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Pacemaker activities generated by networks of interstitial cells of Cajal (ICC), in

conjunction with the enteric nervous system, orchestrate most motor patterns in the

gastrointestinal tract. It was our objective to understand the role of network features of

ICC associated with the myenteric plexus (ICC-MP) in the shaping of motor patterns of

the small intestine. To that end, amodel of weakly coupled oscillators (oscillators influence

each other’s phase but not amplitude) was created with most parameters derived from

experimental data. The ICC network is a uniform two dimensional network coupled by

gap junctions. All ICC generate pacemaker (slow wave) activity with a frequency gradient

in mice from 50/min at the proximal end of the intestine to 40/min at the distal end.

Key features of motor patterns, directly related to the underlying pacemaker activity,

are frequency steps and dislocations. These were accurately mimicked by reduction

of coupling strength at a point in the chain of oscillators. When coupling strength was

expressed as a product of gap junction density and conductance, and gap junction

density was varied randomly along the chain (i.e., spatial noise) with a long-tailed

distribution, plateau steps occurred at pointsof low density. As gap junction conductance

was decreased, the number of plateaus increased, mimicking the effect of the gap

junction inhibitor carbenoxolone. When spatial noise was added to the natural interval

gradient, as gap junction conductance decreased, the number of plateaus increased

as before but in addition the phase waves frequently changed direction of apparent

propagation, again mimicking the effect of carbenoxolone. In summary, key features of

themotor patterns that are governed by pacemaker activity may be a direct consequence

of biological noise, specifically spatial noise in gap junction coupling and pacemaker

frequency.
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INTRODUCTION

A few consistent observations have been made of slow waves, or
the contractions they drive, in the small intestine. Commonly
they travel in an aboral direction; their frequency decreases
aborally; this frequency gradient often consists of a series of
flat plateaus bounded by abrupt steps; clamping the intestine,
so as to block conduction, decreases the frequency aboral to
the clamp (e.g., Alvarez, 1914; Hasselbrack and Thomas, 1961;
Christensen et al., 1966; Diamant and Bortoff, 1969; Szurszewski
et al., 1970). The first of these has an obvious and critical function,
to encourage food to travel aborally rather than orally along
the gut. Early on it was speculated that the other three are
aspects of the mechanism underlying the first (Alvarez, 1928).
This mechanism is now understood as coupled oscillator theory
(Pavlidis, 1973; Winfree, 1980).

Slow waves are generated in the small intestine by a network
of interstitial cells of Cajal (ICC-MP) that covers the entire length
and circumference of the intestine at the level of the myenteric
plexus (Sanders et al., 2014) with a density of around 1000
cells per mm2 (Mei et al., 2009). Each ICC-MP can generate a
rhythmic depolarization in isolation (Koh et al., 1998; Thomsen
et al., 1998). In coupled oscillator theory each element of a
network oscillates in isolation but this oscillation is influenced
by the oscillations of its neighboring, coupled oscillators. In
general two coupled oscillators will tend to minimize both their
phase difference, a process called synchronization, and their
frequency difference, called entrainment. Synchronization was
first observed by Huygens in the seventeenth century between
pendulums (Bennett et al., 2002) and explains how networks of
oscillators can generate waves. The wave does not propagate,
instead it is a coordinated phase difference across the oscillator
network, a “phase wave.” When all the oscillators have the
same frequency, the phase difference can go to zero (complete
synchronization) and the phase wave will have an infinite
velocity. If there is a gradient in frequency across the network
then the higher frequency oscillators will always be ahead of the
phase of the lower frequency oscillators and so the phase wave
will appear to propagate from the high to the low frequency
part of the network. The velocity of the phase wave will vary,
as the phase difference between different frequency oscillators
necessarily changes with time. The frequency difference can be
minimized by entrainment. Here a distinction must be made
between the oscillator’s natural frequency, the frequency at which
it oscillates in isolation, and the frequency it oscillates at in a
network. Entrainment is when an oscillator with a higher natural
frequency, “pulls” up the oscillation frequency of an oscillator
with a lower natural frequency, toward its own frequency. How
much depends on the strength of coupling and difference in
natural frequency between the oscillators. In a chain of oscillators
with a natural frequency gradient, entrainment pulls a length of
the chain to the same frequency, a frequency plateau. A series of
plateaus can result, with intervening steps where the frequency
difference is too great for entrainment. At a frequency step one
of every few phase waves will terminate as a “dislocation.” For
instance if plateau A and its neighbor B have wave intervals of 1.5
and 1.4 s, respectively, then every 15th wave in A will terminate
at the step between A and B (Parsons and Huizinga, 2015a).

