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Conventionally, structural topology is used for spatial normalization during the

pre-processing of fMRI. The co-existence of multiple intrinsic networks which can be

detected in the resting brain are well-studied. Also, these networks exhibit temporal

and spatial modulation during cognitive task vs. rest which shows the existence of

common spatial excitation patterns between these identified networks. Previous work

(Khullar et al., 2011) has shown that structural and functional data may not have

direct one-to-one correspondence and functional activation patterns in a well-defined

structural region can vary across subjects even for a well-defined functional task.

The results of this study and the existence of the neural activity patterns in multiple

networks motivates us to investigate multiple resting-state networks as a single fusion

template for functional normalization for multi groups of subjects. We extend the previous

approach (Khullar et al., 2011) by co-registering multi group of subjects (healthy control

and schizophrenia patients) and by utilizing multiple resting-state networks (instead

of just one) as a single fusion template for functional normalization. In this paper we

describe the initial steps toward using multiple resting-state networks as a single fusion

template for functional normalization. A simple wavelet-based image fusion approach is

presented in order to evaluate the feasibility of combining multiple functional networks.

Our results showed improvements in both the significance of group statistics (healthy

control and schizophrenia patients) and the spatial extent of activation when a multiple

resting-state network applied as a single fusion template for functional normalization

after the conventional structural normalization. Also, our results provided evidence that

the improvement in significance of group statistics lead to better accuracy results for

classification of healthy controls and schizophrenia patients.

Keywords: fMRI, ICA, spatial normalization, resting state networks, wavelet

Introduction

Spatial registration of multiple subjects onto a common template is a necessary step while
analyzing fMRI data across a group of subjects. This step is required for several reasons:
(1) brains differ in shapes and sizes and spatial normalization enforces brain boundaries to
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overlap to exclude non-brain voxels from the analyses, (2) to
ensure that similar anatomical regions are compared across sub-
jects and (3) to label brain regions using a standard predefined
coordinates (example MNI space). The above steps are appro-
priate and critical while analyzing brain images from structural
magnetic resonance imaging (sMRI). During the pre-processing
of functional MRI (fMRI), conventionally, it is normalized using
structural topology and such an initial normalization is needed
for the above reasons. In fMRI wemeasure the blood oxygenation
level dependent (BOLD) changes of brain activation and previous
work (Mazziotta et al., 2001; Brett et al., 2002) has shown that
structural and functional data may not have direct one-to-one
correspondence. By this we mean functional activation patterns
in a well-defined structural region can vary across subjects even
for a well-defined functional task.

Previously (Mazziotta et al., 2001; Brett et al., 2002) discussed
the differences in correspondence between the functional and
structural landmarks of the human brain. They have pointed
out the importance of functional localization and incorporating
these differences into algorithms andmethods that are applied for
realignment and segmentation of neuroimaging data sets. Func-
tionally well-defined areas such as the visual motion or the MT
can vary across subjects in terms of size (Watson et al., 1993)
or mapped anatomical location (Tootell et al., 1995). Also, Blu-
mensath et al. (2006) introduced a spectral clustering technique
for intra-subject parcellation that delineates homogeneous and
connected regions and a hierarchical method to derive group
parcels. They showed the groups of parcels that well-summarize
inter-subject activations. This study was followed by another
experiment involving deriving parcellation borders that follow
changes in the functional connectivity profile (seed based) at
rest state which highly overlap with task state (Blumensath et
al., 2013). In recent study (Haxby et al., 2011), hyper-alignment
model was introduced by mapping a response-pattern vectors
from individual subjects’ voxel spaces into the common model
space. The results showed that population codes for complex
visual stimuli in ventral temporal cortex are common across the
individuals. Another study (Hagler et al., 2006) proposed itera-
tive smoothing technique that averages the values of neighbor-
ing vertices. Their results provided better spatial uniformity of
smoothing when the surface meshes used have large variabil-
ity in inter-vertex distance. Recently, inter-subject registration
algorithm that aligns intra-subject patterns of functional con-
nectivity across subjects was introduced by Conroy et al. (2013).
The results showed that the derived alignment by using inter-
subject registration algorithm performed successfully. Another
study provided by Sabuncu et al. (2010) showed inconsistency
of structural anatomical landmarks on the cortex with estimated
locations of corresponding functional activity. Results of these
studies support our initial thought that incorporation of locally
defined functional information may improve the boundaries of
these areas and some aspects of within-activation topography
at a network level. Therefore, robustly estimation of functional
landmarks using resting state fMRI data and using these for func-
tional re-alignment may be an alternative to collecting data from
a battery of tasks.

In the past decade, there has been a growing interest to
use intrinsic networks (INs) alternatively known as “resting

state networks” to investigate the functional organization of the
human brain. Previously, large scale of resting state fMRI data
has been collected by Biswal et al. (2010) and Allen et al. (2011a).
Also, independent component analysis (ICA) has been a very
popular tool to analyze resting state fMRI data and investi-
gate functional connectivity (Beckmann et al., 2005; Damoiseaux
et al., 2006; Calhoun et al., 2008; Harrison et al., 2008; Smith et al.,
2009; Biswal et al., 2010; Khullar et al., 2011; Cetin et al., 2014).
Another study (Mennes et al., 2010) proved the existence of spa-
tial associations between brain regions that represent intrinsic
dynamics and active during a cognitive task. Hence, increased
interest to building the functional connectome with resting data
has a vital role to build novel methods (Biswal et al., 2010; Allen
et al., 2011a).

Co-existence of networks which are identified from resting
brain data have been previously discussed (Calhoun et al., 2001;
Smith et al., 2009; Allen et al., 2011a). Also, multiple networks
exhibit temporal and spatial modulation during cognitive task vs.
rest which shows existence of common spatial excitation patterns
between these identified networks (Calhoun et al., 2008). Pre-
vious work (Khullar et al., 2011) has shown that structural and
functional data may not have direct one-to-one correspondence
and functional activation patterns in a well-defined structural
region can vary across subjects even for a well-defined functional
task. Existence of these neural activity patterns in multiple net-
works motivates us to investigate multiple resting-state networks
as a single fusion template for functional normalization for multi
groups of subjects.

