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Several disorders are related to pathological brain oscillations. In the case of Parkinson’s

disease, sustained low-frequency oscillations (especially in the β-band, 13–30 Hz)

correlate with motor symptoms. It is still under debate whether these oscillations are

the cause of parkinsonian motor symptoms. The development of techniques enabling

selective disruption of these β-oscillations could contribute to the understanding of the

underlying mechanisms, and could be exploited for treatments. A particularly appealing

technique is Deep Brain Stimulation (DBS). With clinical electrical DBS, electrical currents

are delivered at high frequency to a region made of potentially heterogeneous neurons

(the subthalamic nucleus (STN) in the case of Parkinson’s disease). Even more appealing

is DBS with optogenetics, which is until now a preclinical method using both gene

transfer and deep brain light delivery and enabling neuromodulation at the scale of

one given neural network. In this work, we rely on delayed neural fields models of

STN and the external Globus Pallidus (GPe) to develop, theoretically validate and test

in silico a closed-loop stimulation strategy to disrupt these sustained oscillations with

optogenetics. First, we rely on tools from control theory to provide theoretical conditions

under which sustained oscillations can be attenuated by a closed-loop stimulation

proportional to the measured activity of STN. Second, based on this theoretical

framework, we show numerically that the proposed closed-loop stimulation efficiently

attenuates sustained oscillations, even in the case when the photosensitization effectively

affects only 50% of STN neurons. We also show through simulations that oscillations

disruption can be achieved when the same light source is used for the whole STN

population. We finally test the robustness of the proposed strategy to possible acquisition

and processing delays, as well as parameters uncertainty.

Keywords: Parkinson’s disease, optogenetics, β-oscillations, closed-loop deep brain stimulation, delayed neural

fields, control theory, stability analysis
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1. Introduction

Pathological conditions in Parkinson’s disease, Huntington’s
disease or epileptic seizures are often associated with abnormal
oscillations in specific brain areas (Bragin et al., 2010; Devergnas
and Wichmann, 2014). In particular, parkinsonian motor
symptoms result from a dopamine depletion in the striatum
and strong neural synchronization, bursting and sustained
oscillations in low frequencies can be observed (Bergman et al.,
1994; Brown et al., 2001; Jenkinson and Brown, 2011). This
oscillatory activity is especially detectable in global signals such
as local field potentials (LFPs) (Stein and Bar-Gad, 2013). The
precise relation between these sustained oscillations and motor
symptoms is still a matter of debate. Nonetheless, there is
clear evidence that low-frequencies activity in the LFP of the
subthalamic nucleus (STN) is correlated to parkinsonian motor
deficit. More precisely, bradykinesia and rigidity are related to
strong and sustained activity in β-frequencies (13–30 Hz) (Kühn
et al., 2006; Hammond et al., 2007; Little et al., 2012), while
low γ -frequencies (31–45 Hz) correlate with tremor severity
(Beudel et al., 2015). Sustained β-activity is not reported in
healthy conditions (Bar-Gad et al., 2003; Heimer et al., 2006;
Schwab et al., 2013). Among the possible hypotheses for the
mechanisms underlying this pathological synchronization onset,
a possible pacemaker role of the network formed by the excitatory
STN and the inhibitory external globus pallidus (GPe) has
been proposed based on in vitro experiments (Plenz and Kital,
1999). With striatal origins and cortical STN patterning, this
role of the STN-GPe as a pacemaker is one of the main
hypotheses for this pathological oscillations onset (Bevan et al.,
2002; Lang and Zadikoff, 2005). Experiments conducted on
non-human primate models of Parkinson’s disease confirm the
importance of reciprocal STN-GPe connections on oscillatory
activity onset (Nambu and Tachibana, 2014). Although not
formally proven in vivo, this pacemaker effect of the STN-
GPe network is supported by mathematical models, fitted to
neurophysiological data, which effectively reproduce sustained
oscillations in parkinsonian conditions (Terman et al., 2002;
Holgado et al., 2010; Merrison et al., 2013; Pasillas-Lépine, 2013).
In order to test this hypothesis, there is a critical need for
developing theoretical strategies of neuromodulation that could
be implemented experimentally in order to control sustained

oscillations in the STN.
Deep Brain Stimulation (DBS, Benabid et al., 1991) is a

neuromodulation method that consists in chronically implanting

electrodes in specific targeted brain areas and in applying
electrical currents to alleviate neurological symptoms (Lozano
and Lipsman, 2013). In the case of Parkinson’s disease, three
different targets (thalamus, globus pallidus pars internalis and
subthalamic nucleus) have been identified to reduce motor
symptoms such as tremor or/and rigidity, akinesia, the STN being
the most prescribed. Although the electrical DBS’s mechanisms
of action are still a matter of debate, it has been suggested
that DBS of the STN may affect β-synchrony in the targeted
neural population (Eusebio et al., 2011). In most existing DBS
treatments, the electrical signal is delivered in an open-loop
manner, meaning regardless of the patient’s state or brain activity.

As reviewed in Carron et al. (2013), several attempts have
recently been made to optimize DBS by taking into account
some measurements of the patient brain activity. These include
adaptive and on-demand stimulation (Marceglia et al., 2007;
Graupe et al., 2010; Rosin et al., 2011; Santaniello et al.,
2011; Little et al., 2013), delayed and multi-site stimulation
(Omel chenko et al., 2008; Batista et al., 2010; Pfister and
Tass, 2010; Lysyansky et al., 2011; Tass et al., 2012), optimal
control strategies (Feng et al., 2007), and closed-loop firing rate
regulation (Wagenaar et al., 2005; Luo et al., 2009; Franci et al.,
2011; Pasillas-Lépine et al., 2013). Another strategy, not included
in that review, is Schiff (2010), which advocates for the use of
Kalman filtering to enhance DBS strategies. The review Carron
et al. (2013) underlines a clear gap between model-based closed-
loop DBS strategies, whose efficiency is most of the time assessed
in silico, and the DBS signals actually tested in vivo.

Optogenetics is a promising tool to unravel pathological
oscillations onset mechanisms and to explore closed-loop
strategies to optimize DBS treatment. Using a viral vector,
genes coding for neuronal membrane ionic channels, sensitive
to precise wavelengths, are selectively transferred to precisely
targeted neurons, which become photosensitive. Thus, simple
pulses of intense light, e.g., through implanted optical fibers,
can induce the response of the photosensitized neurons
(Boyden et al., 2005; Pastrana, 2010). By contrast with
electrostimulation, optical neuromodulation does not induce
any stimulation artifacts on electrical recordings. It also allows
sharpest targeting of specific neuronal subpopulations. In
addition, the development of bi-color optogenetics stimulation
and bi-switchable opsins such as Halo-ChR2 (Han and
Boyden, 2007), now allows for simultaneous excitation and
inhibition of the neural population in a controlled way,
whereas electrical DBS may perform both excitation and
inhibition on different compartments of the same neurons or
on different neurons depending on their orientations relative
to the electrical field (Ranck, 1975; McIntyre et al., 2004).
Thus, combined with electrode measurements, optogenetics
may offer unprecedented possibilities to achieve closed-loop
stimulation of neural structures, in particular for counteracting
pathological oscillations in animal models (Chaillet et al., 2014).
First experimental attempts include those described by Paz et al.
(2012), where closed-loop optical stimulation was used on rats in
order to interrupt seizures after cortical injury.

