proportional to the cell’s activity, the con-
traction of the wrist muscles of a monkey (Moritz et al., 2008).
More recent studies have shown that abstract skills, such as the
control of an auditory pitch, could also be learnt through operant

conditioning of one or a few neurons (Gage et al., 2005; Koralek
et al., 2012).

During the last decade, a parallel approach has been devel-
oped, based on the decoding of the activity of a larger population
of neurons to reconstruct a limb movement (Chapin et al.,
1999). Brain-machine interfaces of increasing complexity have
been implemented (Carmena et al., 2003; Velliste et al., 2008;
Pohlmeyer et al., 2009; Suminski et al., 2010), that already prove
useful for human subjects (Hochberg et al., 2012; Collinger et al.,
2013). In practice, the decoding strategy does not always allow
control of the device immediately and may necessitate a period
of several days or weeks of training (Taylor et al., 2002; Ganguly
et al., 2011; but see Serruya et al., 2002, for rapid control of a
2D-cursor). This is especially true for motor-impaired human
subjects, for which the optimization of the brain control algo-
rithm cannot rely on daily determination of functional properties
of the recorded neurons. Increasing the number of dimensions
of the prosthesis, as has been achieved in a recent human study
using a prosthetic arm with seven degrees of freedom (Collinger
et al., 2013), requires increasing the amount of training in order
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to master the robotic device. Also, at present, a robotic arm
can perform a food-grasping task with success but without the
smoothness and the speed of a real arm (Velliste et al., 2008),
although promising progress has been achieved with sophisti-
cated algorithms for control of a 2D cursor (Gilja et al., 2012).
We propose that strategies to control simple prosthetic devices (in
1D) with time-scales compatible with muscle-control reactivity
and stability should first be designed, before increasing the num-
ber of degrees of freedom. To that end, the performance of one or
a small group of neurons, trained to drive a low dimension device
through operant conditioning, should be assessed quantitatively.

Neuroprosthetic training protocols likely all trigger various
forms of plastic modifications distributed in the brain. These
functional changes, particularly of the neurons whose activity
directly drives the prosthesis, contribute to the successful con-
trol of the brain machine interface (Taylor et al., 2002; Ganguly
and Carmena, 2009). In neuronal operant conditioning, it has
been reported early on that cells immediately adjacent to a con-
ditioned unit, but not included in the reinforcement contingency,
tend to exhibit correlated activity (Fetz and Baker, 1973). More
recently, several studies have examined in more detail the extent
to which surrounding neurons in the network also modify their
functional properties. In two different experiments in the monkey
motor cortex, Carmena and collaborators showed that neurons
not directly relevant for the prosthesis control exhibited marked
changes in activity during the brain control trials (Ganguly et al.,
2011; Koralek et al., 2013). However, neurons directly controlling
the prosthesis exhibited a higher modulation of activity (Ganguly
et al., 2011), and a precise temporal coherence with downstream
pathways absent in neighboring neurons (Koralek et al., 2013). In
a previous study, we have also reported the presence of changes
in the spiking activity of neurons not directly controlling a pros-
thetic device, but to a lesser extent than the neurons directly
relevant to the behavioral output (Arduin et al., 2013). Andersen
and collaborators have argued that the activity patterns taking
place during brain control of neuroprostheses belong to the nat-
ural movement repertoire of the motor pathways (Hwang et al.,
2013). We believe that concomitant changes in the motor network
need to be assessed more systematically, particularly in order to
evaluate whether it will be feasible to recruit independently dif-
ferent populations of neurons in the same area for the different
dimensions of control of a single prosthetic device.

In order to address these questions, we designed a neuronal
operant conditioning protocol using rats, employing only one
motor cortex neuron at a time. In our previous study (Arduin
et al., 2013), the discharge of the conditioned neuron was con-
trolling a one-dimensional actuator on which a bottle contain-
ing a liquid reward could move in one direction. We showed
that after learning, the neuron indeed raised its activity dur-
ing the trials. This increase of discharge occurred as a transient
burst shortly after trial onset. It remained to be determined
whether the neuron’s spiking activity could be maintained for
a prolonged period, and thus achieve a stable and continu-
ous control of the bottle position over time. In this study, we
present results of a bidirectional version of the operant condi-
tioning task in which the bottle could move in both directions
depending on whether the firing rate of the conditioned neuron

increased or decreased. Thus, the neuronal firing rate had to
adapt in real-time in order to stabilize the bottle position in the
drinking zone.

MATERIALS AND METHODS
ANIMAL HANDLING AND PRE-TRAINING
Three male Wistar rats weighing 250–350 g were obtained
from our in-house animal facility (French Agriculture Ministry
Authorization C91-272-105). Maintenance, manipulations and
surgery were performed in conformity with French (JO 2001-
464) and European legislation (2010/63/UE) on animal exper-
imentation. Before surgery, animals were progressively trained
to stay quietly in a harness and drink from a bottle contain-
ing a solution of water and glucose (strawberry syrup). While
attached in the harness, the posterior limbs laid on a platform,
and the forelimbs were free to move. Animals were kept at 85%
of their free-feeding weight. The bottle was mounted on a one-
dimensional linear actuator (Festo, Germany) perpendicular to
the rat body, and moved to and away from the rat mouth on a
left-right lateral axis (Figure 1A). During the pre-operative train-
ing phase (pre-training), the bottle followed four successive steps
per trial: (1) a waiting period of 8–12 s in the dark, during which
the bottle was kept away from the animal; (2) a fast displacement
of the bottle to the mouth position during which a green light-
emitting diode (LED) placed close to the animal was “on”; (3) a
period of 3 s of drinking during which a blue LED was “on”; (4)
a return travel, back to the initial start position. A new waiting
period then started. Two sessions of 10–15 min occurred each day,
consisting of ∼50 trials each. The LEDs were switched “on” and
“off” by a microcontroller (Arduino Diecimila, Italy). The whole
pre-training period lasted several weeks.