We extend the previous approach (Khullar et al., 2011) by
co-registering the multi group of subjects (healthy control and
schizophrenia patients) by utilizing multiple resting-state net-
works (not just one as in the original work) as a single fusion
template for functional normalization as an additional pre-
processing step in contrast to the existing convention that only
uses structure as a reference. The proposed method called ICA-
based multi-network fusion template for functional normaliza-
tion or “ICA-mfNORM” delineates resting fMRI data into INs
using ICA and utilizes them as “functional templates” (FT) to
derive normalization parameters. We attempt to utilize the nor-
malization parameters (set of non-linear basis functions) com-
puted by using multiple resting-state networks as a single fusion
template for re-aligning each subject’s fMRI data corresponding
to a cognitive task such as the auditory oddball design (AOD).
For every subject, the new AOD data is normalized to the group
according to variations in functional systems unique to that sub-
ject. In this paper we describe the initial steps toward using
multiple resting-state networks as a single fusion template for
functional normalization. A simple wavelet-based image fusion
approach is presented in order to evaluate the feasibility of
combining multiple functional networks. Furthermore, we dis-
cuss the advantages, limitations and future direction of such an
approach.

Materials and Methods

Participants
Subjects in this study consisted of 28 healthy control (HC) adults,
and 27 chronic schizophrenia patients (SP), all of whom gave
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written, informed, IRB approved consent at Hartford Hospital,
CT and were compensated for their participation. Schizophre-
nia was diagnosed according to the DSM-IV TR criteria on the
basis of a structured clinical interview administered by a research
nurse and review of the medical file (First et al., 1995). Patients
were slightly older than controls (SP age= 39.7± 10.1; HC age=
36.5 ± 11.3), but the difference was not statistically significant
(two sample t-test p-value: 0.27).

Experimental Design and Task
All participants were scanned during both an auditory odd-ball
task (two times, each lasting 8-min) and while resting (one time,
lasting 5-min), eyes open visually fixating on a cross. The AOD
task stimulates a subject with three kinds of sounds: “standard”
stimuli (1000Hz tones with probability p = 0.8), infrequent
target stimuli (1200Hz tones, p = 0.1) and infrequent novel
stimuli (computer generated complex tones, p = 0.1).The audi-
tory stimuli were presented to each participant by a computer
stimulus presentation system called visual and audio presentation
package (http://nrc-iol.org/vapp/) via insert earphones attached
within a pair of 30-dB noise-canceling MR compatible head-
phones. Stimuli were presented sequentially in pseudo-random
order for 200ms each with inter-stimulus interval varying ran-
domly from 500 to 2000ms across trials, with a mean of 1200ms.
In order to enable the participants to decipher stimulus tones
from scanner noise, all stimuli were presented about 80 dB above
the standard threshold of hearing. Each participant performed
a practice block of 10 trials prior to entering the scanner. All
participants reported that they could hear the stimuli and dis-
criminate them from the background scanner noise. The partic-
ipants were instructed to respond as quickly and accurately as
possible with their right index fingers every time they heard the
target stimulus (1000Hz) and not respond at all if they heard
any of the other two tones (standard or novel). The behavioral
responses were recorded using an MRI compatible fiber-optic
response device (Light-wave Medical, Vancouver, BC). The rest-
ing state scans were acquired while the participants rested quietly
(with their eyes open) for 5min without falling asleep inside the
scanner. A detailed description of the AOD stimulus paradigm,
the data acquisition techniques and previously found stimulus-
related activation can be found in relevant work by Kiehl et al.
(2005).

Data Acquisition
All scans were acquired at the Olin Neuropsychiatry Research
Center at the Institute of Living/Hartford Hospital. A Siemens
Allegra 3T MR system, equipped with 40mT/m gradients and
a standard quadrature head coil was used for all data collec-
tion. The scan started automatically by a trigger from the task
paradigm controller. Following parameters were set for acquiring
the functional scans trans-axially with gradient-echo EPI: repeat
time (TR)= 1.50 s, echo time (TE)= 27ms, field of view= 24 cm,
acquisition matrix = 64 × 64, flip angle = 70◦, voxel size = 3.75
×3.75 ×4mm, slice thickness = 4mm, gap = 1mm, 29 slices,
ascending acquisition. The task fMRI data had 249 volumes in
each run after discarding the 6 initial scans to compensate for
longitudinal equilibrium (Calhoun et al., 2008). There were two

back-to-back, separate runs for the task, and the data from the
two runs were concatenated, resulting in 498 volumes.

Data Pre-processing
The magnitude of fMRI images (initially recorded as real and
imaginary parts separately) were estimated and written as 4-
D NIfTI (Neuroimaging Informatics Technology Initiative) files
for further analysis. The standard pre-processing steps (realign-
ment/motion correction and normalization) were performed via
the SPM5 package (http://www.fil.ion.ucl.ac.uk/spm/software/
spm5). The data were (a) motion corrected using an approach
which minimizes the impact of local signal variations using the
INRI align algorithm (Freire et al., 2002); (b) spatially normalized
(Ashburner et al., 2000) into the MNI space using the EPI tem-
plate provided with SPM5; and (c) slightly re-sampled (bi-linear
interpolation) from 3.75× 3.75× 4mm to a voxel size of 3×3×
3mm resulting in 53× 63 × 46 voxels per volume. Convention-
ally, the last step is to spatially smooth the data using a full width
half-maximum Gaussian kernel (10× 10× 10mm).

Group Independent Component Analysis (GICA)
In order to derive FT, we used the GIFT Toolbox (http://mialab.
mrn.org/software/gift/) and infomax algorithm for GICA (Bell
and Sejnowski, 1995). We performed a subject-specific data
reduction principal component analysis retaining 100 princi-
pal components (PC) using a standard economy size decom-
position (Allen et al., 2011b). The relatively large number of
subject-specific PCs has been shown to stabilize subsequent back-
reconstruction (Erhardt et al., 2011b). In order to use memory
more efficiently, further group data reduction was performed
using expectationmaximization (EM) principle component anal-
ysis algorithm (Roweis, 1998) and 20 PCs were retained.

