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The incidence of obesity in middle age is increasing markedly, and in parallel the
prevalence of metabolic disorders including cardiovascular disease and type II diabetes
is also rising. Numerous studies have demonstrated that both obesity and metabolic
disorders are associated with poorer cognitive performance, cognitive decline, and
dementia. In this review we discuss the effects of obesity on cognitive performance,
including both clinical and preclinical observations, and discuss some of the potential
mechanisms involved, namely inflammation and vascular and metabolic alterations.
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The incidence of obesity, classified by a body mass index (BMI,
body mass divided by the square of one’s height) >30 kg/m2, is
rising steadily throughout the world’s population. Attributed to
unhealthy diets (that is over-consumption of food and beverages
with a high content of fats, sugars, and salt) and physical inac-
tivity, figures from the Organization for Economic Co-operation
and Development 2014 Obesity report (OECD, 2014) suggest that
worldwide 18% of the adult population are obese, with more
than one in three adults in Mexico, New Zealand and the United
States, and more than one in four in Australia, Canada, Chile, and
Hungary included in this category.

Obesity can have damaging effects on many organ systems.
Many of the comorbid conditions are related to metabolic syn-
drome, characterized by a large waist measurement, high triglyc-
eride levels, glucose intolerance, and hypertension and thus risk
factors for the development of non-insulin-dependent (type II)
diabetes mellitus, systemic hypertension, coronary artery dis-
eases, and heart failure. Moreover, the incidence of respiratory
diseases such as obstructive sleep apnoea, gastrointestinal, and
musculoskeletal disorders, thromboembolism, stroke and cancer
are increased with obesity (Grundy, 2004; Haslam and James,
2005).

In addition, associations between obesity and impaired cog-
nitive function, as well as risk of dementias such as Alzheimer’s
disease, have more recently been recognized. When we con-
sider the growing population of overweight and obese people
worldwide, along with an increasingly aging population, under-
standing the pathophysiology of obesity on the central nervous
system and in particular those subregions important in learn-
ing, memory and executive functioning is essential. In this review
we will focus on clinical evidence that obesity is associated with
cognitive dysfunction and an increased risk of dementia, and

complement this with preclinical data from animal models of
excess weight gain and cognitive impairment. We will then dis-
cuss brain pathological changes that have been observed in these
populations, focusing largely on brain regions important in learn-
ing and cognition, namely the hippocampus and frontal cortex,
before ending with an assessment of the current understanding of
dietary-induced systemic and central inflammation within these
regions.

OBESITY AND COGNITIVE DYSFUNCTION
MILD COGNITIVE IMPAIRMENT
A growing body of research indicates that obesity in mid-life is
a predictor of mild cognitive impairment at old age. Cognitive
aging is a normal process where in older adulthood there is
a structural and functional change that results in a deteriora-
tion of cognitive ability (Glisky, 2007). However, even when
controlling for cognitive aging, studies show a negative corre-
lation between BMI and global cognitive performance (Elias
et al., 2005; Jeong et al., 2005; Hassing et al., 2010). A cross-
sectional longitudinal study of over 2000 middle aged workers
supported the linear association between BMI and cognitive func-
tion determined by the word-list learning test, which evaluates
verbal learning and memory, and Digit-symbol Substitution test
(DSST), which assesses attention, response speed, and visuo-
motor coordination. Obese people recalled fewer words from
the list in the word-list learning test and took longer to com-
plete DSST relative to normal weight individuals (Cournot
et al., 2006). In another study combining ages from 20 to
82, overweight and obese people exhibited poorer executive
function test performance than normal weight adults with no
evidence of a BMI x age interaction (Gunstad et al., 2007).
Across studies, the different cognitive domains analyzed make
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it difficult to draw absolute comparisons, but impairment of
specific cognitive domains such as executive function and short-
term memory have been consistently identified in obese individ-
uals when compared to normal weight counterparts (Cournot
et al., 2006; Mond et al., 2007; Lokken et al., 2009; Sabia et al.,
2009).