A particular way to avoid the generation of sustained
oscillations in a parkinsonian STN-GPe network is to artificially
reduce the gain of the STN-GPe loop. This strategy has been
developed in Pasillas-Lépine et al. (2013)1 using tools from linear
control theory. That theoretical paper demonstrates that, by
delivering a photostimulation whose frequency is proportional
to the measured unitary activity, sustained oscillations are
impeded in the parkinsonian basal ganglia model proposed in
Holgado et al. (2010). It further proposes a filtering strategy to
cope with inherent acquisition and processing delays. In view
of its simplicity and ease of technological implantation, this

1Journal extended version submitted to Biological Cybernetics under the title “A

firing-rate regulation strategy for closed-loop deep brain stimulation.”
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closed-loop DBS strategy is very appealing. Nonetheless, this
encouraging result still suffers from important limitations. The
main one stands in the employed model, which summarizes the
activity of each neural population by a single averaged variable
and thus fails at taking into account spatial heterogeneity within
STN and GPe. The first aim of this theoretical paper is to propose
a model of the parkinsonian STN-GPe network, able to take into
account both temporal and spatial evolutions of the activity.

Another limitation of the study conducted in Pasillas-Lépine
et al. (2013) is that it relies on a linearized model, and thus
neglects the inherent nonlinear effects arising from the neurons
f-I curves and the saturation of the stimulation signal. The works
Faye and Faugeras (2010); Veltz and Faugeras (2011) provide
a relevant mathematical framework to study the proposed
spatiotemporal model analytically, despite the combined effects
of delays and nonlinearities. The second objective of this paper is
to propose a closed-loop stimulation strategy enabling disruption
of sustained oscillations in this spatiotemporal model of the STN-
GPe network, and to prove its efficiency both mathematically and
numerically. This stimulation signal is designed to be realistically
implementable in order to test the role of sustained oscillations
in parkinsonian symptoms in future experiments.

The third objective of this paper is to validate both
the model and the associated closed-loop stimulation signal
based on in silico experiments that take into account specific
experimental constraints that would occur in an in vivo testing.
These constraints include parameter uncertainties, imperfect
photosensitization or insufficient illumination of STN neurons,
use of a single light source for the whole STN population, and
unavoidable acquisition and processing delays.

2. Materials and Methods

2.1. Neural Fields Model of the STN-GPe Network
In parkinsonian conditions, pathological oscillations are
commonly observed in the dorsolateral region of the STN (Zaidel
et al., 2010). We focus on this specific area and on the GPe
neurons that either project or receive projections from that
region. From now on, we will simply refer to these regions as
STN and GPe for simplicity. A finer study of the pathological
oscillations onset in the parkinsonian STN-GPe network requires
to include the evolution of their activity in both time and space.
To this aim, we model the STN and GPe populations as delayed
neural fields (Coombes, 2005; Bressloff, 2012). Indicating the
STN and GPe populations with indexes 1 and 2 respectively, the
STN-GPe network is thus modeled as coupled delayed neural
fields:

τ1
∂z1

∂t
(r, t) = −z1(r, t)

+ S1





2
∑

j= 1

∫

�

w1j (r, r
′)zj(r
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 . (1b)

z1(r, t) and z2(r, t) represent the neuronal activity of the neurons
at position r and at time t for STN and GPe respectively. �

denotes a compact set of R
p, p ∈ {1, 2, 3}, representing the

physical support of the network neuronal populations. τ1 and τ2
are the time constant STN and GPe activities. wij(r, r

′) describes
the synaptic strength between location r′ in population j and
location r in population i. d1(r, r

′) and d2(r, r
′) represent the

axonal time delays between a pre-synaptic neuron at position
r′ and a post-synaptic neuron at position r. S1 and S2 are the
activation functions of STN and GPe respectively. Iext1 (r, t) and
Iext2 (r, t) account for the external inputs of STN and GPe. In
this work, we consider that the STN neurons expresses the gene
that codes for photoactivatable proteins and receive sufficient
illumination from the stimulation device. In other words, the
STN activity can be modulated with light stimulation. Iext1 (r, t)
thus decomposes into a stimulation signal u(r, t) that we can
regulate and the inputs I1(r, t) from other cerebral structures,
especially cortical inputs. The GPe is not directly affected by the
stimulation and hence sums up to inputs I2(r, t) from other brain
areas, specifically from the striatum. The overall setup is depicted
by Figure 1.

2.2. Closed-loop Stimulation Signal
As will be seen in Section 3, the STN-GPe model (Equation 1)
may exhibit sustained oscillations even when the exogenous
inputs Iext1 and Iext2 are constant in time. These oscillations
result from the combined effects of transmission delays and too
strong synaptic weights between STN and GPe. As originally

FIGURE 1 | STN-GPe network. This figure illustrates the physical

arrangement of STN and GPe. We assume that the zones involved in

pathological oscillations in STN and GPe measure 2.5mm each (Zaidel et al.,

2010); they are indicated in black clouds. The light-green box illustrates a

controller that reads data from STN and applies a photostimulation to the

same neural population. Elements of this figure have been found in Wikipedia

and they are licensed according to CC (http://creativecommons.org/licenses/

by-sa/3.0).
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proposed in Holgado et al. (2010), these increased synaptic gains
in pathological conditions may result from dopamine depletion.
In order to attenuate these pathological oscillations, we rely on
a proportional stimulation law, in the spirit of Pasillas-Lépine
et al. (2013). Proportional control constitutes the basics of control
theory; it consists in applying an input which is proportional
to the difference between the measured state and a targeted
reference:

u(r, t) = −kc
(

z1(r, t)− zref (r)
)

, (2)

where kc is a positive control gain that can be adjusted at will,
and zref (r) represents a prescribed rate for the STN population.
The stimulation signal is thus assumed to act as an external rate
on the STN. It may act as an either inhibitory or excitatory
input, depending on the sign of u(r, t). This is in agreement
with the recent development of bi-color optogenetics stimulation
and bi-switchable opsins such as Halo-ChR2 (Han and Boyden,
2007), which enables both excitation and inhibition of the same
neuronal population.

The rationale behind this proportional closed-loop
stimulation is rather intuitive: when the measured STN activity
z1(r, t) overpasses the prescribed rate zref (r), the stimulation
tends to decrease the STN activity, translating in a negative
sign of the stimulation signal u(r, t). On the contrary, when the
measured STN activity is too low compared to the target rate, the
stimulation excites the STN (u(r, t) comes with a positive sign).
In both cases, the amplitude of the delivered stimulation signal
is proportional to the difference between the STN measured
activity and the prescribed one. Note that the implementation
of this closed-loop stimulation signal requires the real-time
measurement of the STN activity. No measurements on the GPe
or other brain areas are needed.