We used a relatively lowmodel order ICA (number of compo-
nents, C = 20), since such models yield refined components that
correspond to known anatomical and functional segmentation
(Kiviniemi et al., 2009; Abou-Elseoud et al., 2010), though the
approach we propose can be utilized for other model orders just
as well. In order to estimate the reliability of the decomposition
(Himberg et al., 2004), the Infomax ICA algorithm was applied
repeatedly in ICASSO (http://research.ics.aalto.fi/ica/icasso/) and
resulting components were clustered. Note also that the typical
infomax algorithm used is actually jointly optimizing for both
independence and sparsity (Calhoun et al., 2013).

Pre-processing Through Co-Design
Despite some interesting findings showing co-existing networks
induced during rest and task (Calhoun et al., 2008; Smith et al.,
2009), there has been little research in using these two data
sets together. Mennes et al. (2010) demonstrated the possibility
of predicting task-induced BOLD activity using inter-individual
differences from resting-state networks. For advancing appli-
cations of these well-established and tested INs, we proposed
the ICA-mfNORM framework and presented arguments for its
application and position in the fMRI pre-processing pipeline
by illustrating the benefits as well some methodological limita-
tions for group-fMRI analysis. The increasing interest in new
fMRI analysis methods developed using data-driven techniques
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such as ICA and multi-modal fusion tasks for re-defining funda-
mental questions posed prior to designing an fMRI study. Well-
targeted and adaptive fMRI processing methods can help reveal
hidden relationships across different networks of the brain. In
subsequent sections we provide more details on our proposed
approach.

Selection of Relevant Intrinsic Networks
The auditory oddball task is known to induce BOLD signal
increases in the temporal lobe network (Kiehl et al., 2005;
Calhoun et al., 2008). The connectivity patterns in temporal
regions within resting-fMRI data was demonstrated by Biswal
et al. (1995), Greicius et al. (2003) and Kiviniemi et al. (2003).
The consistency of the existence of these networks has been
well-established through a group-ICA study of healthy subjects
(Damoiseaux et al., 2006) followed by continuous experiments
involving associations of these networks with covariates such as
age, gender, and ethnicity (Allen et al., 2011a).

For our experiment, we depend upon the findings of numer-
ous studies mentioned here, that the, selection of relevant INs is
done based on two criteria’s: (1) Known networks that are essen-
tial to brain function and comprise a robust array of components
from previous studies such as occipital, sensory motor, parietal,
inferior frontal, cingulate cortex and temporal regions. (2) The
primary task-relevant region known from a data-set of interest,
for e.g., temporal lobe and somatosensory motor in case of an
auditory oddball task (AOD).

Four INs are utilized to form the multi network template.
These selected networks that are known to be positively modu-
lated by the cognitive task—(1) superior temporal and (2) middle
temporal, (L/R), (3) sensorimotor (L/R), (illustrated in Figure 1).
They are actively modulated due to their known involvement
(from other low-level experiments) with performing the task cor-
rectly. For example, the temporal lobe is the auditory region, and
sensori-motor is responsible for motor functions such as tapping

a finger when the target tone is heard (Kiehl et al., 2005; Calhoun
et al., 2008). These INs were chosen due to implicit reasons asso-
ciated with the nature of the cognitive task (AOD) involved in
our experiment. For rest of the paper “relevant networks” refers to
superior temporal, middle temporal, and sensorimotor networks.

Estimating Normalization Parameters
The normalization parameters obtained from two different nor-
malizations steps (pre-processing and functional normalization)
are representative of the differences between average activi-
ties of each group with respect to a particular functional sys-
tem/network.

In our experiment, two normalizations steps performed for
the ICA-mfNORM procedure. The first normalization step was
applied in the pre-processing section. The regular SPM normal-
ization algorithmwas applied to all data sets in the pre-processing
stage in order to map all the data to the MNI template pro-
vided within SPM to present meaningful overlays of BOLD activ-
ity. Global shape differences between the functional network’s
boundaries of each subject and that of the group were obtained by
suing SPM’s spatial normalization algorithm which computes the
12-parameter affinemodel and the non-linear basis (Friston et al.,
1995; Ashburner and Friston, 1999). Default settings of SPMwere
used to estimate the 392 parameters to describe deformations
in each direction. The basis functions were estimated using 3-D
discrete cosine transform (DCT) and regularization was done
using λ = 0.01. The non-linear registration was performed as
12 iterations and normalization parameters were stored.

The second one was applied later in functional normalization.
The normalization parameters that used for ICA-mfNORM (sec-
ond stage normalization), for each subject were estimated using
multi-network template as the reference image and that subject’s
multi-network components as the source image. The warping
parameters (non-linear transformation R) were computed for
each subject (Ri: Non-linear transformation of each subject) and

FIGURE 1 | Thresholded group mean spatial maps of relevant networks (1) Superior Temporal (2) Middle Temporal, (L/R), (3) Left Sensorimotor, and (4)

Right Sensorimotor.
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used for registration of the task related data corresponding to the
same (ith) subject (see Figure 2).

Multi-Network Fusion Framework
Image fusion is an important and widely researched sub-area in
the diverse field of image processing. In optics, imaging sensors
can focus on certain objects in a single shot; this is controlled by
the focal length of the lens used. Thus, to capture a focused rep-
resentation of objects placed at different depths requires multiple
images of the scene at various focal lengths followed by com-
putational aggregation. This image set is commonly known as
the focal stack. This aggregation process is achieved by differ-
ent types of algorithms proposed in the literature, referred to as
multi-focus image fusion. The advantages of using multi-focus
data aggregated into a single image are manifold. The redun-
dant information alongside complimentary features from various
constituent images are much improved in a fused image. Other
advantages are based on the position of image fusion in the image
processing hierarchy, that is, several derivative applications like
feature extraction, segmentation, compression take advantage of
a good image fusion algorithm.

In the context of fMRI, the voxels contributing the most to the
various networks derived from ICA have minimal spatial over-
lap. Resting-state data is decomposed into multiple components,
thus providing enough flexibility to choose the appropriate net-
works that may correspond closely to a cognitive task that we are
interested in studying. The functional template is then used in
conjunction with the conventional spatial normalization process
to adjust for inter-subject functional variability within the fMRI
data associated with that cognitive-task.

The motivation for merging multiple INs is using resting-state
networks as disjoint but aggregated representations of the func-
tional organization of the brain. In order to better understand
functional variability across individuals within a group or popu-
lation, there is a need to account for the spatial characteristics of
these functional networks. Thus, we propose a fusion methodol-
ogy to merge multiple networks of functional organization into
a single MNI-type functional template. An illustration of our
proposed idea is presented in Figure 3.