SURGICAL PROCEDURE
Two days prior to surgery, the rat received subcutaneous injec-
tions of 0.1 mL of the anti-inflammatory drug meloxicam
(Metacam 0.5 mg.kg−1) and 0.1 mL of the antibiotics drug
cevofecin (Convenia 25 mg.kg−1) to prevent pain and infections,
respectively. We placed the animal in a ventilated box and induced
anesthesia with isoflurane at 3%. The animal was then trans-
ferred to a stereotaxic frame. The ear bars were covered with
lidocaine gel (Xylocaine). Anesthesia was maintained throughout
surgery with isoflurane. The level of isoflurane was progressively
decreased down to ∼1.5%. We injected 0.3 mL of lidocaine 2%
under the head skin before incision. Once the skull was exposed,
seven to eight screws were inserted, both to ensure a strong
contact between skull and implant, and for electrical ground-
ing (see below). A craniotomy was drilled above the limb region
of the motor cortex (A1.5, L3.0), and the dura was resected.
The rats were implanted with microwire arrays of 8 rows and 4
columns with a grid spacing of 0.25 mm (Microprobes for Life
Sciences, MD, USA). The electrodes were lowered to a cortical
depth of ∼1300 microns. Once the microwire array was in place,
a ground wire was coiled around one or several ground screws
(Phymep, France). Gelfoam was applied around the upper part
of the electrodes outside of the brain to help prevent bleeding.
Drops of cyanoacrylate were sparsely spread on the dry skull. The
remaining skull area was then covered with dental acrylic (Henry

Frontiers in Neuroscience | Neuroprosthetics July 2014 | Volume 8 | Article 206 | 2

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Arduin et al. Bidirectional control of a neuroprosthesis

Schein, USA) together with the base of the electrode implant.
Finally, a piece of polyvinyl chloride (PVC, custom-made) was
embedded in the dental cement to allow head-fixation in sub-
sequent training sessions (see below). The rat received a saline
injection intraperitoneally before the anesthesia was stopped.
Food was accessible ad libitum for 5 days during which the rat
was closely looked after to check proper recovery. Drops of an oral
solution of meloxicam were given if signs of pain or disturbance
were noticed.

HEAD FIXATION
The rat was then submitted to the same food deprivation proto-
col as before surgery. The training sessions were similar and the
rat was taught to accept a strict head-fixation ensured with a 3D
articulated arm (NMG700030, Noga, Germany) whose extrem-
ity (NFA1100) mated with the PVC piece glued to the skull
(Figure 1A). With that device, the rat’s mouth could be posi-
tioned precisely by the experimenter in front of the bottle in
the drinking position. The four limbs were still free to move as
above.

DATA ACQUISITION AND CONTROL OF THE BEHAVIORAL SETUP
DURING TRAINING
Neuronal activity was recorded and processed in real-time
(Cerebus hardware, Blackrock Microsystems, UT, USA). Each
electrode output was filtered between 250 Hz and 7.5 kHz, and
sampled at 30 kHz. Spikes were sorted online (Central software,
Blackrock Microsystems). Spike sorting was performed at the
beginning of each session, using a template-matching method:
assignment of a waveform to a unit depended on whether it
crossed all the criterion windows drawn by the experimenter
(Figure 1B, inset). A putative unit was considered as well iso-
lated if less than one percent of spikes was contained in the first
bin (2 ms) of its autocorrelogram. For one conditioned unit, we
could not reliably separate the spikes corresponding to two differ-
ent waveforms; therefore we classified this unit as a multi-unit.
Spikes were considered to be emitted by the same unit from
one session to the next when their waveform remained invari-
ant (Supplementary Material). This was evaluated by checking
that the average waveforms, normalized by their peak value, were
superimposed within ∼10% of each other. A change in peak
amplitude was allowed as long as the spikes could be well isolated.
Spikes of non-conditioned neurons were not always successfully
isolated throughout all successive sessions for the currently condi-
tioned neuron. All information was sent to a computer (Dell Intel
QuadCore at 2.66 GHz, 3.24 Gb of RAM, OS Windows XP) via a
fiber-optic data link. A custom-made software (Eclipse Qt C++)
read in the spike information in real-time and commanded the
linear actuator holding the bottle through a serial 56 k baud com-
munication. For technical reasons, we could not record the bottle
position continuously during the session. Instead, the instanta-
neous bottle position was recorded on the neural data file through
a second serial port whenever the bottle crossed from one spatial
bin to another (13 bins spanning the bottle course).

NEURONAL CONTROL OF THE BOTTLE POSITION
A single unit was chosen as the operantly-conditioned neuron for
controlling the bottle position. Criteria for selection were stability

FIGURE 1 | Experimental setup of the neuronal control protocol. (A)

Schematics of the experimental setup. The rat was suspended in a harness
attached on a PVC bar. Its hindlimbs touched a platform while its forelimbs
were free to move. The head was fixed by a mechanical arm that was
plugged to a PVC piece embedded into the dental cement of the implant. A
bottle containing water and syrup was held by a metal piece placed on a
one-dimensional linear axis, perpendicular to the rat’s body. A green LED
was placed on the left of the animal. It was switched on and off by a
microcontroller mounted on a printed circuit board near the animal to
indicate start and end of each trial. The bottle could move in the two
directions (black arrows) and the rat could drink when the bottle was close
enough to the center (“drinking zone,” blue shaded area). The green and red
shaded areas represent the right and left zones explored by the bottle. (B)

Bottom, spiking activity of a single neuron (see 60 superimposed action
potentials in the inset) during the waiting period (black ticks), during the trial
before reward is reached (green ticks) and during the rewarded part of the
trial (blue ticks). The smoothed firing rate of the unit (middle) controlled the
speed of the bottle toward the rat from a lateral starting position (top). The
color of the bottle position curve matches the color of the spiking activity at
that time and indicates the waiting/trial status and the bottle position zone in
the trial. Magenta dots indicate key positions recorded during the
experiment, while the rest of the curve was reconstructed offline (see
Methods). The speed of the bottle depended on the difference between the
firing rate and two thresholds (purple and orange horizontal lines). Those
thresholds were set at fixed percentiles of the firing rate distribution (left
black histogram, see Methods). When the bottle was in the drinking zone
(blue shaded area), the rat was able to drink while still controlling the bottle
position. The green triangle between the waiting period and the trial
represents the LED that was switched on to indicate trial onset. Color
conventions for the position zones and activity thresholds apply to all figures.

of recording over days, high signal-to-noise ratio, wide firing rate
distribution and modulation with forelimb movement. During
the experiment, spiking activity was computed every 62.5 ms,
and was smoothed over 500 ms by convolving each spike with
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a continuous filter: h(t) = 2 ∗ (0.5 − t) if t was between 0
and 0.5 s, and h(t) = 0 otherwise. Neuronal control consisted in
using this smoothed firing rate to determine the bottle speed and
direction.