Plugging the closed-loop stimulation signal (Equation 2) into
the spatiotemporal model (Equation 1) leads to the following
dynamics:

τ1
∂z1

∂t
= −z1 + S1





2
∑

j= 1

∫

�

wij(r, r
′)zj(r

′, t − dj(r, r
′))dr′

+ I1(r, t)− kcα(r)
(

z1(r, t)− zref (r)
)



 (3a)

τ2
∂z2

∂t
= −z2 + S2





2
∑

j= 1

∫

�

wij(r, r
′)zj(r

′, t − dj(r, r
′))dr′

+ I2(r, t)



 . (3b)

α(r) ≥ 0 is a position-dependent gain accounting for the
strength of the stimulation influence at position r. It typically
decreases as a function of the distance to the stimulation device,
due to light absorption in brain tissues (Deng et al., 2014). Its
value may also be affected by the quality of photosensitization
of the targeted neurons. In the case when photosensitization is

not effective or light stimulation is not received, it holds that
α(r) = 0.

2.3. Tools to Assess Performance and
Robustness
In order to numerically investigate the effects of the proposed
closed-loop DBS method described above, we propose five
in silico experimental protocols.

• Protocol A tests the ability of the proposed spatiotemporal
model to generate sustained oscillations in the β band. This
test is conducted both on a nominal set of parameters deduced
from data available in the literature (see Section 2.4) and on
variations around these nominal values.

• Protocol B assesses the efficiency of the proposed closed-loop
stimulation signal to disrupt these sustained oscillations.

• Protocol C studies the performance of the closed-loop
stimulation signals in case of poor STN photosensitization.

• Protocol D tests the implementability of the closed-loop
stimulation policy when a single light source is available for
the whole STN population.

• Protocol E investigates how acquisition and processing delays
may affect the performance of the closed-loop stimulation
signal.

2.4. Parameters Selection
For simplicity and clarity of exposition, we consider only 1-
dimensional spatial distributions: � is picked as the interval
[0, 15]mm, as the STN and GPe are both contained in zone
of length 15mm in adult human brain. The STN activity lies
in the subregion �1 = [0, 2.5]mm, while the GPe stands
in the subregion �2 = [12.5, 15] mm. All these values are
in accordance with adult human brain physiology (Mai et al.,
1997).

An advanced identification of parkinsonian activity of STN
and GPe rate dynamics has been performed in Holgado et al.
(2010) based on experimental data available in the literature.
We partly rely on that work to identify some parameters of the
model. More precisely, in that reference, the time constants τ1
and τ2 were taken as themembrane time constants of the neurons
involved and can be taken as 6ms and 14ms according to e.g., Paz
et al. (2005) and Kita and Kitai (1991) respectively. The activation
functions S1 and S2 were fitted to experimental data available in
Kita andKitai (1991) andDeister et al. (2009) among others. They
were taken as sigmoidal functions:

Si(x) =
mibi

bi + (mi − bi)e−4x/mi
,

where m1 = 300 spk/s, b1 = 17 spk/s, m2 = 400 spk/s and
b2 = 75 spk/s. It can easily be checked that the maximum slopes
of these functions are ℓ1 = ℓ2 = 1.

The remaining parameters cannot be readily taken
from Holgado et al. (2010) as they are space-dependent,
while Holgado et al. (2010) relied on an averaged model. The
axonal delays di(r, r

′) are derived based on the physical distance
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between r and r′ and the velocity ci of spike propagation along
the axons under concern:

dj(r, r
′) =

|r − r′|

cj
.

We picked c1 = 2.5 m/s and c2 = 1.4 m/s, in accordance
with Kita et al. (1983). The inputs I1(r, t) and I2(r, t) encompass
activities from other brain areas, mainly from cortex for STN and
from striatum for GPe. Although they were assumed constant in
time in our theoretical analysis (see Section 3.1), we have taken
them as white noises with variance 0.05 centered at 27 spk/s
for cortex and 2 spk/s for striatum (the values have been taken
from Holgado et al., 2010). Also in line with Holgado et al.
(2010), these input rates were multiplied by uniform synaptic
weights of 12.5 (cortical input to STN) and 110 (striatal input
to GPe). The addition of a noise to these constant inputs
makes the cortical and striatal influences more physiologically
plausible and in turn allows to test the robustness of the proposed
closed-loop stimulation strategy. The striatal influence on GPe
being mostly inhibitory (Kita, 2007), I2(r, t) was taken with a
minus sign.

The kernel w11 accounting for synaptic coupling within STN
was taken as zero since there is no evidence of self-excitatory STN
connections (Marani et al., 2008). The other kernels, modeling
synaptic weights between the populations (w12 andw21) or within
the GPe (w22), were taken as Gaussian functions as represented
by Figure 2 (left panel). Synaptic strengthsw12 andw21 follow the
principle of short-range excitation/inhibition. This implies that if
a neuron of STN project to a neuron of GPe, the former excites
the neighbor neurons in GPe as well. More precisely,w12 andw21

were taken as2

w12(r, r
′) = −g12(|r − r′ − µ2|), ∀r ∈ �1, r

′ ∈ �2

w21(r, r
′) = g21(|r − r′ − µ1|), ∀r ∈ �2, r

′ ∈ �1

w22(r, r
′) = −|r − r′|g22(|r − r′|), ∀r, r′ ∈ �2,

where µ1 = 1.25mm and µ2 = 13.25mm indicate the centers
of STN and GPe respectively, and the Gaussian functions gij are
defined as

gij(x): = Kij exp

(

−
x2

2σij

)

.

The variance σ12 and σ21 were taken identical (0.03mm2) based
on the numerical and computational studies (Terman et al., 2002;
Park et al., 2011), which indicate that STN and GPe neurons
are connected to a small portion of GPe and STN neurons
respectively. The variance σ22 within GPe is taken smaller (σ22 =
0.015) as GPe lateral projections are more local (François et al.,
1984). The amplitudes Kij of the synaptic weights distribution
were picked in order for the mean activity to fit the simulations
presented in Holgado et al. (2010): K12 = 30, K21 = 38, and
K22 = 2.55. Note that the amplitude of w22 is much lower than
the other two, as the number of lateral connections within GPe

2All these functions are taken as zero outside their domain.

is small (Sadek et al., 2005). w12 and w22 were taken negative as
the projections from GPe neurons are mostly GABAergic (Sato
et al., 2000a); on the other hand w21 was picked positive, as STN
projections are mostly glutamatergic (Sato et al., 2000b). Note
that, although this has little influence on the simulations result,
w22 is not a pure Gaussian function: it is zero when r = r′.
This was done in order to provide little synaptic coupling with
GPe neurons in the immediate vicinity as little correlations have
been observed between neighboring neurons in the GPe (Bar-
Gad et al., 2003). This parameters choice lead to a L2-norm of
lateral GPe connections ℓ2‖w22‖ = 1 × 0.95 < 1, thus fulfilling
the requirement (Equation 4) of our theoretical result. This rather
small value can be interpreted as the absence of endogenous
oscillations within GPe (see Section 3.1 for details). In line with
e.g., Plenz and Kital (1999); Nambu and Tachibana (2014), the
observed pathological oscillations do not find their roots within
GPe, but result from interactions between neuronal populations.