Due to the complex nature of information embedded in
these networks, merging them in to a single volumetric image
is more challenging than just simple aggregation. As is the case
with many template-based normalization algorithms, it is impor-
tant to note that the method used to form the multi-network
template may also depend on the registration methodology
used.

Wavelets and Image Fusion
The most favored and established theory for image fusion, be
it single or multi-sensor, is wavelet transforms. The majority of
wavelet-based approaches utilize the discrete wavelet transform
(DWT) where the wavelet coefficients of the source images are
merged and the fused image reconstructed back to the original
space using an inverse transform. However, the main limita-
tion of this approach is that wavelets are unable to preserve the
dynamic range of original data in the wavelet domain. This poses
as a problem when dealing with fMRI networks which acquire

arbitrary values as independent components. The second and
more serious limitation in context to our application to fMRI is
that the inverse transform is an approximation and may result
in reconstruction errors. Such reconstruction errors are minimal
when there is a single source image, and the application utilizes
all the coefficients as is the case with image denoising. However, it
is desirable to avoid reconstruction errors when multiple source
images are combined based on a weighted coefficients or metric
as generally practiced for image fusion.

Non-linear extensions of the DWT have been proposed
through various schemes such as lifting (Sweldens, 1996) and
morphological pyramids (Heijmans and Goutsias, 2000). The
advantage of using non-linear extensions of the DWT for image
fusion is manifold. It possesses many types of invariance prop-
erties: (1) Shift is achieved through the formulation of analysis
(decomposition) and synthesis (reconstruction) operators, and
(2) gray-value shift invariance provides a great advantage where
gray values (activation intensities from different networks) are
preserved in the fused image. That is, adding or multiplying a
certain value throughout the volumetric image is equivalent to
adding or multiplying by the same value during any step in the
analysis (decomposition). The direct effect of this property is
do with minimal or no change around the detail regions (edges,
corners etc.).

For the purpose of demonstrating the possibility of using
multi-network FT with our proposed ICA-mfNORM framework,
we extend the multi-focal image fusion scheme presented by De
and Chanda (2006) to fMRI analysis. We utilize the same scheme
for the multi-network image fusion framework. There are two
main reasons for choosing this particular methodology to achieve
multi-network fusion: (1) This is a proof of concept strategy
to demonstrate the feasibility of multi-network normalization,
thus a simple to implement approach is adopted here. (2) This
approach is capable of handling any number of INs as input to
the fusion routine.

It is important to note that the proposed multi-network tem-
plates and ICA-mfNORM framework are in no way a replace-
ment for the existing spatial normalization and registration
schemes. Undermining the existing normalization approaches is
not the goal of this work. The functional-template based nor-
malization requires comprehensive validation on real fMRI data
sets. However, the integration of various established approaches
applied together in a single framework as ICA-mfNORM provide
sufficient ground for experimenting with multi-network tem-
plates. The work presented in this paper will set a foundation for
future studies that may apply ICA-mfNORM on a diverse variety
of data sets and help validate it further. This type of progressive
testing will eventually help bolster the position of such hybrid
approaches that can possibly advance the field of fMRI analy-
sis. The algorithm is divided in to three stages: (1) Analysis, (2)
Fusion, and (3) Synthesis.

Analysis
Unique analysis operators (forward wavelet transform)—(ψ↑,
ω↑) and synthesis operators (reconstruction)—(ψ↓,ω↓) are used
for a single level decomposition scheme. Due to the low resolu-
tion of the fMRI data, we restricted to a dual-resolution fusion
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FIGURE 2 | Detailed flowchart of the proposed ICA-mfNORM framework illustrating all relevant stages involved.
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FIGURE 3 | An illustration of the proposed template formation framework from resting-state intrinsic networks. The main functions of the image fusion

block is to find an ideal combination of multiple networks, and provide priority values for a fused value for each voxel in the brain from multiple input networks.

scheme, which is only one level of decomposition for fusion. Fur-
ther experimentation with multi-resolution may prove to be use-
ful in analyzing performance. Let X is an image in a signal space
V0which can further be decomposed in to subspaces V1 (approx-
imation) and W1(detail) at level 1 in the wavelet domain. Let X
∈ V0 is a set of gray values in a 2-D space of sizeM × N such
thatM and N are both even. Thus, X can be subdivided in several
disjoint 2 × 2 sub-images or blocks resulting in a total of MN/4
matrices as shown in Figure 4. Through quadrature down sam-
pling, the analysis and synthesis operators ψ↑: V0 → V1 and ω↑:
V0 → W1 are defined analytically in Equations (1, 2).

ψ↑(X)(B) = M = max{X(r, c),X(r, c+ 1),X(r + 1, c),

X(r + 1, c+ 1)}, (1)

ω↑(X)(B) = (yv, yh, yd). (2)

where yv, yh, yd represent the vertical, horizontal and diagonal
detail signals, respectively and are defined as:

yv =

{

M − X (r, c+ 1) if M − X(r, c+ 1) > 0,
X(r, c+ 1)−M otherwise,

(3)

yh =

{

M − X (r + 1, c) if M − X(r + 1, c) > 0,
X(r + 1, c)−M otherwise,

(4)

yd =

{

M − X (r + 1, c+ 1) if M − X(r + 1, c+ 1) > 0,
X(r + 1, c+ 1)−M otherwise,

(5)

The scaled approximation (M in Equation 1) and detail (Equa-
tions 3–4) values is, approximation X1 and details Y1, respec-
tively. Thus, these 4 values can be stored in a 2 × 2 matrix as
shown in Figure 4. The above step is repeated for n different INs
(chosen by the user) that are given by X1, X2, X2,., Xn, thus result-
ing in a pair of coefficient matrices for each network—X= Xi, Yi.

An example illustrating the above wavelet synthesis on an axial
slice from the target resting-state networks used for fusion are
shown in Figure 5 (see second column). For clarity, we select 3
different axial slices (at−3,−12, and+42mm inMNI coordinate
space), each corresponding to the maximum value in at least one
network. This illustrates the intensity distribution across various
networks that exist as a volumetric image.