DEMENTIA AND ALZHEIMER’S DISEASE
Obesity is associated with not only an increased risk of devel-
opment of mild cognitive impairment, but additionally, late-life
dementia and Alzheimer’s disease (Solfrizzi et al., 2004; Whitmer
et al., 2005; Gustafson et al., 2012; Besser et al., 2014). The relative
risk of the development of dementia and Alzheimer’s disease for
obese (BMI ≥ 30 kg/m2) and overweight (BMI = 25–29.9 kg/m2)
individuals in midlife compared to normal weight individuals was
2.04 and 1.64, respectively (Anstey et al., 2011). Epidemiological
studies have shown that obesity in middle age increases the risk
of developing dementia and Alzheimer’s disease, irrespective of
associated medical conditions such as diabetes or vascular dis-
ease (Solfrizzi et al., 2004; Whitmer et al., 2005; Panza et al.,
2010; Gustafson et al., 2012; Besser et al., 2014). For exam-
ple Whitmer and colleagues reported that being overweight at
age 40–45 increased ones risk of developing dementia by 35%,
while being obese increased this risk to 74% when compared to
normal weight individuals (Whitmer et al., 2005). The link of
elderly obesity with dementia and Alzheimer’s disease is compli-
cated. Several studies have found an age dependent relationship
with Alzheimer’s disease and late-life obesity (Elias et al., 2003;
Gustafson et al., 2003, 2009), while others have shown no or even
negative correlations (Buchman et al., 2005; Stewart et al., 2005;
Luchsinger et al., 2007; Fitzpatrick et al., 2009). A possible expla-
nation of the confounding results is that weight loss is strongly
associated with Alzheimer’s disease and occurs before any pre-
sentation of cognitive impairment (Buchman et al., 2005; Stewart
et al., 2005).

ANIMAL MODELS OF WEIGHT GAIN
Animal models, which allow for more accurate control of diet
and other confounding factors than studies in humans, have also
found that there is a detrimental effect of diet-induced obesity on
cognition. Indeed, in high fat feeding models of obesity, impair-
ments of working memory (Jurdak et al., 2008), learning (Molteni
et al., 2002; Murray et al., 2009), and memory performance
(Granholm et al., 2008; Kanoski and Davidson, 2010; Kosari et al.,
2012) have been observed. A rodent study showed that con-
sumption of a high fat diet (45%) for 3 months caused obesity,
insulin resistance, and poor performance in the operant based
delayed matching to position task examining short-term infor-
mation retention and executive function (McNeilly et al., 2011).
Furthermore, acquisition rates in learning have been observed to
be impaired in rats fed a high fat diet (25%) for 3 months, as eval-
uated by radial arm water maze, where fat-fed rats took longer
and made more errors trying to locate a hidden platform com-
pared to control (Alzoubi et al., 2013). Interestingly, a further
study has shown that rats fed a high fat diet (60%) for 3 months
have impaired spatial memory that is independent of weight gain
and blood pressure change (Kosari et al., 2012).

ASSOCIATIONS WITH NEUROPSYCHIATRIC ILLNESS
There is widespread prevalence of psychiatric symptomatology
in individuals diagnosed with mild cognitive impairment and
Alzheimer’s disease (Lyketsos et al., 2002; Enache et al., 2011), and
extensive comorbidity of psychiatric illness with obesity (Luppino
et al., 2010; Megna et al., 2011). Medical issues and mobility
restrictions associated with being overweight or obese can neg-
atively impact on an individual’s psychological well-being, and
can lead to depression (Wardle and Cooke, 2005). In turn, men-
tal health issues can lead to unhealthy lifestyle choices, such as
diminished physical activity, increased appetite and poor food
choices, smoking, and excessive alcohol intake (De Wit et al.,
2010; Hoare et al., 2014). The use of psychiatric medicines, such
as antipsychotics and antidepressants, to manage mental health
issues in obese individuals may be problematic as there is a
clear association between psychiatric medicines and significant
weight gain (Reynolds and Kirk, 2010; Serretti and Mandelli,
2010; Hasnain et al., 2012). While many patients with a psy-
chiatric illness are highly susceptible to cardiovascular disease,
diabetes, and metabolic syndrome (De Hert et al., 2009; Pan et al.,
2012), there is growing understanding of a role for hypothalamic-
pituitary-adrenal axis dysfunction and basal systemic low-grade
inflammation in the relationship between psychiatry and obesity.
While this is beyond the scope of this review, recent researchers
discuss the complex relationship between obesity and psychiatric
illness (Hryhorczuk et al., 2013; Jaremka et al., 2013; Castanon
et al., 2014; Miller and Spencer, 2014).

OBESITY AND BRAIN PATHOPHYSIOLOGY
The negative systemic effects of obesity on cardiovascular and
metabolic physiology are well-recognized, and it is now clear
that the brain is also negatively affected by obesity. Alterations in
brain pathology of overweight/obese individuals who are other-
wise healthy are supported by preclinical studies, demonstrating
the possible underlying mechanisms by which obesity impairs
higher cerebral function and exacerbates aging-related dementia
remain wide and varied.