Finally, the function α(r) accounting for the impact of light
stimulation was taken as a Gaussian function (zero outside �1)
of amplitude 1, centered at the middle of the STN population
(1.25mm), and variance 1.25mm2: see right panel of Figure 2.
This choice corresponds to a photo-sensitization of all STN
neurons and takes into account light absorption in the medium
(as the central STN neurons are more impacted by stimulation
than neurons in the periphery).

The parameters used in each in silico protocols are
summarized in Table 1.

2.5. Simulation Details
In order to simulate the delayed neural fields described by
Equation (3), we normalized the spatial domain to �sim = [0, 1].
All synaptic strengths and delays are computed according to this
normalized interval. We discretized �sim using m spatial nodes
representing unitary subregions of the populations: m/6 for the
STN, m/6 for the GPe and the rest for silent neurons modeling
the physical distance between STN and GPe. The temporal
integration of the system has been done by the Forward Euler
method. All the simulation parameters are gathered in Table 2.

We run all the simulations on a Dell Desktop Machine
equipped with an Intel i5 processor and 8 GB memory.
The average running time of a simulation was 0.7 s. All the
simulations are written in Python (Numpy, Scipy, Matplotlib).
The source code is freely distributed under the GPL License and
can be found on-line at Github3.

3. Results

3.1. Provable Disruption of Pathological
Oscillations
Our main theoretical result states that the delayed neural fields
(Equation 3) can always be stabilized by the proportional closed-
loop stimulation (Equation 2), provided that the GPe does not
exhibit endogenous sustained oscillations. More precisely, we
have the following result, whose proof is provided in Appendix.

3https://github.com/gdetor/neuralfieldDBSmodel.
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FIGURE 2 | Synaptic weights distributions and photosensitization

distribution. On the left side panel, the distributions wij of the

synaptic strengths are represented. The gray dashed lines indicate

the space between STN and GPe (10mm in an adult human

brain, Mai et al., 1997). Right panel shows a realization of

function α(r), the black curve indicates a STN photosensitization of

100%, the red line corresponds to a random photosensitization

of 50%.

TABLE 1 | Model parameters in each protocol.

Protocol K12 σ12 K21 σ21 K22 σ22 τ1 τ2 c1 c2 kc

(A) 30± 35% 0.03 38± 35% 0.03 2.55± 35% 0.015 6 14 2.5± 35% 1.4± 35% 0

(B),(C),(E) 30 0.03 38 0.03 2.55 0.015 6 14 2.5 1.4 2

(D) 30 0.03 38 0.03 2.55 0.015 6 14 2.5 1.4 6.5

Kij and σij are the amplitude and variance of the synaptic weights wij , τ1, and τ2 are the time constants of STN and GPe respectively (ms), c1 and c2 are the axonal propagation velocities

from STN and GPe respectively (mm/ms). kc is the gain of proportional closed-loop stimulation. Protocol A: Sensitivity analysis, Protocol B: Disruption of pathological oscillations,

Protocol C: Poor STN photosensitization, Protocol D: Single light source, Protocol E: Effect of acquisition and processing delays.

Consider any admissible target pattern zref (r). Let the
activation functions S1 and S2 be bounded, increasing, and
with maximum slope ℓ1 and ℓ2 respectively. Assume that
the lateral synaptic weights in the GPe satisfy

√

∫

�

∫

�

w22(r, r′)2dr′dr <
1

ℓ2
, (4)

and that the photosensitization is efficient over all STN,
meaning that α(r) > 0 for all r ∈ �. Assume
further that the inputs I1(r, t) and I2(r, t) from other brain
areas are constant in time. Then, for any feedback gain
kc sufficiently large, the neural fields under closed-loop
stimulation (Equation 2) is stable and, from almost all
admissible initial conditions4, the STN and GPe activities
exponentially converge to constant patterns.

Condition (Equation 4) requires a sufficiently small L2-norm
for the lateral synaptic weights w22 of the GPe. It has a physical
interpretation: it imposes that the internal dynamics of the GPe
should not exhibit instability (see e.g., Faye and Faugeras, 2010).
Thus, proportional closed-loop stimulation can compensate for
oscillations generated either within the STN (large w11) or due to

4We call admissible any initial condition that lies within the ranges of S1 and S2.

TABLE 2 | Simulation parameters.

Protocol tf dt m �sim c1 c2 T

(A) 1000 1.0 60 [0,1] 0.166± 35% 0.09± 35% 0

(B),(C),(D) 1000 1.0 60 [0,1] 0.166 0.09 0

(E) 1000 1.0 60 [0,1] 0.166 0.09 0-20

tf is the total simulation time (ms), dt is Euler’s method time step (ms), m is the

number of spatial discretization units, �sim is the normalized spatial interval (physical

interval: � = [0, 15]mm), c1 and c2 are the normalized axonal propagation velocities

of action potentials from STN and GPe respectively (mm/ms), T is the acquisition

and processing delays for the real-time estimation of STN activity (ms). Protocol A:

Sensitivity analysis, Protocol B: Disruption of pathological oscillations, Protocol C: Poor

STN photosensitization, Protocol D: Single light source, Protocol E: Effect of acquisition

and processing delays.

too strong interactions between the STN and GPe (large w12 or
w21), but might be insufficient to tackle endogenous oscillations
within the GPe (large w22).

3.2. Protocol A: Sensitivity Analysis
We start by assessing the capability of the proposed model
(Equation 3) to robustly produce sustained oscillations with the
parameters choice described in Section 2.4. Tight parameters
identification is usually incompatible with experimental
constraints: the robustness of the model is therefore a crucial
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necessity. To this aim, we systematically modified the amplitude
of the synaptic weights distribution (K12, K21, and K22) and
the axonal transmission velocities (c1 and c2) in ranges of
plus or minus 35% their nominal values. Ten values in this
range were tested for each parameter, thus corresponding to
a total of 105 simulations. No stimulation was applied in this
protocol (kc = 0). For each simulation, we estimated the main
harmonic of the STN and GPe activity, as the maximum peak
of the Fourier transform of the signals after transients. The
result is summarized by a histogram that illustrates the different
oscillations frequencies that can be generated by the model: see
Figure 3.

This histogram suggests reasonable robustness to parameter
uncertainty as, in all simulations, the main oscillations harmonic
either lied within 13–25 Hz or was zero. In other words, in these
parameters ranges, oscillations either take place in the β-band or
do not take place at all.

In order to assess more tightly the role of each parameters
in the sustained oscillations onset, we estimated their frequency
by varying only two parameters in a wider range, while leaving
all other parameters to their nominal values. It appeared that
the amplitude K22 of lateral GPe synaptic weights may result
in sustained oscillations or constant activity, but has little effect
on the oscillations frequencies (curves not reported). On the
contrary, the synaptic weights between STN and GPe (K12 and
K22) and the axonal velocities (c1 and c2) do play a crucial role
in the frequency of sustained oscillations. Figure 4 shows the
frequencies as a function of K12 and K21 (left panel) and as a
function of c1 and c2 (right panel).