The full training of one neuron was composed of three succes-
sive phases, each consisting of many sessions spread over several
days or weeks. In the first training phase, the automatic dis-
placement of the bottle present during pretraining before surgery
was now replaced by neuronal control. The firing rate of the
conditioned neuron needed to increase above a “high” thresh-
old chosen by the experimenter (see below) to make the bottle
move toward the rat’s head, and allow eventually liquid rein-
forcement once it was in a specific zone close enough to the
mouth. This “drinking zone,” indicated by a blue rectangle on
all figures, extended over 8 mm on each side of the mouth (total
length = 16 mm), which represented 34% of the total bottle
course. It could be slightly off-centered, depending on the exact
head-fixation configuration. Once the neuron was significantly
conditioned in this unidirectional movement task, we moved on
to the next phase of training in which we introduced a pun-
ishment rule: if the smoothed neuronal firing rate was below
a “low” threshold, also defined by the experimenter, the bottle
moved now in the opposite direction, that is, back toward its ini-
tial position and away from the mouth. In addition, the bottle
speed “v” depended linearly on the smoothed activity “f” when
above or below the two thresholds flow and fhigh according to the
following relation (see Figure 4A for a graphical display of this
function):

v(f) = −v0.(f − flow)/(fhigh − flow) if f ≥ fhigh,

v(f) = v0.(fhigh − f)/(fhigh − flow) if f ≤ flow,

v(f) = 0 otherwise,

where v0 is a speed scaling factor that was progressively decreased,
from ∼3 to ∼1 cm.s−1 as training progressed. The low and high
thresholds were re-evaluated every block of 3 successive trials.
Their value was set respectively to 10 and 90% of the firing
distribution during a time period spanning approximately the
previous 15 trials (including waiting and trial periods). Whenever
the control algorithm returned a position outside of the defined
boundaries of the rail, the speed was automatically set to 0. If
the bottle arrived in the drinking zone within the trial duration,
then the rat was allowed to drink for 3 s (step 3, similarly to
pre-surgery).

Once this second phase of training had been completed, the
full bidirectional control of the actuator could start. All the data
described in the Results are from this last phase of training, real-
ized on seven units. These units belong to a larger data set of
17 neurons recorded from eight rats that were trained to drive
an actuator unidirectionally (Arduin et al., 2013). The neuron
activity during each trial controlled the speed of the bottle in
both directions according to the control algorithm given above.
However, unlike phase 2, the trial did not stop anymore when
the bottle reached the drinking zone: instead, the bottle position
had to be maintained by neuronal control in that region of space,

allowing the rat to drink (Figure 1B). After the trial (duration
10 s), the bottle automatically went back to its starting position.
Because of the difficulty of the task, an automatic help was intro-
duced, by adding a bias to the speed of the bottle in the first
sessions: part of the speed vector was determined by the neuronal
control algorithm, and part of it, the bias term, pointed toward
the drinking zone, with a relative strength proportional to the
distance between the bottle and the mouth. This bias was progres-
sively decreased to zero before the full bidirectional sessions could
be recorded. The high and low thresholds were still re-evaluated
periodically as in the second phase, by being drawn from the
binned distribution of firing rate established from approximately
the 15 previous waiting periods. Because of this long integra-
tion period and the binning of firing rate, thresholds were in fact
modified on average only every 19 trials, and the mean thresh-
old change was 11% (as calculated on the seven best sessions, as
defined below).

The number of sessions during which we collected data was
2, 18, 9, 7, 34, 10, and 8 for the seven neurons (mean = 12.6
sessions per neuron). The total training time of a neuron, from
animal handling to the first bidirectional session, could last up to
3 months.

RECONSTRUCTED BOTTLE TRAJECTORIES
All spiking activities were analyzed with a custom-made program
(Eclipse Qt C++). Results were displayed with the same soft-
ware or in Matlab (Mathworks Inc., MA, USA). For each session,
we calculated the total time within trials during which the bot-
tle was positioned in the drinking zone. In order to compare
this time to a control situation, we calculated virtual bottle tra-
jectories and corresponding drinking time using the neuronal
activity of a control dataset (see below for the two control datasets
used). Prior to assessing significance between control and test
data, we needed to verify the validity of the offline algorithm of
trajectory calculation. Thus, we tested it by reconstructing bot-
tle positions using the spiking activity of the conditioned neuron
recorded during trials, and comparing them to the real ones.
Indeed, the two simulated and measured trajectories matched,
as can be seen by comparing the magenta dots of the real trajec-
tory to the reconstructed blue curve on Figure 1B. Occasionally,
we observed small differences due to delays of one clock incre-
ment (62.5 ms) in the online control algorithm (Arduin et al.,
2013). Comparison of the corresponding “reconstructed” drink-
ing time with the real time spent in the drinking zone confirmed
nonetheless the accuracy of our procedure (relative error: 1.6 ±
0.3%). Two control sets of bottle trajectories were then com-
puted. For the first set, we used the activity of the conditioned
neuron recorded during the waiting periods of the same ses-
sion. For the second set, we reconstructed the bottle positions
with the trial activity of the conditioned neuron after shuffling
it by blocks of 2 s within each trial. That way, we kept the gen-
eral statistics of the spike train of the neuron, in particular its
mean firing rate during trials, and assessed whether temporal
changes in activity were generating the successful control of the
bottle. This bootstrap test was conducted 10,000 times for each
session. For analyses requiring the best session per neuron, it was
defined as the session for which the real drinking time differed the
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most from this bootstrap distribution of reconstructed drinking
times.