BRAIN ATROPHY
Increased adiposity has been correlated with reduced volume in
a number of brain regions. In a longitudinal study in a group of
female patients born between 1908 and 1922, women with atro-
phy of the temporal lobe were found to have a higher BMI, with
risk of temporal atrophy increased 13–16% per 1 kg/m2 BMI rise
(Gustafson et al., 2004). More recent brain scanning techniques
demonstrated that a group of obese individuals (BMI average 39)
had significantly lower gray matter density in the post-central
gyrus, frontal lobe, putamen, and middle frontal gyrus compared
to a group of controls with a BMI of 22 (Pannacciulli et al.,
2006). A further analysis in over 1400 Japanese healthy individuals
revealed a significant negative correlation in men, though not in
women, between BMI and brain gray matter ratio with temporal,
occipital, and frontal lobes and the anterior lobe of the cerebellum
showing reduced volume with increased BMI (Taki et al., 2008).

The hippocampal formation, a structure essential for learn-
ing and memory, is particularly susceptible to aging (Jack et al.,
2000; Raji et al., 2009). It is also well-recognized that reduced
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hippocampal volumes predict cognitive decline and dementia in
the general population (Elias et al., 2000; Amieva et al., 2005;
Den Heijer et al., 2010). As we described previously, a majority
of studies have found that obesity in mid-life is associated with
an increased risk of developing dementia in later life, and consis-
tent with this there is evidence from the Framingham Offspring
Cohort Study of increased rates of hippocampal brain atrophy
and executive function decline with mid-life obesity (Debette
et al., 2011). However, this effect of obesity on hippocampal
functioning is also found earlier: Adolescents with metabolic
syndrome showed significantly smaller hippocampal volumes
along with impaired attention and mental flexibility compared to
non-obese children of similar ages (Yau et al., 2012).

Pre-clinical experimental rodent studies have also provided
insight into the potential mechanisms underpinning obesity-
related cognitive impairment. The affected cognitive domains
involved in learning, memory, and executive function are mainly
subserved by the hippocampus and prefrontal cortex. Long-term
potentiation (LTP) is considered to be the major cellular mech-
anism that contributes to learning and memory where there is a
synaptic change that leads to the formation of a stronger synapse
(Bliss and Collingridge, 1993). In rodent models, high fat lev-
els impair hippocampal LTP in the dentate gyrus (Karimi et al.,
2013) and CA1 regions (Stranahan et al., 2008). Moreover a diet
high in triglycerides was shown to diminish hippocampal long-
term synaptic potential maintenance (Farr et al., 2008) suggesting
a possible mechanism by which triglycerides mediate cognitive
dysfunction associated with obesity.

At a cellular level, hippocampal changes are observed when
diet is manipulated. Consumption of a high fat diet produces
a reduction in molecules involved with neurogenesis, synaptic
function and neuronal growth. A decrease in hippocampal neuro-
genesis in the dentate gyrus was observed after 4 weeks of feeding
of a 42% fat diet (Lindqvist et al., 2006), while reduced levels of
hippocampal markers of cellular proliferation (Kim et al., 2009)
and hippocampal brain-derived neurotrophic factor (Molteni
et al., 2002; Wu et al., 2003) have also been reported. Additionally
consumption of dietary fats induces hippocampal (Rivera et al.,
2013) and hypothalamic (Moraes et al., 2009) neuronal apopto-
sis and a reduction in hippocampal weight (Calvo-Ochoa et al.,
2014) showing that high fat consumption impairs both new neu-
ronal production and cell survival. It should be noted that not all
diet manipulations have a negative effect on hippocampal func-
tion: Mice fed a diet rich in polyphenols and polyunsaturated
fatty acids were observed to have more newly generated cells in
the dentate gyrus (Valente et al., 2009).

Meanwhile in the prefrontal cortex reduced levels of dopamine
(Geiger et al., 2008; Hansen et al., 2013) and acetylcholine
(Morganstern et al., 2012) and increased markers of oxidative
stress (Souza et al., 2007) have been observed in both obese-prone
rat models and after high fat feeding, suggesting a dysfunc-
tion in this region which may contribute to associated observed
behavioral deficits.