An important point to note in Figure 5 is the range of trans-
formed images. If all values of the image X belong to the range
[0, R], then the transformed approximation signal X belongs to
the range [0, R] whereas the detail signal Y belongs to the range
[−R, R]. Larger values in any image Xi corresponds to a brighter
pixel whereas a large value in Yi corresponds to a possible edge,
corner or other high-spatial frequency features.

Fusion
After the completion of analysis operation, 2 sets of n approxi-
mation (Xi

1) and detail (Y i
1) signals are obtained. Based on the

range of these images as discussed above, apriority condition is
required to choose the network that may contribute to the pixel
value at each location (r, c). In other words, the priority condition
is basically the fundamental fusion criterion to merge multiple
target images, INs in this case. There are several fusion criteria
proposed in the literature as listed below:

• Maximum selection (MS) scheme: This scheme simply picks the
coefficient from each sub-band which has the largest magni-
tude across multiple images.

• Weighted average (WA) scheme: This technique was
introduced by Burt and Kolczynski (1993) utilizes a neigh-
borhood based normalized correlation among target images’
sub-bands. The final fused coefficient is estimated through
a weighted average of the two images’ coefficients. The
disadvantage of this method is that it cannot work with more
than two images due to the application of the correlation
operator.
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FIGURE 4 | An illustration of the subdivision of images in MN/4 matrices alongside decomposition of a 2 × 2 sub-matrix into approximation and detail

bands.

FIGURE 5 | MWT Example using Intrinsic Networks; An example

showing step-by-step illustration of different stages of the

proposed entropy-filtering based wavelet fusion scheme. The final

image is obtained through the stacked-image maximum selection

scheme in the wavelet domain followed by morphological

reconstruction. An orthogonal view (arbitrarily chosen) of the resulting

template is illustrated depicting active regions present in the four input

templates.

• Window-based verification (WBV) scheme: This scheme is
probably the most sophisticated amongst all and has been used
for several applications in combination with some other tech-
niques (Li et al., 1995). It performs a fusion by means of a
binary decision map estimated over a local neighborhood for
two or more coefficients from the target images. The binary
decision map decides what target image contributes to a pixel
(r, c) in the final fused image.

For our implementation, we utilize theMS scheme that is also uti-
lized by De and Chanda (2006) for fusion of multi-focus images.
Aminor, but substantial novel contribution to theMS scheme for
fusion is proposed here. A pre-processing step to obtain a crude
segmentation of meaningful voxels within the sub-bands is per-
formed using an entropy filtering approach. Each voxel value is
replaced by its entropy value (a statistical measure of random-
ness) in the neighboring 3 × 3 neighborhood. It is computed
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as: H(x) =
∑

N PN(x)log2
(

PN(x)
)

, where (x) is the center pixel
and PN(x) is the probability distribution (histogram) in neigh-
borhood N. As noticed from Figure 5, the difference between the
regularly processed sub-bands and the entropy-filtered bands is
quite significant. The regions with higher activation values are
now more prevalent in the filtered images (third column). Some
of the voxels with low local entropy are removed whereas the
activation specific voxels are scaled based on their local entropy.
This assists in image fusion where the activation across differ-
ent networks is spread over a number of voxels in different
planes (axial slices here) across the brain. This also serves as
the primary reason for demonstrating the fusion process with
the help of three different slices extracted from four different
INs−3mm for superior temporal,−12mm for middle temporal,
and+42mm.

An alternate approach that may utilize some type of functional
connectivity metric to realize the weights of each component may
be worthwhile to pursue. Here, we presented a proof of concept
for functional template formation. Experimenting with fusion
methods is outside the scope of this work but considered to be
a substantially important part of future work.

The MS fusion scheme compares multiple INs {Xi, i =

1, 2, .n} and combines them into X ={X1
f ,Y

1
f }, where X1

f and

Y1
f are given by X1

f (r, c) = max{|X1(r, c)|,|X2(r, c)|,.|Xn(r, c)|}

and Y1
f (r, c)= max{|Y1(r, c)|,|Y2(r, c)|,.|Yn(r, c)|}, respectively.

This operation results in 4 fused images (1 approximation, and
3 details) consisting of features from all the networks. These
results are presented in Figure 5 that shows initial images and
the fused result using 4 different networks for different slices and
sub-bands.

Synthesis
The last and final step in template formation is the synthe-
sis or reconstruction back from wavelet domain V1 to the sig-
nal domain V0. The fused image X ∈ V0 is reconstructed by
applying the synthesis operators ψ↓ and ω↓ on the transformed
and fused set X = {X1

f , Y1
f }, The reconstruction to obtain

the synthesized (fused) signal is done through the following
equations:

X̂(r, c) = X̂(r, c+ 1) = X̂(r + 1, c) = X̂(r + 1, c+ 1)

= M (6)

Ŷ(r, c) = min(yv, yh, yd, 0),

Ŷ(r, c+ 1) = min(−yv, 0), (7)

Ŷ(r + 1, c) = min(−yh, 0),

Ŷ(r + 1, c+ 1) = min(−yd, 0),

The reconstructed signal X‘ at any point (u, v) ∈ {(r, c), (r, c+ 1),
(r + 1, c), (r + 1, c + 1)} is given by Equation (8) and illustrated
in Figure 6 through various slices.

X‘(u, v) = X̂(u, v)+ Ŷ(u, v) (8)

The final fused image is taken as the functional-template and used
in conjunction with the ICA-mfNORM frame work as presented
in the Figure 2. In regard to the importance given to perfor-
mance analysis for fMRI pre-processing algorithms, we present
the results of the fusion algorithm proposed above and compare
it with regular ICA analysis.

Results

The multi-network functional template is developed using
manually relevant INs that are known to be positively modulated
by the cognitive task—superior temporal, middle tempo-
ral, and sensorimotor networks (Biswal et al., 1995; Gre-
icius et al., 2003; Kiviniemi et al., 2003; Kiehl et al., 2005;
Calhoun et al., 2008; Khullar et al., 2011). All these net-
works are actively modulated due to their known involve-
ment (from other low-level experiments) with performing
the task correctly. For example, the temporal lobe is the
auditory region, and sensorimotor is responsible for motor
functions such as tapping a finger when the target tone is
heard.