NEURONAL ACTIVITY vs. BOTTLE POSITION
We calculated the statistics of the firing rate as a function of
the bottle position. Values were grouped in 13 position bins
of increasing size when moving away from the rat’s mouth. To
assess experimental biases, we used again the control dataset com-
posed of the activity of the conditioned neuron recorded during
the waiting periods of the same session, and the corresponding
reconstructed bottle positions. However, those control trajecto-
ries were often confined very close to the starting position, so
that the full control curve of average neuronal activity vs. posi-
tion could not be estimated accurately. In order to explore the
full course of the bottle, we shuffled the waiting period activity
by blocks of 2 s. One thousand shuffle datasets were sufficient to
obtain the control curve. We observed discontinuities in the activ-
ity curves for the bins at the boundaries of the position range,
whether with the real trial activity or a control activity. This was
due to the fact that the algorithm did not allow the bottle to
move out of the preset boundaries. For example, if the firing
rate persisted under the low threshold while at the extreme right
position, the bottle could not move toward the right and low
activity values accumulated for that bin until the firing rate rose
again. For regression analysis of activity vs. position, we removed
the boundary bins showing a discontinuity in the control curve
(e.g., Figure 4D, right side only). The criterion for determin-
ing the presence of a discontinuity was that the gap between the
boundary bin and the next one was more than 2 times the max-
imum gap of the non-boundary bins. Regression analysis was
performed separately for position values on the two sides of the
rat’s mouth.

MEAN LATENCY ACROSS SESSION AND RANK OF ACTIVATION
To compute the response latency for a given session and a
given neuron (conditioned or not), a peri-event time histogram
(PETH) between −2 s and +2 s was constructed, centered on trial
start. We used sliding windows of 100 ms, with 20 ms steps. The
mean of the PETH was computed within [−2 0 s] to assess the
baseline average firing rate before trial onset (mean ± SD). We
compared the activity in each bin after trial onset with the activ-
ity before trial. The latency was calculated in two steps, by finding:
first, six successive PETH z-scores greater than 2; second, within
this window of six bins, with a 20 ms bin (non-sliding) PETH, the
first z-score greater than 1.

The session latency was computed for all recorded neurons
exhibiting an increase of activity after trial onset above 2SD. A
previous study (Arduin et al., 2013) demonstrated that trial-to-
trial variability before trial start can be very high, so that clear
increases in PETHs did not always reach high z-score values.
Nonetheless, in order to detect response latencies for neurons
with high variability, we used for each neuron the variance it
would have had if it fired like a Poisson process. If during a ses-
sion, a latency could be defined for at least one neuron, we looked
at the order of activation of all other neurons simultaneously
recorded at that session based on their session latency. If sev-
eral neurons had the same latency, their rank of activation was

defined as the average of the ranks of those neurons (rounded to
the nearest integer).

RESULTS
NEURONS CONTROL IN REAL-TIME A ONE-DIMENSIONAL ACTUATOR
One hundred and fifty-five neurons have been recorded from
three rats. Seven units (6 single-units, 1 multi-unit) were selected,
one at a time, to control a one-dimensional actuator in real-time.
In the bidirectional task described herein, the selected neuron was
required to modulate its firing rate during trials of 10 s in order
for the rat to get liquid reinforcement. The reward bottle was
mounted on a rail and could either move left, right, or stay still
depending on the level of the neuronal activity compared to a low
and a high threshold (see Methods and Figure 1). Figures 2A–C
show three examples of the bottle trajectories controlled by the
brain-machine interface and corresponding to three trials dur-
ing one session. The spiking activity and smoothed firing rate of
the conditioned neuron are displayed below the corresponding
trajectories. On the first trial plotted (Figure 2A, top), the bottle
trajectory quickly reached the drinking zone, and stayed there for
the rest of the trial. The corresponding activity showed a sharp
burst (Figure 2A, middle and bottom) after trial onset, and then
a stable firing rate in between thresholds, higher than during the
waiting period. This indicates that the neuron’s firing rate adapted
in real-time to the position of the bottle in order to maximize the
drinking time. In another trial, a first burst of activity brought
the bottle in the drinking zone, and was followed by smaller
bursts which allowed the bottle to stay in the drinking zone for
almost 10 s (Figure 2B). Still in other trials, the initial burst of
spikes led to overshooting so that the bottle quickly crossed the
drinking zone to the other side. It was followed by low activity
so that eventually the bottle converged back to the drinking zone
(Figure 2C). An overlay of all trajectories for that session, aligned
on their crossing above 20% of the full bottle course, shows that
the bottle consistently moved to the drinking zone, and that after-
wards it mostly stayed inside that zone for the rest of the trials
(Figure 2D). Small deviations outside of the drinking zone were
quickly corrected on both sides. Overall, the bottle was inside the
drinking zone for 66% of the total trial time for that session.

Figure 2E shows a raster plot of the activity of the conditioned
neuron for that session, centered on trial start. Large modula-
tions of activity can be noticed, each time allowing the bottle to
enter the drinking zone (transition from green to blue spikes in
the raster), with a variable latency after trial onset. The firing rate
then stabilized and the rat could drink from the bottle, as indi-
cated by the blue spikes. Plotting the average firing rate across
trials confirmed that the large bursts of activity occurred mainly
in the first few seconds after trial start, followed by a period
of variable spiking activity at an intermediate firing rate level
(Figure 2F).

In order to estimate the performance of the conditioned neu-
ron, we designed control datasets with which to compare the trial
trajectories. We simulated the movements of the bottle that would
have been produced by the neural control algorithm (1) had we
taken the activity of the conditioned neuron during the waiting
period as input, and (2) with the trial activity shuffled by blocks
of 2 s as input.
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FIGURE 2 | Activity of a single unit controls the bottle position in real

time to allow drinking. (A–C) Top, reconstruction of the bottle movement
during three trials for one neuron during one session, color coded according
to waiting/trial status and bottle position zones as in Figure 1. Middle,

smoothed firing rate and thresholds used by the neuronal control algorithm.
Bottom, spikes recorded during the corresponding waiting periods and trials.
The activity-based reconstructed position is compared to the real position of

(Continued)
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FIGURE 2 | Continued

the bottle recorded during the time course of the trial at some key ordinates
(magenta dots). (D) Superposition of all reconstructed trajectories for that
session, centered in time on the position y = 20 % for clarity, if the bottle
reached that position (95% of the trials matched that condition; n = 42/44).
The percentage of total trial time spent in the drinking zone is displayed in the
upper left corner in blue. In this and the following Figures, the thick blue line

is the average trajectory. (E) Raster plot of the activity of the conditioned
neuron around trial start (t = 0). Ticks represent spike times and are colored
depending on the bottle position as before. The three trials highlighted in
magenta rectangles are the ones depicted in (A–C). (F) Peri-event time
histogram (PETH) of the conditioned neuron activity averaged across all trials
of the raster plot shown in (E) (bin size: 200 ms). The shaded area indicates
± s.e.m.