CEREBROVASCULAR
Vascular dementia is caused by cerebrovascular disease.
Increasing evidence suggests that the vascular effects of obesity

have a key role in the development of vascular cognitive
impairment in aged people (Gorelick et al., 2011) by promotion
of atherosclerosis in large cerebral arteries and alterations at the
level of the cerebral microcirculation (Zlokovic, 2011). Indeed
in a recent rodent study, mice fed a high fat diet displayed
disruptions in cerebral vascular function including neurovascular
coupling and functioning of arteries (Li et al., 2013; Lynch et al.,
2013). Moreover, aging exacerbated obesity-induced decline
in microvascular density in the hippocampus and cerebral
cortex which was positively correlated with hippocampal-related
cognitive function. Aging also exacerbated the obesity-induced
oxidative stress and impaired cerebral blood flow indicating the
possible effects of both aging and obesity and brain vascular
integrity (Tucsek et al., 2014b).

ALZHEIMER’S DISEASE RELATED PATHOLOGY
Amyloid plaques and neurofibrillary tangles containing tau pro-
tein are the pathological markers of Alzheimer’s disease (Serrano-
Pozo et al., 2011), accompanied by microglia activation and
astrogliosis (Beach et al., 1989; Itagaki et al., 1989). Pathological
progression is somewhat consistent with plaques, tangles, neu-
ronal, and synaptic loss observed in medial temporal cortical
regions such as entorhinal and perirhinal cortex, followed by
hippocampus and cerebral cortex (National Institute on Aging,
1997). The mechanisms by which obesity influences risk of
Alzheimer’s disease remain to be fully understood. Higher levels
of Amyloid-beta (Aβ, the main component of amyloid plaques)
precursor protein (APP) and tau expression have been reported
in hippocampal sections from morbidly obese patients without
cognitive impairment, compared to a cohort of non-obese con-
trols (Mrak, 2009). Indeed increased levels of plasma amyloid
proteins have been found in a number of studies of obese individ-
uals (Lee et al., 2009; Jahangiri et al., 2013) suggesting a possible
mechanism linking midlife obesity with the later development of
Alzheimer’s disease.

A number of experimental studies have examined markers of
Alzheimer’s disease-related pathology in rodents receiving diets
high in fat. Mice receiving a high fat diet displayed increased
expression of amyloid precursor protein and APP processing
enzyme (Thirumangalakudi et al., 2008; Puig et al., 2012) along
with tau phosphorylation (Koga et al., 2014). Moreover in rats
fed a high fat diet followed by streptozotocin injection to induce a
model of type 2 diabetes, hippocampal APP-cleaving enzyme and
Aβ were found to be present, and raised compared to controls, in
the hippocampus (Zhang et al., 2009).

Similarly, diet-induced obesity has been shown to increase
amyloid and tau pathology in transgenic mouse models of
Alzheimer’s disease. In the double-mutant presenilin (PS)-APP
model just 7 weeks of diet modification resulted in both hyper-
cholesterolemia and significantly increased levels of Aβ peptides
in the brain that were strongly correlated with the levels of
both plasma and brain total cholesterol (Refolo et al., 2000).
Meanwhile, much longer dietary interventions, for example 10
months of a high fat (35%) formula to the triple transgenic
(3xTg-AD) mice increased Aβ 40 and 42 concentrations and
tau, suggesting that high-fat consumption promotes Alzheimer’s
disease-like neuropathology (Julien et al., 2010).
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BLOOD BRAIN BARRIER
A functioning blood-brain barrier (BBB) has an important role
in maintaining a precisely regulated microenvironment for reli-
able neuronal signaling by allowing entry into the central nervous
system of essential nutrients and protecting the brain from blood-
borne toxins (Ballabh et al., 2004). The chemical consequences of
a high fat diet (including elevated fatty acids and sugars) may also
influence the brain by disrupting the integrity of the BBB.

BBB dysfunction is associated with both Alzheimer’s disease
and vascular dementia (Skoog et al., 1998), and can be related
to clinical vascular factors (Blennow et al., 1990). In a longitu-
dinal study being overweight or obese in mid-life was correlated
with lower BBB integrity almost a quarter of a century later
(Gustafson et al., 2007). Further evidence is available from ani-
mal studies: Rats fed a Western diet for 3 months had a decrease
in expression of tight junction proteins in the choroid plexus and
BBB (Kanoski et al., 2010). Moreover, Western diet consump-
tion in rats produces, as a consequence of this BBB dysfunc-
tion, increased permeability to a peripheral fluorescent tracer in
the hippocampus (Kanoski et al., 2010; Davidson et al., 2012).
Reduced BBB integrity and increased microgliosis in the hip-
pocampus was also observed in rats fed a high-saturated-fat and
cholesterol diet for 6 months (Freeman and Granholm, 2012)
demonstrating that the hippocampus appears to be particularly
vulnerable to diet-induced BBB disruption.