In order to obtain an initial estimate of the advan-
tages of a multi-network functional normalization approach,
we examined some analysis’ such as; comparison of the
component maps to obtain the number of active voxels
and evaluate the local correlation performance, investigat-
ing the multi-group comparison to obtain group differences
and running two different classification algorithms to exam-
ine the improvement for classification of the AOD group
data containing 28 HCs and 27 SPs before and after ICA-
mfNORM.

FIGURE 6 | Illustration of the multi-network functional template through a few selected slices spread throughout the brain. This image highlights the

merging of features from various networks, also shown in Figure 5.
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TABLE 1 | Activation maps comparison for Regular-ICA and ICA-mfNORM.

Anatomical Regions Regular—ICA ICA-mfNORM % Gain

Coordinates tm Vol (p < 0.01) Coordinates tm Vol (p < 0.01) Local Network ED (mm)

(x,y,z) (x,y,z)

L superior temporal 60 21 9 6.16 1349 60 21 9 6.16 1615 19.72 14.74 0.00

R superior temporal −63 18 9 5.86 1296 −63 18 6 5.98 1420 9.57 3.00

L middle temporal 51 30 51 5.36 1229 54 24 42 5.40 1282 4.31 3.21 11.22

R middle temporal 0 −9 45 5.40 956 0 −9 42 6.03 883 −7.64 3.00

Right post-central −60 15 39 4.76 524 −63 18 33 5.06 631 20.42 7.35

L sensorimotor 45 −15 −12 8.01 749 42 −12 −18 8.61 826 10.28 5.85 7.35

R sensorimotor −48 −15 −12 7.80 789 −45 −12 −18 7.99 802 1.65 7.35

The results of the ROI analysis for the group level t-maps.

The Activation Maps
Single Group Comparison; One-Sample t-test
The results of the single group comparison for the group
level t-maps are presented in Table 1. The activation maps
corresponding to the primary task-positive component from
functionally realigned AOD data were analyzed and the most sig-
nificant voxels were derived. The activation maps were analyzed
using the automatic anatomical labeling (AAL) atlas (Tzourio-
Mazoyer et al., 2002) that contains several different regions to
parcellate the functional activation maps anatomically of most
significant voxels. One-sample t-tests were performed on net-
works of interest and the activation maps were corrected for
multiple comparisons (p < 0.01) by using the false discov-
ery rate (FDR) method (Chumbley and Friston, 2009). For all
regions labeled within the threshold t-maps for with and with-
out ICA-mfNORM methods, the location of maxima (x, y, z),
mean t-value and number of significant voxels above the thresh-
old were computed. Then spatial shifts inactivation foci between
the two approaches were computed as the Euclidean distance
(ED) between the local maxima.

We identified six anatomical regions, left superior temporal,
right superior temporal, left middle temporal, right middle tem-
poral, left sensorimotor, right sensorimotor. All regions showed
positive gain and similar patterns were observed in volume cal-
culation (p < 0.01). Significant improvements in local max-
ima were observed for all regions see Table 1. In addition to
these regions, inferior temporal regions and thalamus showed
increased activation patterns after ICA-mfNORM.

Local Correlation Performance of the ICA-mfNORM
We also evaluated the local correlation performance of relevant
networks. The effect of ICA-mfNORM was evaluated based on
correlation of the subject specific relevant networks to corre-
sponding mean relevant networks between subjects obtained by
applying ICA with and without ICA-mfNORM by holding other
settings as described before.

Correlation of the subject specific relevant networks compo-
nents obtained by applying ICA with ICA-mfNORM showed
higher correlation except for sensorimotor regions, which
showed a small loss. For subject specific relevant networks, we

used paired t-tests on the correlation results. The cut off p-value
for all of the tests is set at p < 0.05. The results did not show
significant improvement for local correlation performance of rel-
evant networks. Table 2 shows average correlation of each rele-
vant network to corresponding mean correlation of the relevant
networks between subjects with and without ICA-mfNORM.

Comparison of Normalization
In our experiment two normalizations steps were performed for
the ICA-mfNORM procedure. The first one was applied in the
pre-processing section and the second was applied later in func-
tional normalization. This process might raise a concern regard-
ing this concatenation of transforms. In order to address this
concern, instead of using the functional template in the second
step, we used an average of the first timepoint of the EPI data
from the already normalized subjects. This method is widely used
to produce a “study specific template.” Then we compared two
approaches, both of which use two transformations, but only one
(ICA-mfNORM) uses the functional information.

We created a template image from the average of the first
image across all subject then we computed the correlation scores
of the template image with the first image across all subject. This
process was repeated for both the study-specific template and
ICA-mfNORM; we then compared the correlation results see
Figure 7. Individual subjects showed greater spatial correlation
to the mean for the study specific template approach as we
optimized the similarity of structure. Then we performed GICA
on data that was normalized to the study-specific template and
compared one-sample t-maps of relevant networks (Superior
Temporal, Middle Temporal, Sensorimotor) to those obtained
using ICA-mfNORM. ICA-mfNORM showed higher activation
(t-value) than the study-specific template for these networks.
This suggests the two-step process alone is not causing the
performance improvements, but rather the introduction of func-
tional information is the main difference. Results are displayed
in Table 3.

Multi-Group Comparison—Functional Network
Correlation
Functional network connectivity (FNC) is a correlation value that
summarize the overall connection between independent brain

Frontiers in Neuroscience | www.frontiersin.org 10 March 2015 | Volume 9 | Article 95

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Çetin et al. Multi-network based normalization in fMRI

maps over time (Jafri et al., 2008; Arbabshirani et al., 2013).
Therefore, the FNC feature gives a picture of the connectivity
pattern over time between independent components. The pro-
vided FNC information was obtained from fMRI from a set of
SPs and HCs at rest, using GICA. The GICA decomposition of
the pre-processed fMRI data resulted in a set of brain maps,
and corresponding timecourses. These timecourses indicated the
activity level of the corresponding brain map at each point in
time. The FNC features were the pair-wise correlations between
these timecourses, for each subject. FNC indicates a subject’s
overall level of “synchronicity” between brain areas. Because this

TABLE 2 | Average correlation of the each subject specific relevant

networks to corresponding mean relevant networks between subjects

with and without ICA-mfNORM.