FIGURE 3 | Neuronal control of the bottle resulted in a higher task

performance than in control datasets. (A) Superposition of all
reconstructed trajectories for the same conditioned neuron and the same
session as Figure 2D, centered in time on the position y = 20% for
clarity, if the bottle reached that position (11% of the trials only, the rest
was not plotted), using the waiting period activity as an input to the
neuronal control algorithm. The percentage of total trial time spent in the
drinking zone is displayed in the upper left corner in blue. (B) Percentage
of time spent in the drinking zone for the trial datasets and the waiting
period (control) datasets. Each line joins the two values calculated for a
conditioned neuron during one session. Magenta lines are the best
sessions (one per neuron). The mean ± SD are indicated on each side of

the graph for Trial and Waiting (gray dots and error bars). The star indicates
a significant difference (paired sample Wilcoxon test, P < 5.10−16).
(C1) Same as (A), but the activity used for trajectory reconstruction was
the trial activity, shuffled by blocks of two seconds (93% of trials plotted).
(C2) Distribution of the drinking time percentage obtained in (C1), with a
bootstrap analysis of 10,000 shuffles. The value found with real trial
activity is indicated by the vertical magenta arrow and corresponds to a
z-score of 9.2. (D) Distribution of the z-scores of the real time spent in the
drinking zone compared to the bootstrap distribution for shuffled activity,
for all the sessions. Magenta, histogram for the seven best sessions (one
per neuron). Dashed lines, z-score = −2 and 2; full line, z-score = 0. The
gray dot and error bar indicate the mean ± SD.

For the neuron and the session displayed in Figure 2, the
arrival into the drinking zone would never have been possible
had the bottle speed been controlled by the activity of the waiting
period (Figure 3A). We found that for a large majority of the ses-
sions (86/88), the performance was higher using real trial activity
than using waiting activity, that is, the trajectories simulated with
the waiting period spiking activity stayed less time in the drink-
ing zone (Figure 3B, only two lines have a positive slope, 86 have
a negative slope). A paired comparison of the two groups of val-
ues confirmed that this effect was significant across all sessions
(paired sample Wilcoxon test, P < 5.10−16). The magenta lines

indicate one session per neuron (the “best” session, as determined
with the second control dataset, see Methods and below).

One possible caveat could have been that overall changes in
firing rate between waiting period and trial might be responsi-
ble for this difference in performance. Thus, we looked at the
trajectories generated from the trial activity after shuffling it in
time (see Methods), for which, by construction, the average firing
rate was the same as during the real trials. For the shuffle dataset
displayed on Figure 3C1, and corresponding to the same neuron
and session as Figures 2, 3A, almost all trajectories entered the
drinking zone at some point in time, but they tended to diverge
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randomly afterwards and did not stay inside as long as the real
trial trajectories (compare with Figure 2D). The control drinking
time that resulted was thus smaller than the real drinking time (35
vs. 66% of total trial time). We quantified the performance of the
neuron by comparing the drinking time using trial activity to the
distribution of drinking times obtained when repeating the shuf-
fled procedure 10,000 times and found a highly significant z-score
value, above 9, for this neuron and session (Figure 3C2). This
analysis was applied on the 88 sessions. The z-score was above
2 for 58 sessions (Figure 3D), and averaged to 7.8 on the seven
best sessions (one per neuron, defined as the session for which
the z-score was maximal). Across all sessions, the mean of the
distribution of z-scores was significantly higher than 0 (Student’s
t-test, P < 7.10−18). However, there was no significant increase
in the z-score between the first session (mean ± SD, 2.5 ± 3.7)
and the seventh session (mean ± SD, 3.8 ± 2.2, Wilcoxon paired
test, P = 0.32, n = 6 neurons tested for 7 sessions or more). This
could be due to the small size of our sample of neurons, prob-
ably insufficient to reveal a gradual improvement over sessions.
We conclude from these controls that the temporal patterns of
neuronal activity produced during trials effectively controlled the
bottle position, in a way that optimized the time spent in the
drinking zone.

ENCODING OF THE BOTTLE POSITION BY THE NEURONAL FIRING RATE
In order to gain more insight into how the bottle trajectories are
indeed generated by the activity of the conditioned neuron, we
looked at how the firing rate depended on the current bottle posi-
tion and compared our measurements to a prediction elaborated
from the neuronal control algorithm. Our operant conditioning
protocol is based on the imposed dependence of the bottle speed
on the current firing rate of the neuron (Figure 4A). Thus, it does
not linearly link the bottle position to the neuronal firing rate.
However, it predicts that the neuronal control algorithm should
result in a monotonic relationship between these two variables.
Indeed, when the bottle is on the right of the drinking zone, the
rule calls for an increase in firing rate, resulting in a speed incre-
ment toward the left, the larger the further away from the drinking
zone (Figure 4B, top right). Conversely, if the bottle is on the left,
the firing rate should decrease below the low threshold so that
the speed vector again points to the rat’s mouth (Figure 4B, bot-
tom left). Thus, given the rule of control of the bottle speed, this
intuitive model predicts a monotonic relationship between bot-
tle position and the average activity of the conditioned neuron,
with firing rate values for farther positions farther apart from
thresholds, so that the bottle travels faster to the drinking zone
(Figure 4B). In the drinking zone, we also expect the monotonic
curve to hold even though the algorithm produces a null speed in
this zone. Indeed, activity values inside the drinking zone that are
not between the low and high thresholds should preferably make
the bottle move in the correct direction, so that the mean activity
for bins on either side of the center can be expected to reflect this
bias.