Coupled oscillator theory coalesced from many different
components. Of these, van der Pol’s work on relaxation oscillators
was particularly important. In a relaxation oscillation the
amplitude increases gradually for part of its cycle (relaxes)
and then abruptly increases before decreasing again. Van der
Pol discovered entrainment in electrical circuits that acted as
relaxation oscillators and described a simple differential equation
that could model this (van der Pol, 1926; van der Pol and van
der Mark, 1927). He also noted that the rhythmicity of the heart
had the properties of a relaxation oscillator (van de Pol, 1940).
In 1961 Fitzhugh showed that the Hodgkin Huxley equations
could be simplified to a second order differential equation
that contains the van de Pol equation as a limiting case, now
called the Fitzhugh-Nagumo or Bonhoeffer-van der Pol equation
(Fitzhugh, 1961). In the same year Bortoff introduced coupled
oscillator theory to explain the properties of slow waves in the
small intestine (Bortoff, 1961). A decade later Diamant showed
that a chain of Fitzhugh-Nagumo oscillators could reproduce
the frequency plateaus of the small intestine (Diamant et al.,
1970). This was followed by many studies on chains of coupled
relaxation oscillators by gastrointestinal physiologists (Brown
et al., 1971, 1975; Sarna et al., 1971, 1972; Specht and Bortoff,
1972; Robertson-Dunn and Linkens, 1974; Akwari et al., 1975;
Linkens, 1977; Linkens and Datardina, 1977; Publicover and
Sanders, 1989; Daniel et al., 1994; Aliev et al., 2000; Gizzi
et al., 2010). In 1967 Winfree published his insight that when
coupling between oscillators is “weak,” in the sense that oscillators
only influence each other’s phase and not their amplitude (no
oscillator deviates significantly from its limit cycle), then the
dynamics of any such oscillator can be described by a single
differential equation of the oscillator’s phase (Winfree, 1967,
1980). This idea was developed over the next two decades into
what is now known as the theory of weakly coupled oscillators
(Schwemmer and Lewis, 2012). It provides a practical means
to “phase reduce” any model, biophysical or otherwise, of two
or more coupled oscillators to a single first order differential
equation (Equation 1). This equation has only two variables,
natural frequency and coupling strength, and a function, the
interaction function. Significantly for the physiologist all but
one of these can be determined from experimental data. Natural
frequency can be measured from the uncoupled oscillation
frequency or estimated from the coupled gradient of oscillation
frequency. For the interaction function, a stimulus, such as a
current pulse for electrical oscillators, is given at different phases
of the oscillator’s cycle and the change in phase induced by
this stimulus measured (Figure 1A). This gives a phase response
curve which can be used to derive the interaction function
(Figures 1B,C).

In a previous paper we studied contraction waves in the
murine small intestine using the technique of diameter mapping
(Parsons and Huizinga, 2015a). We observed frequency plateaus
and dislocations, and showed how these were affected when
coupling was reduced by the gap junction blocker carbenoxolone.
Our aim here was to model this data using a chain of weakly
coupled phase oscillators. All but one parameter of the model
were fixed using experimental physiological data. We discovered
that spatial noise in coupling strength and natural frequency of
the pacemaker network play a decisive role in the orchestration
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FIGURE 1 | Phase response curves and the interaction function. (A) An oscillator is represented by a horizontal time line and “fires” at each solid black uptick.