Anatomical Regions Reg-ICA ICA-mfNORM

Corr (Std) Corr (Std) p-value % gain

Superior temporal 0.532 (0.13) 0.57 (0.12) 0.1677 7.14

Middle temporal 0.53 (0.11) 0.56 (0.11) 0.3331 5.66

Sensorimotor 0.502 (0.1) 0.495 (0.11) 0.5145 −1.3

FIGURE 7 | Correlation comparison of normalization for study-specific

template and ICA-mfNORM. +: outliers for +/− 2.7 σ.

information is derived from fMRI scans, FNCs are considered
a functional modality feature (i.e., they describe patterns of the
brain function).

For the purpose of finding FNC differences between HCs
and SPs groups through the AOD task, we were primarily
interested in analyzing the correlation of temporal lobe com-
ponent with others (Kiehl et al., 2005; Calhoun et al., 2008) as
these are strongly modulated by the cognitive task. The FNC
results for the average of each group and the mean correlation
difference between HCs and SPs was computed for each relevant
network pairs results are shown in Figure 8. To determine, which
correlation pairs were significantly different between HC and SP
two-sample t-tests were performed. The cut off p-value for all
of the tests is set at p < 0.05 and was corrected for multiple
comparisons using the FDR method. In our experiment correla-
tion of superior temporal and middle temporal regions showed
significant differences between the HCs and SPs for the data
obtained with ICA-mfNORM method while there is no signifi-
cant difference for the data obtained from regular-ICA method.
Also, in order to investigate the significant interaction between
regular-ICA and ICA-mfNORM, we used Two-Way ANOVA,
results showed significant differences at p < 0.05 between
these two modalities for superior temporal and middle tem-
poral regions. Other relevant network pairs did not show any
significant differences.

Classification Comparison
Activation topography within the temporal lobe network has
repeatedly been used as a basis of classification in HCs and SPs
showing high accuracy and robust activation patterns (Calhoun
et al., 2004). We validated our method using a cross-validation
strategy based on the two different types of classification algo-
rithms which are linear discriminant classifier and shapelet based
classification. All types of data are obtained by applying ICA
with and without ICA-mfNORM by holding other settings as
described before. The same training and testing sets are used for
all methods (with ICA-mfNORM and without ICA-mfNORM)
for each run.

TABLE 3 | Activation maps comparison for study-specific template and ICA-mfNORM.

Anatomical Regions Study specific template ICA-mfNORM % gain

Coordinates tm Vol (p < 0.01) Coordinates tm Vol (p < 0.01) Local Network ED (mm)

(x,y,z) (x,y,z)

L superior temporal 63 21 9 6.53 1450 60 21 9 6.27 1615 11.38 25.72 3.00

R superior temporal −63 18 9 6.39 964 −63 18 6 5.98 1420 47.30 3.00

L middle temporal 45 15 42 4.41 231 54 24 42 5.40 1282 454.98 98.44 12.73

R middle temporal 0 −15 45 7.30 1051 0 −9 42 6.03 883 −15.98 6.71

Right post-central −66 24 27 6.08 127 −63 18 33 5.06 631 396.85 9.00

L sensorimotor 42 −12 −18 10.66 438 42 −12 −18 8.61 826 88.58 79.30 0.00

R sensorimotor −45 −9 −18 10.70 470 −45 −12 −18 7.99 802 70.64 3.00

The results of the ROI analysis for the group level t-maps.
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Classification with Functional Network Correlation
To examine the effect of ICA-mfNORM to classification, FNC
scores were obtained by applying ICA with and without ICA-
mfNORM by holding other settings as described before. FNC
scores of relevant networks (3 scores for each subject) were used
as features for classification. FNC scores of relevant networks for
14 HC and 14 SP subjects were used for training set. FNC scores
of relevant networks for 14 HC and 13 SP subjects were used for
testing set. The classifier repeated 100 runs and for each run train
and test sets were assigned randomly.

We used a relatively simple classifier, the linear discriminant
classifier (Duda et al., 2001), to evaluate the effect of
ICA-mfNORM by isolating the effect of advanced classification
algorithms. The average accuracy of the classifier for FNC scores
which was obtained by applying ICA without ICA-mfNORM is
56.6% (std: 7.25) and with ICA-mfNORM is 64% (std: 7.3). Paired
t-tests on the accuracy results over 100 iterations demonstrated a
significant improvement in classification (p < 0.005).

Classification with Shapelets
In order to evaluate the effect of ICA-mfNORM pre-processing
for classification, we also used shapelet based classification (Rak-
thanmanon and Keogh, 2013; Cetin et al., 2015) as an alternative
to linear discriminant classifier. This gave us a chance to evalu-
ate the effect with a non-statistical method. Time series shapelets
are small segments of time series that distinguish between classes
based on existence of such segments in the classes. For simplicity
and better understanding of shapelet algorithm, Figure 9 shows

a shapelet example by using heartbeats (ECG) data of a 67 year
old male in two different days shown in blue and red. Details
of shapelet algorithm can be found in Cetin et al. (2015) and
Rakthanmanon and Keogh (2013).

Time series of relevant network components were obtained by
applying regular ICA and ICA-mfNORM. Time series of relevant
network components for each subject are used as a time series
domain for shapelet based classification. Time series of the rel-
evant network components for 14 HC and 14 SP subjects are
used for training data set. Time series of the relevant network
components for rest of the subjects (14 HC and 13 SP) are used

FIGURE 9 | An example of shapelet. Heartbeats of a 67 year old male in

two different days shown in blue and red. Red has a higher peak than the blue

in the frame. The shapelet (S) that distinguishes the classes most (Cetin et al.,

2015).

FIGURE 8 | Functional Network Connectivity with and without ICA-mfNORM for HC, SP, and FDR corrected differences between the groups for

Superior Temporal, Sensorimotor, Middle Temporal. +: outliers for +/− 2.7 σ.
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for testing data set. The shapelet algorithm finds a shapelet by
using training data set and then assigns a label (HC or SP) for
each subject in the testing set by using the shapelet. The entire
process was repeated 100 times for relevant network compo-
nents and the average accuracy of these scores was recorded as
a final classification accuracy scores for each method and each
components.