It can be observed that each of the considered parameters can
be significantly modified without compromising the β nature
of sustained oscillations. Nonetheless, too low synaptic weights
or two high axonal velocities (meaning lower transmission
delays between STN and GPe) may compromise the very
oscillations onset. This is in agreement with the analyses

FIGURE 3 | Effects of parameters uncertainty on the frequency of

sustained oscillations. This histogram illustrates the occurrences of different

oscillations frequencies when the parameters K12, K21, K22, c1, and c2 evolve

in a range of ±35% their nominal values (see Tables 1, 2). In all 105

simulations, when oscillations take place, they lie within the β-band.

conducted on an averaged rate model in Holgado et al.
(2010) and Pasillas-Lépine (2013), which clearly showed that
sustained oscillations results from the combined effects of two
factors: too strong synaptic coupling between STN and GPe
resulting from dopamine depletion and axonal propagation
delays. This is also in agreement with the basics of control theory,
which predicts that instability is favored by high coupling and
delays.

3.3. Protocol B: Sustained Oscillations Disruption
As seen in the above section, the nominal parameters lead to
sustained β-oscillations (approximately 19 Hz) in both STN and
GPe. In order to counteract these pathological oscillations, we
apply the proposed closed-loop stimulation (Equation 2) from
time t = 0.5 s. The results are presented in Figure 5, which
clearly shows oscillations disruption. Once stimulation is ON,
the remaining oscillations mostly result from the cortical and the
striatal stochastic inputs (I1(r, t) and I2(r, t)).

3.4. Protocol C: Poor STN Photosensitization
Depending on the efficacy of transgenesis linked to the viral
vector itself, its envelope, its promoter, and to the targeted
neurons, it may happen that photosensitization does not affect
all STN neurons. It is important to check whether the closed-
loop stimulation signal still succeeds in disrupting pathological
oscillations. To that end, we randomly put to zero 50% of
the values of α(r), corresponding to a photosensitization of
only half of the STN population (see Figure 2, right panel),
while keeping the same value of the feedback gain (kc =

2). The results are presented in Figure 6. They indicate
that the proposed closed-loop stimulation signal is robust to
poor photosensitization, as the oscillations are still reduced
although less efficiently than when all STN cells are successfully
photosensitized.

In order to further investigate the link between the level
of photosensitization of STN neurons and the efficacy of the
proposed closed-loop stimulation strategy, we plot the maximum
amplitude of observed β-oscillations as a function of the α(r)
degeneracy (meaning the percentage of STN cells that do not
respond to light stimulation). The results are presented in
Figure 7, for various values of the percentage of STN neurons
that do not respond to light stimulation (0, 25, 50, 75, and 100%)
and of the stimulation gain kc (2, 6, and 12).

Not surprisingly, the efficacy of the stimulation diminishes
as α(r) degeneracy increases. While a degeneracy of 50% has
an impact on oscillations disruption for kc = 2 (amplitudes
of approximatively 30 sp/s), it can efficiently be tackled by
using a larger kc (kc = 6 leads to low-amplitude remaining
oscillations).

3.5. Protocol D: Single Light Source
The size of the STN impedes the use of several light sources.
Although holographic techniques could be envisioned (see
Section 4 for a discussion about this), it is crucial to test the
validity of the proposed closed-loop stimulation signal when
only one light source is available for the whole STN population.
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FIGURE 4 | Effects of synaptic strengths and axonal velocities on

the frequency of oscillations. Left panel: main harmonic frequency of

STN and GPe oscillations as a function of the synaptic distributions

amplitudes K12 and K21 between STN and GPe (left panel) and as a

function of the axonal propagation delays c1 and c2 (right panel).The

red contour indicates β-band frequencies. The nominal values of the

parameters are indicated with a black cross, together with the

corresponding oscillations frequency.

FIGURE 5 | Oscillations disruption. The left panel illustrates the disruption

of pathological β-oscillations by applying the closed-loop stimulation signal

with gain kc = 2 and target reference zref (r) = 0 from time t = 0.5 s. Red and

black curves indicate the time evolution of the GPe and STN mean activities,

respectively. Right panel shows the evolution of the control signal

u(r, t) = −kc(z1 (r, t)− zref (r)).

To this end, we applied the following closed-loop stimulation
signal:

u(r, t) = u(t) = −kc

∫

�1

(

z1(r, t)− zref (r)
)

dr. (5)

This closed-loop stimulation signal can be seen as a spatial
average of the original one proposed in Equation (2) over
the whole STN population. Like Equation (2), this averaged
stimulation signal relies on measurement of STN activity only.
Nonetheless, it owns the advantage of being no longer dependent
on position: it is taken proportional to the mean STN activity,
and is the same for all STN neurons (modulo the function α(r)).
In this case, a larger feedback gain is required to efficiently disrupt
oscillations (kc = 6.5). The results are presented in Figure 8,
and show that proper β-oscillations disruption is achieved. We
did not succeed in showing this analytically yet. Surprisingly

enough, the required amplitude of stimulation is smaller when
a single light source is used (compare the right panels of
Figures 5, 8).

3.6. Protocol E: Effect of Acquisition and
Processing Delays
The experimental implementation of the proposed closed-loop
stimulation signal in an animal model of Parkinson’s disease
would require a real-time estimation of the activity in the STN
based on themeasurements provided by the recording electrodes.
This signal acquisition and its processing require some time,
which is likely to induce a significant delay in the applied
stimulation signal. In order to test the robustness of the proposed
strategy to acquisition and processing delays, we consider the
following closed-loop stimulation signal:

u(r, t) = −kc
(

z1(r, t − T)− zref (r)
)

, (6)
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FIGURE 6 | Poor STN photosensitization. 50% of the function

α(r) was randomly silenced. Closed-loop stimulation is applied

from time t = 0.5 s with gain kc = 2 and target reference

zref (r) = 0. Left: red and black curves illustrate time evolution of

the mean activities of GPe and STN, respectively. It is apparent

that the attenuation is not as successful as in Figure 5, but

oscillations are still attenuated. Right: spatiotemporal evolution of

the activity in STN (left) and GPe (right).

FIGURE 7 | Sustained oscillations amplitude vs. photosensitization

degeneracy. We measure the efficiency of the proposed closed-loop

stimulation through the amplitude of the remaining oscillations. We consider an

increasing degeneracy of α(r), corresponding to an increasing number of STN

neurons that do not respond to photostimulation. The three curves correspond

to different values of the feedback gain kc (2, 6, and 12). The darkest curve

corresponds to the highest value and the lighter one to the lowest value. The

red dashed line indicates the oscillations maximum amplitude when no

stimulation is applied.

whereT indicates the time needed to acquire and process the STN
activity. The results are presented in Figure 9 for a feedback gain
kc = 2.

When T is too large (T ≥ 10ms), β-oscillations are no longer
disrupted (Figure 9, left panel) and can even be amplified by the
stimulation, as already observed in Pasillas-Lépine et al. (2013)
in an averaged rate model. Nevertheless, if T is reasonably small,
oscillations disruption remains satisfactorily achieved (Figure 9,
right panel, T = 5ms). This indicates that strong attention
should be paid on the code optimization for data processing
in view of experimental implementation. Filtering strategies,
such as the one presented in Pasillas-Lépine et al. (2013) and
a careful choice of the target reference zref (r) could probably
increase robustness to acquisition and processing delays (not
implemented here).