We tested this hypothesis by plotting the mean and standard
error of the mean of the neuronal activity of the conditioned
neurons at each distance from the mouth, grouped by bins
(Figure 4C). As predicted, we observed a monotonic trend with

bottle positions. The bin including the starting position of the
bottle was an exception due to the presence of boundaries con-
fining the bottle course (see Methods). In order to quantify the
observed relationship, we computed activity vs. position for a
set of trajectories reconstructed with the waiting period activity,
shuffled by blocks of 2 s (see Methods). Activity barely depended
on position for this control dataset, except again for the starting
position bin. This confirms that the offset found for the start-
ing bin can be attributed to the presence of a boundary. We
excluded the bins affected by this bias in the rest of the analy-
sis. The curves for all best sessions, one per neuron, are drawn
together in Figure 4E. On the side from which the bottle started,
and which required an increase in firing rate for the bottle to
move away, all curves displayed an overall profile with a positive
slope, matching our prediction. On the opposite side however, the
observed curve was sometimes compatible with our prediction,
and sometimes flat or with a slope opposite to our prediction.
In order to test whether the rat effectively modulates the activ-
ity of the cell depending on whether the bottle is to the left or to
the right of the target, we compared the firing rate on both sides
over equivalent position windows, corresponding to the second
and third position bins from the center. The tests for the two bins
showed a statistically significant effect of side on firing rate (sec-
ond position bin from center, P < 0.016; third position bin from
center, P < 0.032, n = 7; Wilcoxon paired test). Thus, the rat
controls the cell activity differentially on the right and on the left
of the drinking zone. In order to quantify more precisely the
control in each direction, we fitted two linear functions to each
observed curve, one on each side of the rat’s mouth. The regres-
sion coefficient r was plotted for each side (Figure 4F). For the
bottle start side, 6 out of 7 neurons had a correlation coefficient
greater than 0.89 and a linear regression P-value less than 0.05,
confirming the monotonically increasing relation between mean
activity and position. For the opposite side, we could distinguish
two groups, one with the predicted increasing trend (positive r-
values), of which only one linear regression was statistically signif-
icant (P < 0.05), and the other with a decreasing trend (negative
r-values). One neuron with a limited exploration range on that
side showed no clear relationship (green curve). These results sug-
gest that after operant conditioning, the firing rate of a neuron
can encode a one-dimensional continuous variable, but that this
coding scheme does not always hold for low activity values.

BIDIRECTIONAL CONTROL WITH TWO POSSIBLE STARTING
POSITIONS
In order to confirm that the neuronal output was not a stereo-
typed reaction to trial onset, we introduced the new requirement
of initially decreasing the neuronal firing rate after trial onset in
order to move the bottle. Concomitantly, the starting position of
the bottle was changed to the other side, so that the same firing-
rate-to-speed relationship was enforced (Figure 4A). The four
neurons tested in these conditions had all been submitted first
to sessions requiring an increase of firing rate (as in Figures 2–3),
before being tested in sessions requiring a decrease. In Figure 5,
the activity of one neuron is depicted for one session of each type.
As previously, we looked at the bottle trajectories during the real
trials and compared them to simulated control trajectories. The
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FIGURE 4 | The mean neuronal activity encodes bottle position. (A)

Control algorithm giving the bottle speed and direction of movement as a
function of the neuronal activity relative to the low and high thresholds. (B)

Predicted relation between neuronal activity and bottle position for successful
operant conditioning. The arrows qualitatively show the optimal direction and
speed of the bottle for each bottle position, converging to the rat mouth. The
vertical location of the points is thus determined by the firing rate required to
produce the desired bottle speed according to the control algorithm of panel
(A). (C) Mean and s.e.m. firing rate of a conditioned neuron during all trials of
one session as a function of bottle position. The dotted line indicates

spontaneous activity calculated during the waiting periods. (D) Same as (C),
with reconstructed trajectories using the activity of the conditioned neuron
during the waiting period, shuffled by blocks of 2 s. One thousand
reconstructions were necessary to obtain sufficient coverage of the whole
position range. (E) Same curves as in (C) normalized between 0 and 1, for all
the best sessions (one per neuron). The bottle picture shows the starting
position. Bins for which the activity values are biased due to the presence of
position boundaries have been removed (see Methods). (F) Correlation
coefficients of the mean activity vs. bottle position, for all conditioned neurons.
The right and left halves of the curves in (E) were analyzed separately.
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FIGURE 5 | Neuronal bidirectional control for sessions with different

starting positions of the bottle. (A) Raster plot of the activity of a
conditioned neuron, different than the neuron of Figure 2, during a session
for which the bottle started from the right and an increase in firing rate was

needed at trial onset. Ticks are colored depending on the bottle position as in
Figure 1. (B1) Superposition of all reconstructed trajectories for the session
in (A). The trajectories are centered in time on the position y = 20% for

(Continued)
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FIGURE 5 | Continued

clarity, if the bottle reached that position (97% of the trials matched that
condition). The percentage of total trial time spent in the drinking zone is
displayed in blue. (B2) Same as (B1), but using the waiting period activity as
an input to the neuronal control algorithm (66% of the trials matched the

y = 20% condition). (C) Similar to (B), but with trajectories for which the
bottle started from the left and a decrease in firing rate was needed at trial
onset (C1: 100% of trials plotted; C2: 98% of trials plotted reaching the
y = 80% condition). (D) Raster plot corresponding to the session in
panel (C).

neuron was significantly conditioned to control the bottle from
each side (Initial firing rate increase, Figures 5A,B, z-score =
8.1; Initial firing rate decrease, Figures 5C,D, z-score = 9.3). We
observed such a significant conditioning effect for each of the
four neurons tested with the requirement of an initial decrease
in firing rate (best z-scores for the three additional neurons: 4.1,
4.6, 3.8).

Furthermore, we were able to test, for one conditioned neu-
ron only, whether the operant conditioning could be achieved
when the starting position of the bottle was alternated between
left and right, by blocks, inside one session. Indeed, for both
starting positions, the bottle followed trajectories entering and
staying in the drinking zone (Figures 6A1–B1) more often than
expected by chance, as assessed by using the waiting period activ-
ity for the simulated trajectories (Figures 6A2–B2). Again, we
verified that a single firing rate change could not account for
the neuronal control during trials. We calculated the drinking
time distribution obtained from shuffled trial activity and con-
firmed that the real drinking time was well above the distribution
(Figure 6C, z-score = 8.6; Right-to-Left trials only, z-score = 4.6;
Left-to-Right trials only, z-score = 7.3). The mean activity showed
a monotonically increasing profile with bottle position, as pre-
dicted for a successful control. Overall, these results strengthen
the idea that single neurons can indeed adapt their firing rate
in real time to a one-dimensional variable, rather than repeat a
unique pattern of activity from trial to trial.