Finally, to determine the significant accuracy differences of
ICA-mfNORM vs. regular-ICA, paired t-tests were conducted
on the two groups (100 accuracy scores for each group). The
cut-off p-value for all of the tests was set at p < 0.005.
Results showed significant accuracy improvement as follows;
accuracy for superior temporal is 71.96% (std: 5.25) with
ICA-mfNORM and 57.97% (std: 4.45) without ICA-mfNORM,
is 69.33% (std: 8.92) with ICA-mfNORM and 51.54% (std:
3.96) without ICA-mfNORM, middle temporal is 62.7% (std:
8.57) with ICA-mfNORM and 56.37% (std: 4.84) without ICA-
mfNORM. Thus, classification results were considerably better
with ICA-mfNORM compared to regular-ICA.

Discussion

In this study, we present the initial exploratory effort in a
new and upcoming area of research in the fMRI community; a
foundational methodology for forming multi-network FT that
may be used for functional normalization or realignment. This
paradigm shift has been inspired by the availability of large
amounts of data as well as increasing interest in the resting-state
function of the brain and its interaction with task-modulated
networks.

We investigated the correlation of each relevant network com-
ponents to corresponding mean relevant network components
between subjects with and without ICA-mfNORM. Our results
showed that the proposed ICA-mfNORMmethod obtainedmore
correlated components. Also, we compared ICA-mfNORM tem-
plate with study specific template to examine the effect of
greater image smoothness. Our results demonstrated that ICA-
mfNORM showed higher activation (t-value) and extent (cluster
size) than study-specific template for relevant networks.

The results of the single group comparison for the group
level t-maps provided evidence showing how proposed ICA-
mfNORM, using functional information from selected INs
helped improve various aspects of post-analysis results such as
positive gain in volume calculation, t-statistics and detection
sensitivity and possibly help identify differences in region wise
activity that may go unnoticed otherwise such as increased acti-
vation patterns of inferior temporal regions and thalamus. One
of the interesting sites of activation clusters that appear after the
fusion template is applied in the pre-processing stage is near the
thalamus, which happens to be the communication hub of the
brain where many networks converge. A higher activity in this
region in patients may indicate hyperactivity patterns that may
be closely connected with the activity in the temporal lobe region.
Furthermore, thalamic abnormalities in schizophrenia are well-
documented (Goff and Coyle, 2001; Woodward, 2012). Recent
research suggests that these regions play a role related to produc-
tion of auditory verbal hallucinations (Hoffman and Hampson,

2012) along with the putamen, which also showed a significant
static thalamic connectivity effect.

Using the temporal lobe component to find the differences for
HCs and SPs through the AOD task is studied by Kiehl et al.
(2005) and Calhoun et al. (2008) as these are strongly modulated
by the cognitive task. A multi-group comparison with functional
network correlation showed significant differences between cor-
relation of patients and controls within the temporal lobe compo-
nents. The use of functional information relating to resting-state
data in patients seems to play a larger role in uncovering hidden
interactions within important regions of interest for a simple task
as the AOD.

In current study, we also found higher group differences
between the HCs and SPs with ICA-mfNORM method then
without ICA-mfNORM method. Particularly, we found signif-
icant FNC differences involving elements of the superior tem-
poral and middle temporal regions between the HCs and SPs
for the data obtained with ICA-mfNORM method while there
is no significant difference for the data obtained without ICA-
mfNORM method. These group differences provide motivation
for understanding how connectivity patterns differ in response to
these different stimulus conditions. And we test our motivation
with two different classification algorithms. The results showed
that our method improved our ability to classify the groups.
All of this information provides strong support for incorpora-
tion of methods that can improve functional registration among
subjects.

Limitations and Future Work
The application of FT is a relatively new area of research. As per
our knowledge, it has not been proposed or used previously in
fMRI analysis studies. Our method come attached certain limi-
tations as with every new method, especially when the system of
application is as complex as the human brain.

The combination of multiple INs has implications for how one
interprets each of these temporally coherent networks on their
own. That is, subtle effects of each network on the normalization
methodology are difficult to separate and identify. Having said
that, resting state networks are known to have complex interac-
tions across the brain and it is important to carefully choose the
robust and task-relevant networks for template fusion and func-
tional normalization. Another point to note is that since the data
collected during AOD contains task-related variance, it is diffi-
cult to know if the physiologic mechanism behind the patient vs.
control changes is the same for both paradigms (rest and task).
It may be possible that AOD changes are the mixture of the two
effects (rest and task), and are only enhanced when resting-state
networks are used to normalize the group data.

The future directions are 2-fold. Firstly, further validation and
analysis of the proposed morphological wavelet-based method-
ology is required to understand the implications of using such a
pick the best voxel type of approach as compared to using the
model-driven approaches in the literature such as deriving mix-
ture of probability distributions or so on. The analysis or com-
parison of other fusion methodologies is outside the scope of this
study, but shall be an important part of the future work. Sec-
ondly, an exciting future direction is to be generating templates
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adaptively based on a chosen task. A large database of aggregated
resting state networks similar to the one presented by Allen et al.
(2011a) may play a large role in understanding the formulation of
multi-network templates. A database where any researchers may
choose relevant anatomical regions for their study and the sys-
tem or algorithm presents with multiple templates formed using
different combinations of resting state networks that correspond
to function in the regions mentioned by the researcher. This
may well become a crowd-sourced testing methodology for this
method, as it is best to validate the method using large number
of applied studies due to the different types of variability (demo-
graphic, health, task etc.) associated with fMRI data sets collected
and analyzed across the functional brain imaging community. In
this study, we limit the work by co-registeringmulti group of sub-
jects (HC and SP) and by utilizing their relevant networks that are
active during task and rest state (Calhoun et al., 2008; Smith et al.,
2009) to demonstrate the effectiveness and a proof-of-concept in

context to our approach. However, in the future we plan to extend
this to incorporate all the INs being used together. We also used
a two-step process in this initial work, whereas future work will
focus on a joint function/structure co-registration in a single step.

Conclusions

Our results provides evidence that combining multiple INs into
a single functional template, and using this template to incorpo-
rate functional information into the spatial normalization pro-
cess both improve the task activation and our sensitivity to
group differences. Such a result suggests also that functional
boundaries, known to vary considerably across individuals, may
vary in a systematic way in SP vs. HC. Results thus strongly
demonstrate the importance of characterizing the spatial loca-
tion of functional domains within individuals prior to a group
analysis.
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