In order to assess more finely the impact of acquisition and
processing delays T and their link with the feedback gain kc,
we tested 10 different delays (1, 3, 5, 7, 8, 9, 10, 13, 15, and 20
ms). For each delay, we measured the oscillations amplitude after
transients for different values of kc (2, 6, and 12), as we did for
protocol D. The results are reported in Figure 10.

For small gains (kc = 2), the model is quite robust
to acquisition and processing delays: only delays above 9ms
significantly degrade the performance of the stimulation. This
robustness to delays decreases as the feedback gain increases.
Depending on the delay value, it may happen that stimulation is
even counter-productive, in the sense that sustained oscillations
get enhanced rather than disrupted.

4. Discussion

In this theoretical work, we have proposed a model of the STN-
GPe network able to take into account both temporal and spatial
evolutions of electrophysiological activity, and a closed-loop
stimulation strategy to suppress sustained oscillations related to
Parkinson’s disease and test their causality in future experiments
with animal models.

Frontiers in Neuroscience | www.frontiersin.org 9 July 2015 | Volume 9 | Article 237

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Detorakis et al. Closed-loop stimulation of an STN-GPe model

FIGURE 8 | Single light source. The same stimulation signal (Equation

5) is provided to all STN neurons (modulo the function α(r)), with

feedback gain kc = 6.5 and target reference zref (r) = 0. Stimulation is

ON at time t = 0.5 s. Left: time evolution of the mean activities of GPe

(red) and STN (black). Right: time evolution of the closed-loop

stimulation signal (Equation 5) (no longer position-dependent). This figure

validates the possibility to apply proportional closed-loop stimulation by

using a single light source.

FIGURE 9 | Effect of acquisition and processing delays. Time evolution

of the mean activities of STN (black) and GPe (red) when the delayed

closed-loop stimulation (Equation 6) is applied at time t = 0.5 s. Left:

oscillations disruption is lost for too large delays (T = 10ms). Right:

β-oscillations disruption is still efficiently achieved for an acquisition and

processing delay T = 5ms.

Our model is based on delayed neural fields to account
for spatiotemporal dynamics. The need to consider spatial
heterogeneity in STN and GPe arises from the facts that: (i) the
efficiency of DBS requires a fine positioning of the stimulation
electrodes (a millimetric scale precision is required, Anheim
et al., 2008; Luján et al., 2009), thus indicating a strong position-
dependency of the populations sensitivity; (ii) connectivity
organization between neurons among a population or between
populations cannot be taken into account in averaged models,
although some studies underline its crucial role in oscillations
onset (Schwab et al., 2013); (iii) the complex functioning of
the structures involved, assimilated in Montgomery (2007) to a
hierarchical interconnection of multiple nested, loosely coupled

oscillators, requires spatially distributed models; (iv) the use of
multi-plot electrodes with the most recent technologies permits
a spatial resolution below 50µ m, which cannot be exploited
in averaged models; and (v) human recordings indicate a
possible role of spatial correlation of STN synchronization in the
parkinsonian motor symptoms (Cagnan et al., 2015).

We chose to model this spatiotemporal dynamics of the STN-
GPe network by neural fields (Coombes, 2005; Bressloff, 2012).
Neural fields were originally introduced by Amari (1977) to
model cortical layers. They have been extensively used in the
study of many different cortical phenomena such as propagating
waves (Cremers and Herz, 2002; Bressloff and Webber, 2012;
Meijer and Coombes, 2014), synaptic depression (Bressloff and
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FIGURE 10 | Oscillations amplitude vs. acquisition and processing

delays. We measure the efficiency of the closed-loop stimulation (Equation 6),

which includes processing and acquisition delays T, through the amplitude of

the remaining oscillations after transients. We consider increasing values of T

(1,3, 5,7,8,9,10,13,15, and 20ms). The three curves correspond to different

values of the feedback gain kc (2,6, and 12). The darkest line corresponds to

the highest value and the lighter to the lowest value. The red dashed line

indicates the oscillations maximum amplitude when no stimulation is applied.

Kilpatrick, 2011), and neural oscillations (Hutt et al., 2008). As
proposed in Holgado et al. (2010) and confirmed in this work,
transmission delays between STN and GPe are likely to play a key
role in pathological oscillations onset and are thus included in the
model. Neural fields affected by axonal propagation and synaptic
delays have been studied in Faye and Faugeras (2010); Veltz and
Faugeras (2011), which provide the mathematical framework this
study relies on. They have been used in (Modolo et al., 2010) for
closed-loop stimulation, using a term-cancellation that requires
precise knowledge of the dynamics involved, including synaptic
weights distributions.

The proposed spatiotemporal STN-GPe model reproduces
sustained β-oscillations in a robust way, meaning even for
relatively large uncertainty on parameters. We have proposed a
closed-loop stimulation policy that provably disrupts sustained
oscillations in this spatiotemporal model of the STN-GPe
network. Inspired by Pasillas-Lépine et al. (2013), this closed-
loop stimulation signal is taken proportional to the STN activity.
Assuming that STN neurons have successfully undergone
photosensitization, we have formally shown that, provided
that no endogenous oscillations take place within the GPe,
stabilization of the whole network can always be achieved by this
closed-loop stimulation if the feedback gain is taken sufficiently
large. This result shows that any oscillations generated within the
STN or resulting from a pacemaker effect between STN and GPe
populations can be tackled in this model. It is worth stressing
that the assumptions of this theoretical result do not rely on the

precise knowledge of the parameters and functions involved in
the model. No precise information on the activation functions
are required: an estimate of their maximum slopes is enough.
Similarly, the synaptic weight distributions do not need to be
known precisely: all we need to know is whether the intensity of
the lateral GPe connections is strong or weak. Also, no knowledge
is required on the time constants or on the delays. Finally, no
precise tuning of the feedback gain is required: it is enough to
pick it sufficiently large. These features make our closed-loop
stimulation signal intrinsically robust to parameter uncertainties
and promising from an experimental testing perspective. The
requirement that lateral synaptic gains of the GPe be low enough
is in agreement with the experimental findings of Bar-Gad et al.
(2003), where functional correlations between GPe neurons have
been reported as either weak or non-existent.

The spatial nature of themodel allows to conductmore precise
in silico experiments exploiting the geometry of STN andGPe and
the synaptic distributions of neurons within and between these
structures. Our numerical experiments revealed that the model
is robust to poor STN photosensitization and that, in case of low
photosensitization, a larger feedback gain can be used in order to
successfully preserve oscillations disruption.

From an experimental testing in animal models of Parkinson’s
disease perspective, we stress that the use of optogenetics
neuromodulation is crucial since it enables simultaneous
neuro-excitation, neuro-inhibition and neural recordings, with
biotechnological tools already validated experimentally (Han
and Boyden, 2007). Moreover, these numerical findings point
toward a necessary trade-off between robustness to poor
photosensitization, which is favored by the use of large feedback
gains, and robustness to acquisition and processing delays, which
is better with small feedback gains. Simulations revealed that the
proposed strategy is little robust to acquisition and processing
delays if a large feedback gain is used. This issue needs to be
carefully taken into account when performing experimentations
in animal models of Parkinson’s disease. Careful attention should
be paid to the optimization of the acquisition algorithms in
order to reduce the round-trip-time as much as possible. Future
work should be conducted to make the proposed closed-loop
stimulation more robust to these delays. This may take the form
of a low-pass filter, as in Pasillas-Lépine et al. (2013), or of
more advanced strategies inspired from control theory (including
predictive features).