FASTER REACTION AND BETTER CONTROL OF THE CONDITIONED
NEURON
Given the high level of control of the actuator by the neuronal
activity of the conditioned unit, we studied the activity changes
of the local neuronal network around the conditioned neuron.
We analyzed the activity of neighboring neurons simultaneously
recorded but that were not used by the conditioning algorithm.
Many neurons showed an increase in activity after trial onset.
We quantified the baseline activity of each neuron in the waiting
period by its mean value and standard deviation (SD). The reac-
tion time of each neuron was defined as the time after trial onset
for which the activity first exceeded the mean firing rate + 2 SD
(see Methods). Based on these latencies, we ranked all neurons
recorded simultaneously and observed that the conditioned neu-
ron increased its firing rate on average before non-conditioned
surrounding neurons (Figure 7A, Mann-Whitney U-test between
the conditioned and never-conditioned rank distributions, P <

8.10−23). Interestingly, the conditioned neuron was faster also
than neurons that had been conditioned in previous sessions
(Mann-Whitney U-test, P < 5.10−8). This suggests that when the
experimenter changes the reference neuron on which the control
algorithm is applied, the order of activation in the network is
updated in subsequent sessions to reflect that change.

To further support the idea that the conditioned neuron
reacted more specifically than the rest of the population, we sim-
ulated bottle trajectories by driving the control algorithm with
the activity of each recorded neuron, with thresholds set at the
same percentiles as for the conditioned neuron. Each of these
simulated sessions gave us a percentage of trial time spent in the
drinking zone. Figure 7B displays a histogram of the drinking
time as a function of the distance between recording sites of the
non-conditioned neuron used for trajectory reconstruction and
of the conditioned neuron. The real drinking time, displayed for
the conditioned neuron, was significantly higher than the drink-
ing time simulated with activity from non-conditioned neurons
(Mann-Whitney U-test, P < 4.10−5). No spatial trend could be
observed for the non-conditioned neurons. This indicates that
motor cortex neurons in the local network do not systematically
modulate their activity as strongly and as efficiently as the neuron
that was conditioned in our protocol.

DISCUSSION
We recorded activity from 155 neurons in the freely behaving rat
motor cortex and applied operant conditioning on seven units,
using the instantaneous firing rate of those neurons to control
in real-time a bottle placed on a one dimensional actuator. We
demonstrate, during behavioral learning, the adaptation of the
neuronal firing rate of the conditioned neuron to the instanta-
neous position of the bottle during trials of 10 s. This firing rate
modulation occurred while the head-fixed rat drank at the same
time. A better task performance, quantified by the duration of
reward obtention, was established from the activity of the con-
ditioned neurons than that predicted from the spiking patterns of
non-conditioned neurons recorded simultaneously.

In the current study, we focused on the late stages of learn-
ing of an operant conditioning task to evaluate how precisely
motor neurons could control an actuator moving in both direc-
tions on a linear axis, by modulating up or down their firing rate.
This followed an initial training phase where the neurons only
had to increase their firing rate to move the bottle in a single
direction. In the bidirectional task, the firing rate needed to be
brought in one of three zones defined by two thresholds, depend-
ing on whether the bottle was currently on the right, on the
left, or correctly placed in the drinking zone in front of the rat’s
mouth. Our results confirm that the neurons did adjust their fir-
ing rate during trial compared to the waiting period within trials,
optimizing the time spent in the drinking zone and thus reward
obtention. Indeed, during most sessions, the trajectories of the
bottle spent on average more time in the drinking zone than tra-
jectories reconstructed with the waiting period activity, or with
shuffled trial activity. The differences between those integrated
drinking times were largely significant for the best sessions of the
seven neurons conditioned.
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FIGURE 6 | Neuronal bidirectional control with two possible starting

positions of the bottle during the same session. (A1) Superposition of
all reconstructed trajectories for which the bottle started from the right and
an increase in firing rate was needed at trial onset, for a conditioned
neuron, different than the neurons of Figures 2, 5, trained with two
possible starting positions during one session. The trajectories are centered
in time on the position y = 20% for clarity, if the bottle reached that
position (100% of the trials matched that condition). The percentage of
total trial time spent in the drinking zone is displayed in the lower left
corner in blue. (A2) Same as (A1), but using the waiting period activity as
an input to the neuronal control algorithm (89% of the trials matched the
y = 20% condition). (B) Similar to (A), but with trajectories for which the

bottle started from the left and a decrease in firing rate was needed at trial
onset (B1: 83% of trials plotted; B2: 9% of trials plotted reaching the
y = 80% condition). (C) Distribution of the drinking time percentages
obtained with reconstructions using the trial activity shuffled by blocks of
2 s. The bootstrap analysis includes 10,000 shuffles. The value found with
real trial activity is indicated by the vertical magenta arrow. All drinking time
values are averages taking into account both the left and right starting
positions datasets. (D) Mean and s.e.m. firing rate of the conditioned
neuron as a function of bottle position during the same session. Horizontal
lines indicate the high threshold (purple), the low threshold (orange) and
the average activity during the waiting period (dotted line). All trials are
included, whether starting from the left or right positions.