Mechanisms linking obesity to BBB dysfunction, and subse-
quent neuronal impairment, memory loss and dementia are not
yet fully established. As stated previously obesity has been associ-
ated with increased levels of circulating plasma amyloid proteins
(Lee et al., 2009; Jahangiri et al., 2013) and there is some sugges-
tion that peripheral Aβ can impair BBB integrity by pathologically
affecting the cerebrovasculature (Su et al., 1999). Further support
for the relationship between obesity and degeneration of the BBB
suggests that high circulating levels of fat impair active transport
of consummatory regulatory hormones such as leptin and ghre-
lin through the BBB (Banks et al., 2004, 2008), perhaps inhibiting
their positive roles in synaptic plasticity via actions in the hip-
pocampus (Shanley et al., 2001; Diano et al., 2006). It should also
be considered that obesity leads to increased circulatory inflam-
matory markers which in turn gain access to the hypothalamus
by increasing BBB permeability and/or via areas that lack an
effective BBB.

SYSTEMIC INFLAMMATION
In obesity there is an accumulation of white adipose tissue which
is the key site facilitating systemic inflammation (Odegaard and
Chawla, 2013). Particularly, both hypertrophied adipocytes and
adipose tissue-resident immune cells (primarily lymphocytes and
macrophages) contribute to increased circulating levels of proin-
flammatory cytokines where there is an increase of tumor necrosis
factor (TNF)-α, important feeding-related peptides such as leptin
and resistin, plasminogen activator inhibitor 1, C-reactive pro-
tein and interleukins (IL)-1β and IL-6 (Visser et al., 1999; Yudkin
et al., 1999; Ouchi et al., 2011) in obese individuals. Those with
a higher waist circumference and waist-hip ratio also showed
higher C-reactive protein and IL-6 concentrations, with IL-6 pos-
itively associated with total body fat (Hermsdorff et al., 2011)

suggesting that these measures may be more highly correlated to
inflammatory markers than increases in BMI (Hermsdorff et al.,
2011; Thewissen et al., 2011).

Another mechanism by which chronic low grade inflamma-
tion occurs is through T-cells. A cross-sectional study of obese
women found that T-cell derived cytokines (IL-23 and IL-17)
were increased independent of increased abdominal fat and
insulin resistance (Sumarac-Dumanovic et al., 2009). This has
also been corroborated in a diet-induced obese mouse study
(Winer et al., 2009). Obesity has also been shown to induce the
accumulation and activation of macrophages in adipose tissue in
both mice and humans (Weisberg et al., 2003; Xu et al., 2003;
Drake et al., 2011).

Systemic inflammation can contribute to cognitive decline
and dementia. The first functional link between obesity and
inflammation was found in obese mice where adipose tissue was
observed to secrete TNF-α (Hotamisligil et al., 1993). Further pre-
clinical data have demonstrated that after a lipopolysaccharide
(LPS) challenge in diet-induced obese rats, an exacerbated and
prolonged fever was observed as well as an increase in plasma
TNF-α, IL-6, and IL-1ra levels compared to lean controls (Pohl
et al., 2009). Cytokines, such as IL-1β and IL-6 have been shown
to disrupt neural circuits involved in cognition and memory
(Jankowsky and Patterson, 1999; Gemma and Bickford, 2007).
A recent meta-analysis identified that increased plasma levels
of C-reactive protein and IL-6 is associated with an increase of
dementia (Koyama et al., 2013). Elevated plasma IL-6 and IL-12
levels were also associated with impaired processing speed and
executive function assessed via Stroop interference and digit sym-
bol testing in a group of elderly participants between the ages of
70 and 90 (Trollor et al., 2012). Furthermore, an imaging study
conducted by Harrison and colleagues showed that after inducing
systemic inflammation by injection of Salmonella typhi vaccine
an acute decline in spatial memory (but not medial temporal
lobe independent procedural memory) was observed in humans
(Harrison et al., 2014), suggesting that the medial temporal lobe
is acutely sensitive to systemic inflammation.