For experimental translation, the ability to deliver a space-
dependent light for photostimulation is also crucial. Light
stimulation is usually delivered through an optical fiber
connected to a laser or directly by a light-emitting diode, so
that all neurons expressing opsins and receiving photons are
simultaneously photo-stimulated, receiving a number of photons
depending simply on the output of the fiber, the distance to
the fiber and the physical properties of the biological tissue
interacting with photons. Patterned illumination constitutes
a promising way to illuminate precisely shaped regions of
interest, with neighboring neurons receiving potentially different
patterns of illumination in intensity and in time (Bovetti and
Fellin, 2015). Patterned illumination can be performed by phase
modulation of light: liquid crystal spatial light modulators
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(LC-SLMs) canmodulate two-photon light according to arbitrary
shapes, thus allowing simultaneous illumination of multiple
neurons with different phase maps over time in order to
probe neuronal networks with complex spatial and temporal
patterns of neuronal activation. For instance, optogenetic
neuromodulation with millisecond temporal precision and
cellular regulation has been performed in retinal ganglion
cells expressing channel-rhodopsins (Reutsky-Gefen et al.,
2013). Although we have shown through simulations that
proportional stimulation remains efficient even when a single
light source is used for the entire controlled population,
holographic optogenetics thus constitutes a promising technique
to provide precise time and space resolution of the closed-loop
stimulation signal.

Future work should deepen the dynamics induced by light
stimulation in optogenetics experiments. The model used in this
work assumes that the impact of photostimulation is similar to
that of a fictitious afferent neural population whose rate and
excitatory/inhibitory features can be regulated in real time. In
particular, the combined effects of intensity and frequency of
light stimulation are not captured by the present model. Tighter
modeling could be developed in the future based on existing
works such as Nikolic et al. (2009).

Synaptic plasticity and homeostasis are not taken into account
in the employed model. Recent studies evoke the role of synaptic
plasticity in the long-term effects of DBS (Tass et al., 2012; van
Hartevelt et al., 2014). Neural fields models including learning
mechanisms have been studied in Galtier et al. (2012); Detorakis
and Rougier (2014); Fix (2014) and we believe that the results
presented here could constitute a relevant framework to deepen
the analysis by including plasticity or homeostasis mechanisms.

Furthermore, the analysis conducted here focuses on the
STN-GPe interaction. The theoretical result presented here can
be readily adapted to more than two neuronal populations by
modifying the synaptic coupling distributions. Consequently, our
framework is well fitted to assess the possible role of other brain
structures in the pathological oscillations onset.

Finally, as stressed in the introduction, the precise
mechanisms of parkinsonian oscillations in deep brain structures
is still a matter of debate (Bevan et al., 2002; Lang and Zadikoff,
2005). This paper focuses on one possible mechanism, namely
the STN-GPe network acting as a pacemaker. This hypothesis is
supported by in vitro experiments reported in Plenz and Kital
(1999) using mature organotypic cortex-striatum-STN-GPe
cultures. To the best of our knowledge, no in vivo experiments
has yet confirmed or infirmed this hypothesis, although Nambu
and Tachibana (2014) underlines the role played by STN-GPe
reciprocal connections. We believe that the theoretical insights
provided by the model presented here and its associated
closed-loop stimulation constitute interesting bases for further
experimental investigations in animal models of Parkinson’s
disease in order to confront this hypothesis with other possible
mechanisms, including cortical patterning of STN (Magill et al.,
2001) and striatal origins of oscillations (McCarthy et al., 2011).
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Appendix

Proof of the Theoretical Result
A thorough analysis of delayed neural fields has been conducted
in Faye and Faugeras (2010); Veltz and Faugeras (2011). In
particular, given any continuous initial conditions defined on
[−dmax; 0], where dmax is such that d1(r, r

′), d2(r, r
′) ≤ dmax for

all r, r′ ∈ �, the solutions z1 and z2 are known to exist at all times
in the whole domain� and to be continuous with respect to time
(Faye and Faugeras, 2010, Theorem 3.2.1).

Given any constant inputs I1(r) and I2(r), any equilibrium
pattern (z∗1 , z

∗
2 ) of the neural fields model (3) is given by the

following two implicit equations

z∗1 (r) = S1





2
∑

j= 1

∫

�

w1j(r, r
′)z∗j (r

′)dr′

+ I1(r)− kcα(r)(z
∗
1 (r)− zref (r))



 (A1a)

z∗2 (r) = S2





2
∑

j= 1

∫

�

w2j(r, r
′)z∗j (r

′)dr′ + I2(r)



 . (A1b)

We start by operating a change of variables in order to rewrite
the neural fields (Equation 3) in terms of the difference between
the firing rate the resulting equilibrium pattern (z∗1 , z

∗
2 ), the

existence of which is assumed in the statement. To this end, we
let x1(r, t): = z1(r, t) − z∗1 (r) and x2(r, t): = z2(r, t) − z∗2 (r).
Combining Equation (A1) with Equation (3), the stability of the
equilibrium pattern (x∗1, x

∗
2) for Equation (3) is equivalent to the

stability of the origin for the neural field

τ1ẋ1 = −x1 + S1

(∫

�

w11(r, r
′)x1(r

′, t − d1(r, r
′))dr′

+

∫

�

w12(r, r
′)x2(r

′, t − d2(r, r
′))dr′ − kcα1(r)x1

)

(A2a)

τ2ẋ2 = −x2 + S2

(∫

�

w21(r, r
′)x1(r

′, t − d1(r, r
′))dr′

+

∫

�

w22(r, r
′)x2(r

′, t − d2(r, r
′))dr′

)

, (A2b)

where we omitted the argument (r, t) of some functions for the
sake of notation conciseness and, for each i ∈ {1, 2},

Si(x) : = Si

(

x+

2
∑

j= 1

∫

�

wij(r, r
′)z∗j (r)

)

− Si

(

2
∑

j= 1

∫

�

wij(r, r
′)z∗j (r)

)

, ∀x ∈ R. (A3)

Note that Si(0) = 0, which confirms the fact that (Equation
A2) has an equilibrium at the origin. In order to proceed to

the stability analysis of Equation (A2), we rely on the following
technical lemma, which provides a useful upper bound on the
time derivative of the Lyapunov-Krasovskii functional proposed
in Faye and Faugeras (2010) along the solutions of the system
under concern. For the sake of generality, we state it in the case of
n interconnected neuronal populations. Its proof is omitted but
results from rather standard computations.