Other studies have trained neurons to generate different firing
rates depending on the targets to match, using the activity of a
few units at the same time in the rat (Gage et al., 2005; Marzullo
et al., 2006; Koralek et al., 2012) or using only one neuron in
the monkey (Moritz et al., 2008). This latter experiment showed
that conditioning was possible in only one session, and for all
neurons tested. By contrast, in our rat study, significant operant
conditioning required a long sequence of training sessions, first

in a simple unidirectional version of the task, and then in the
bidirectional version. Four factors could explain that difference.
First, the rat behavior was possibly altered by the head fixation,
which could slow down learning. Second, the reward time was
not separated from the task trials, that is, the rat had to control the
bottle while trying to get the liquid reinforcement. This temporal
contingency of operant behavior and reward could be an addi-
tional source of complexity. Third, as the controlled parameter

Frontiers in Neuroscience | Neuroprosthetics July 2014 | Volume 8 | Article 206 | 12

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Arduin et al. Bidirectional control of a neuroprosthesis

FIGURE 7 | Neighboring neurons recorded simultaneously display

delayed modulations of activity that would have led to a lower task

performance. (A) Distribution of the ranks of activation for all sessions and
all neurons, based on the latencies of increase in firing rate above baseline.
This includes only the sessions where this latency could be measured for at
least one neuron. All the neurons are partitioned into three categories
(green: conditioned during that session; blue: previously conditioned; red:
never conditioned; overall, 1993 values from 155 neurons and 88 sessions).
(B) Percentage of time during which the bottle was in the drinking zone,
using the activity of each of the recorded neurons during trials as an input
to the control algorithm to simulate bottle trajectories. The first bin contains
all conditioned neurons, while other bins contain all other neurons grouped
by distance to the conditioned neuron. Thresholds on the firing rate
histograms for the control algorithm were set to the same percentiles than
during the real experiment for the conditioned neuron. Vertical bars
represent s.e.m.

was the bottle speed, and not directly the bottle position, one
difficulty of the task was that the target firing pattern that had
to be matched constantly changed depending on the instanta-
neous bottle position relative to the rat mouth. This is in contrast
to other experiments, where each target corresponded to a fixed
predefined firing pattern. This difficulty of our protocol could
have required additional preparation or trial processing time, or
even the establishment of an internal model of the actuator. Last,
the neurons used in the experiment by Moritz and collaborators
were found in the wrist region of the macaque motor cortex, an
area from which monosynaptic connections to muscle motoneu-
rons exist, useful for fine control of distal movements and for
the development of adaptive motor programs. Such monosynap-
tic connections are absent from the rat motor cortex (Lemon,
2008). The fact that the output of a conditioned neuron has a
less direct link to body movements in the rat than in the mon-
key could mean that more complex mechanisms are underplay
for inducing plasticity changes on the conditioned neuron and its
local network.

We examined how the firing rate of the conditioned neu-
ron was effectively modulated in order to produce the observed
task performance. We computed the mean firing rate along the
length of the bottle course. We expected to find a monotonic
curve, that is, with points farther away from the center leading
to larger speeds in the appropriate direction, so that the bottle

would converge to the rat’s mouth. This profile was observed at
least partially on all neurons. More precisely, we found that on
the side requiring an increase in firing rate for appropriate bottle
movement, the curve indeed showed a clear increasing slope for
all neurons. On the side requiring a decrease in firing however,
we observed no systematic relationship. This asymmetry could
be explained by three different mechanisms. First, some of the
selected neurons had a rather low spontaneous activity and it
is possible that they could intrinsically increase their firing rate
more easily than decrease it. When the bottle was in the drinking
zone, the rat could readily drink and neuronal activity remained
low. When the bottle was outside the drinking zone, in either
direction, the rat could have been trying any change in behavior
in order to get the reward, the attempted behavior causing most
often an increase in firing rate in the conditioned neuron rather
than a decrease, and therefore a bimodal curve. Second, the uni-
directional initial training was based on an increase in firing rate
only (Arduin et al., 2013). Therefore, some neurons might have
developed a higher capability for that modulation due to a prim-
ing effect, and more time would have been needed to learn the
opposite modulation. Third, except for a minority of sessions, the
bottle always started on the side requiring an initial increase in
firing rate, and a trial could actually be completed only by exceed-
ing the high activity threshold for an appropriate amount of time
and staying inside the thresholds thereafter. This asymmetry in
the activity requirement could well have led to a stronger asso-
ciation between increases in firing rate with the reward rather
than decreases, and could have impeded the learning on the side
of the mouth opposite to the starting position. The first reason
would be problematic if transposing the protocol to the human,
whereas the two others, related to the conditioning history of
the neuron, could reasonably be overcome by a different training
protocol. In any case, some of the neurons managed to properly
control the bottle speed in each direction, as shown by trajecto-
ries that left the drinking zone but reliably re-entered it. We also
observed successful conditioning for four neurons for which the
bottle starting position was changed to the other side, now requir-
ing an initial decrease in firing rate (Figure 5). Furthermore, one
neuron controlled the bottle from both initial sides during the
same session, with trials alternating in blocks between right and
left starting positions (Figure 6). The difficulty in testing neurons
for a large number of sessions, as seems necessary for mastering
this final two-side version of our protocol, prevented us from col-
lecting more data. Future experiments will be needed to confirm
that a full two-sides bidirectional operant conditioning can be
achieved using a single neuron of the motor cortex. Nonetheless,
our results already support the observation that the neuronal
modulation of activity was more than a mere systematic reaction
after trial onset.

Finally, the ultimate objective of such protocols is to assign sev-
eral small groups of neurons to different parts of a robotic device.
For individuated finger control for example, dissociation of the
output of those groups is required, as synergies between fingers do
not seem to dominate (Valero-Cuevas et al., 2009). In a previous
study, we discovered that the neurons in the part of the motor cor-
tex we recorded from reacted less strongly and less quickly than
the conditioned neuron, when a unidirectional control algorithm
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was implemented (Arduin et al., 2013). Here, we confirm that
non-conditioned neighboring neurons exhibited delayed activity
changes that would have led to a smaller drinking time on average.
These results indicate that the conditioning of the motor cortex
was not uniform, and bode well for the conditioning of distinct
groups of neurons, as was previously carried out for motoneu-
rons (Smith et al., 1974), motor units (Basmajian, 1963), and
neurons and muscles (Fetz and Finocchio, 1971; Fetz and Baker,
1973; Moritz et al., 2008).

In conclusion of this study, we report that single neurons in
the rat motor cortex were suitable to control a one-dimensional
actuator in real-time, after operant conditioning. The control was
maintained for several seconds, with firing rate changes depend-
ing on the instantaneous bottle position. The modulation of
activity was maintained while the rat licked the tip of the bot-
tle when close enough to its mouth. These results suggest that
brain-machine interfaces based on the control of actuators by sin-
gle units should be further tested, along with the brain-machine
interfaces based on decoding paradigms.
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