CENTRAL INFLAMMATION
Peripheral cytokines can act on the brain to induce local produc-
tion of cytokines (Dantzer et al., 2008). As such, central inflam-
mation is observed after high fat feeding and in genetic models
of obesity, particularly in the hypothalamus (for review see Miller
and Spencer, 2014). When we consider areas important in cog-
nition, in db/db mice, a model of metabolic syndrome where
obesity arises as a result of leptin receptor insensitivity (Hummel
et al., 1966), IL-1β, TNF-α, and IL-6 mRNA expression levels in
the hippocampus are increased when compared to wild type con-
trols (Dinel et al., 2011). Moreover, in mice fed a 60% high fat
diet for 20 weeks, raised TNF-α expression has been observed
in the hippocampus (Jeon et al., 2012). Juvenile high fat diet
intake did not influence basal expression of pro-inflammatory
cytokines in the brain, but potentiated the enhancement of TNF-
α expression specifically in the hippocampus after a peripheral
immune challenge with LPS (Boitard et al., 2014). Chronic high
fat diet consumption has also been shown to exacerbate LPS-
induced cytokine mRNA expression of TNF-α and interferon-γ
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in the hippocampus as well as IL-6 and suppressor of cytokine
signaling-3 in the hypothalamus (Andre et al., 2014). At this stage
the prefrontal cortex is yet to be investigated.

MICROGLIA AND ASTROCYTES
Microglia, the primary mediators of the central nervous system’s
immune defense system release pro-inflammatory cytokines,
chemokines, nitric oxide, and superoxide species (Loane and
Byrnes, 2010). While the relationship between obesity-induced
microglia expression within hypothalamic regions in animal
models is well-documented (Miller and Spencer, 2014), new data
indicate that brain regions involved in cognition and memory
also show exacerbated microglial expression. In the db/db mouse,
increased levels of microglial activation markers are observed
throughout the hippocampus (Erion et al., 2014). Moreover in
aged (24 months) mice, hippocampal microglial activation was
shown to be exacerbated by 5 months treatment with a high fat
diet (Tucsek et al., 2014a). In addition, treatment of cultured pri-
mary microglia with sera derived from these aged obese mice
resulted in significantly more pronounced microglia activation
and oxidative stress (Tucsek et al., 2014a).

Astrocytes are the most abundant glial cell within the central
nervous system and respond to all forms of insults through a pro-
cess referred to as reactive astrogliosis (Sofroniew and Vinters,
2010). Within the hypothalamus, astrocytes produce cytokines
that drive inflammatory responses (Garcia-Caceres et al., 2013)
although new data suggest central inflammation can extend
beyond the hypothalamus in obesity regimes to affect areas
directly related to cognition. Astrocytes from the CA3 region
of hippocampus showed longer and less abundant projections
in high fat diet mice (Cano et al., 2014). In obese Zucker
rats a similar pathology is observed with a reported significant
increase in the number of glial fibrillary acidic protein (GFAP)-
immunoreactive astrocytes throughout all subfields of the hip-
pocampus as well as frontal and parietal cortices (Tomassoni et al.,
2013).

CONCLUSION
It is abundantly evident that there is a deleterious effect of obe-
sity/high fat feeding on cognitive performance. In human clinical
studies, obesity has been shown to increase the risk of the devel-
opment of mild cognitive impairment, in the form of short-term
memory and executive function deficits, as well as dementia
and Alzheimer’s disease. Genetic and diet-induced models of
obesity further support this link with obese animals displaying
deficits in working memory, learning, and memory performance.
The exact mechanisms or mediators that underlie the connec-
tions between obesity and the risk of cognitive impairment are
still unknown but potential avenues of further research include
brain atrophy, disruption in cerebrovascular function, develop-
ment of Alzheimer’s disease related pathology, BBB breakdown,
and systemic and central inflammation.

Only a limited number of therapeutic options are currently
available to treat dementia. These pharmaceutical agents have
shown some potential to improve cognition but are effective for
only some of the population, may be useful for only a limited
time, and do not change the underlying disease process (Craig

and Birks, 2005; Birks, 2006). Moreover, it is evident that obesity
not only negatively impacts brain function and structure in adult-
hood and dementia, but clearly causes changes in the developing
brain during childhood and adolescence (Liang et al., 2014), with
researchers still coming to understand the long-term negative
consequences of a life-time of being overweight on the brain. As
such interventions that focus on education and life-style related
factors to improve cognitive health (Lucke and Partridge, 2013)
appear to be the most promising option. Increasing physical activ-
ity is certainly beneficial in many instances of cognitive decline
as well as other neurological disturbances (Loprinzi et al., 2013)
and may be the best treatment preference until the development
of therapeutic options to treat cognitive deficits and/or prevent
cognitive decline in obesity are available.
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