Lemma 1. Let S1,S2 : R → R be any bounded continuous
increasing functions satisfying |Si(x)| ≤ ℓi|x| for all x ∈ R, where
ℓ1 and ℓ2 denote nonnegative constants. Let α1, α2 : � → R>0 be
such that infr∈� αi(r) > 0. Consider the function

V(t) =
1

2

2
∑

i= 1

∫

�

τixi(r, t)
2dr

+

∫

�

n
∑

i= 1

βi(r)

∫

�

∫ 0

−di(r,r′)
xi(r

′, t − θ)2dθdr′dr,

where β1, β2 : � → R>0. Then, given any k1 ≥ 0, there
exists γ1(k1) satisfying γ1(k1) > 0 for all k1 > 0 and
limk1→+∞ γ1(k1) = +∞ such that, given any functions λij : � →

R>0, the derivative of V along the solutions of the delayed neural
field

τ1ẋ1(r, t) = −a1x1(r, t)+ S1





2
∑

j= 1

∫

�

w1j(r, r
′)xj(r

′, t

− dj(r, r
′))dr′ − k1α1(r)x1(r, t)



 (A4a)

τ2ẋ2(r, t) = −a2x2(r, t)+ S2




2
∑

j= 1

∫

�

w2j(r, r
′)xj(r

′, t − dj(r, r
′))dr′



 (A4b)

satisfies, for any admissible initial conditions,

V̇(t) ≤ −

n
∑

i= 1

∫

�

(

ai + γi(ki)−

∫

�

βi(r
′)dr′

−
1

2

n
∑

j= 1

w̄ij(r)

λij(r)



 xi(r, t)
2dr

−

n
∑

i= 1

∫

�

(

βi(r)−
1

2

n
∑

j= 1

λij(r)
)

∫

�

xi(r
′, t − di(r, r

′))2dr′dr, ∀t ≥ 0,

where w̄ij : � → R≥0 denote any positive functions satisfying

w̄ij(r) ≥ ℓ2i

∫

�

wij(r, r
′)2dr′, ∀r ∈ �. (A5)

Note that the influence of the delayed and non-delayed terms
in the estimate of V̇ can be weighted, to some extent, by the
functions λij which can be arbitrarily tuned.
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Remark 1. We stress that, in the statement of Lemma 1,
the functions w̄ij can be taken as close as the functions
r 7→ ℓ2i

∫

�
wij(r, r

′)2dr′ as we want. More precisely,
given any function ε : � → R>0, there exists a
positive function w̄ij satisfying (Equation A5) and
∣

∣w̄ij(r)− ℓ2i

∫

�
wij(r, r

′)2dr′
∣

∣ ≤ ε(r) for all r ∈ �. For instance,
the choice w̄ij(r) = max

{

ε(r) ; ℓ2i

∫

�
wij(r, r

′)2dr′
}

fits these
requirements.

Observe that the neural fields (Equation A2) can be written
as Equation (A1) by letting α1(r) = α(r) and a1 = a2 = 1.
Moreover, note that Equation (A3) and the fact that the functions
Si are ℓi-Lipschitz ensure that |Si(x)| ≤ ℓi|x| for all x ∈ R.
Invoking Lemma 1 it follows that, given any kc > 0, there exists
γ (kc) > 0 satisfying limkc→+∞ γ (kc) = +∞ such that, given
any functions βi, λij :� → R>0, i, j ∈ {1, 2}, the derivative of the
function

V(t) =
1

2

2
∑

i= 1

∫

�

τixi(r, t)
2dr

+

∫

�

2
∑

i= 1

βi(r)

∫

�

∫ 0

−di(r,r′)
xi(r

′, t − θ)2dθdr′dr,

along the solutions of Equation (A2) satisfies, for all admissible
initial conditions,

V̇(t) ≤ −

∫

�

(

1+ γ (kc)−
w̄11(r)

2λ11(r)
−

w̄12(r)

2λ12(r)

−

∫

�

β1(r
′)dr′

)

x1(r, t)
2dr

−

∫

�

(

1−
w̄21(r)

2λ21(r)
−

w̄22(r)

2λ22(r)
−

∫

�

β2(r
′)dr′

)

x2(r, t)
2dr

−

2
∑

i= 1

∫

�

∫

�

(

βi(r)−
1

2

2
∑

j= 1

λji(r)
)

xi(r
′, t

− dj(r, r
′))2dr′dr,

where the functions w̄ij were defined in Equation (A5).
The right-hand side of this inequality is a negative definite
function in terms of the non-delayed terms provided that,
for all r ∈ �,

1+ γ (kc) >
w̄11(r)

2λ11(r)
+

w̄12(r)

2λ12(r)
+

∫

�

β1(r
′)dr′ (A6a)

1 >
w̄21(r)

2λ21(r)
+

w̄22(r)

2λ22(r)
+

∫

�

β2(r
′)dr′ (A6b)

2β1(r) ≥ λ11(r)+ λ21(r) (A6c)

2β2(r) ≥ λ12(r)+ λ22(r). (A6d)

Recalling that W̄22 =
∫

�
w̄22(r

′)dr′, it can be checked that the
following choices satisfy (Equations A6b–d):

λ11(r) = 2w̄11(r)

λ12(r) =
1− W̄22

2
(

2− W̄22

) w̄22(r)

λ21(r) =
2(3− W̄22)

(1− W̄22)(2− W̄22)
w̄21(r)

λ22(r) =
3− W̄22

2
(

2− W̄22

) w̄22(r)

β1(r) = w̄11(r)+
3− W̄22

(1− W̄22)(2− W̄22)
w̄21(r)

β2(r) =
w̄22(r)

2
.

In view of Equation (4), Remark 1 ensures that w̄22 can be picked
in such a way that W̄22 =

∫

�
w̄22(r

′)dr′ < 1. Consequently,
the functions λij and βi are all positive as required. With these
choices, the condition (Equation A6a) boils down to

γ (kc) >
(2− W̄22)w̄12(r)

(1− W̄22)w̄22(r)
+

∫

�

w̄11(r
′)dr′

+
3− W̄22

(1− W̄22)(2− W̄22)

∫

�

w̄21(r
′)dr′.

In view of Remark 1 and Equation (A5), a sufficient condition for
this to hold is

γ (kc) >
(2− W̄22)

∫

�
ℓ21w12(r, r

′)2dr′

(1− W̄22)w̄22(r)
+

∫

�

∫

�

ℓ21w11(r, r
′)2dr′dr

+
3− W̄22

(1− W̄22)(2− W̄22)

∫

�

∫

�

ℓ22w21(r, r
′)2dr′dr′,

Recalling that γ (kc) can be picked as large as we want provided
that kc is taken sufficiently large, this condition can always be
fulfilled. We thus obtain that, for all admissible initial conditions,

V̇(t) ≤ −ǫ

∫

�

(

x1(r, t)
2 + x2(r, t)

2
)

dr, ∀t ≥ 0.

A straightforward adaptation of (Faye and Faugeras, 2010,
Theorem 4.2.2) then ensures the existence of positive constants
η1, η2 such that

‖x1(·, t)‖
2 + ‖x2(·, t)‖

2 ≤ η1
(

‖φ1‖
2 + ‖φ2‖

2
)

e−η2t, ∀t ≥ 0,

for all admissible initial conditions φi, i ∈ {1, 2}, meaning
continuous functions from [−dmax; 0] to R with bounded L2-
norm over � and satisfying Si < φi(r) < Si for all r ∈ �. The
conclusion follows.
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