The firing time could be defined as the upstroke of the slow wave. The oscillator has a natural period of T. T and all other variables can be defined either in units of

radians (T = 2π), seconds (T = some value) or normalized to T (T = 1). A stimulus is given φ after a fire and the next fire is τ after this fire. Further measurements can

be made, grouped according to two standpoints: (1) Upper time line, the oscillator “should have” fired T after the stimulus (hollow uptick). φ′ is the phase difference

between when the oscillator did fire and when it “should have.” If φ′ = T, the oscillator fired immediately upon stimulation—the phase of the oscillator was fully

advanced (box, center of B). Conversely if φ′ = 0, the oscillator fired at the time it “should have”—the phase of the oscillator was fully delayed (box, center of B). If φ′ =
φ, then the stimulus had no effect on the firing of the oscillator—it was refractory. Another measurement used is the cophase (θ) the time between the stimulus and the

first fire. (2) Lower time line, the oscillator “should have” fired T after it’s last fire (hollow uptick). φ* is the phase difference between when the oscillator did fire and when

it “should have.” (B) There are a number of conventions for the plotting of phase response curves. The abscissa is always the phase of the stimulus (φ), but the

ordinate can be φ′, −φ*, φ*, or τ (anticlockwise from left). φ′(φ) is known as an “old phase—new phase” phase response curve (Winfree, 1980). All the phase response

curves can be related by simple geometric transforms (arrows). The interaction function, H(φ) is a reversed and smoothed version of the infinitesimal phase response

curve −φ* (φ) (Equation 5). (C) τ(φ) with T-normalized units for slow waves recorded from the rabbit small intestine, modified from Figure 3A of Cheung and Daniel

(1980). Triangles and circles are circular and longitudinal muscle responses, respectively, to 5ms, 80V pulses. The slow waves are refractory until halfway through their

cycle at which point they phase advance, reaching full phase advance (responding immediately to a stimulus) about 7/10 of the way through the cycle. The blue

dashed line is the infinitesimal phase response curve used for our model (Equation 6). (D) Model infinitesimal phase response curve Z(t), impulse V (t) and interaction

function H(φij ). a, b, and h are the parameters used to define Z(t) (Equation 6).
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of intestinal motor patterns. Part of this work has been published
previously in abstract form (Parsons and Huizinga, 2015b).

MATERIALS AND METHODS

Experiments and Analysis
All procedures were approved and carried out in accordance with
regulations of the Animal Ethics Board of McMaster University.
Organ bath video recordings of the murine small intestine
were made and diameter maps (DMaps) created, as described
previously (Parsons and Huizinga, 2015a). A DMap is an image
where the x axis corresponds to time, the y axis to distance along
the length of the intestine (in all maps shown, top to bottom
corresponds to proximal to distal). The image intensity at {x, y}
corresponds to the intestine diameter at that time and distance,
with black corresponding to contracted and white, relaxed.

The tone of the small intestine usually varies along its length
and so there are variations in DMap intensity along its y/distance
axis. To enhance the contrast of contractions and aid comparison
with DMaps simulated by the model, intensity was equalized
across the y axis. For each point on the y axis the mean intensity
was calculated across x and this was subtracted from all pixels at
that point.

To measure the frequency of waves in DMaps, experimental
or modeled, autocorrelation was calculated for each point on
the y/distance axis for lags up to 10 s. This gave a {lag, y}
image with intensity on a blue-white-red scale, where blue
corresponds to negative correlation, white near to zero and red
positive correlation. Autocorrelation is always +1 at zero lag,
then proceeds to oscillate within the bounds of −1 and +1.
The first positive peak, after zero-lag, corresponds to the
correlation between every consecutive wave, the second peak to
the correlation between every other wave, etc. The lag of each
peak is the interval between waves.

Model
Different authors in the weakly coupled oscillator literature use
different terminology, sign conventions and symbols for the same
equations. In the following we stay as close as possible to the
usage of Schwemmer and Lewis (2012). The model consisted of a
chain of n coupled phase oscillators. The rate of change of phase
(θ) of the ith oscillator is,

dθi

dt
= ωi +

1

2

∑

j

kijH
(

φij

)

i = 1....n

ωi = 2π/ζi

j = i− 1, i+ 1

φij =
(

θj − θi
)

mod 2π (1)

where ω is the natural frequency (radians/s); ζ is the natural
interval (s); k is the coupling strength (unitless); H is the
interaction function (radians/s). n was 200, large enough to give
a fairly fine grained simulation and small enough for a fast
numerical solution.

Themodel was solved inMATLAB (MathWorks, Natick, MA)
using the ode45 Runge-Kutta method. It was found that the
solution was sensitive to rounding errors in θ as θ became larger.
To avoid these errors the model was solved in consecutive blocks
of 100/max(ω) seconds. The 2π modulo of the last phases of
one block were used as the initial phases for the next block (the
initial phases for the first block were random). In this way θ

never exceeded much beyond 100. With a Intel Core i5-2300 (2.8
GHz) processor it typically took 3–4 s for a 250 s simulation of
200 oscillators. Solutions were returned at an interval of 33ms,
the video sample interval for the experimental DMaps. DMaps
(with a y/length axis of n pixels) were created from the solution
by converting phases to amplitudes by sine function.

The natural interval (ζ ) was normally distributed with
standard deviation σζ about a linear gradient along the chain
from ζlow to ζhigh,

ζi = ζlow + i
(

ζhigh − ζlow
)

/n+ σζU (2)

where U is a standard normal variate. Based on data from the
murine small intestine, ζlow was 1.2 s and ζhigh was 1.5 s (Figure
4A of Parsons and Huizinga, 2015a). σζ was varied (see Section
Results).

Coupling strengths (k) were symmetrical (kij = kji). In
the simplest model, k was the same value for all oscillators
except at selected points (Figures 2–4). In a more complex
model (Figures 6, 7), k was the product of a gap junction
conductance (gjunc) and gap junction density (djunc). A decrease
in gjunc modeled gap junction blockers. djunc had a reversed Lévy
distribution restricted between 0 and 1,

kij = kji = gjuncdjunc

djunc = 1− X (3)

where X was a random variate from the Lévy stable distribution
(Weron and Weron, 2005) with the characteristic function,

ϕ (t) = exp
[

−σα|t|α
(

1− iβsgn(t) tan(πα/2)
)

+ itµ
]

(4)

with characteristic exponent α = 0.5, skewness β = 0.5, scale s=
0.02, and location µ = 0. Random variates were generated with
the code of Veillette (2008) until a variate was in the range (0, 1).

The interaction function (H) is periodic over the period T =
2π radians. It is proportional to the one sided convolution over
T, of the infinitesimal phase response curve of the oscillator (Z)
and the impulse of the neighboring oscillator (V),

H
(

φij

)

=
1

T

T
∫

0

Z(t)
[

V(t + φij)− V(t)
]

dt

=
1

T

T
∫

0

Z(t)V(t + φij)dt −
1

T

T
∫

0

Z(t)V(t)dt

=
1

T

T
∫

0

Z(t)V(t + φij)dt − C
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H
(

−φij

)

=
1

T

T
∫

0

Z(t)V(t − φij)dt − C (5)

Thus, if the impulse is a square wave, the interaction function
is a reversed and smoothed version of the infinitesimal phase
response curve, with the impulse as the “boxcar” smoothing
kernel (Figure 1D). When the impulse is a delta function,
H(−φij)∼ Z(φij).

We based the model’s infinitesimal phase response curve on
the experimental phase response curve of slow waves in the
rabbit small intestine determined by Cheung and Daniel (1980)
(Figure 1C). Ideally the infinitesimal phase response curve
represents the phase response to an infinitely short stimulus (a
delta function). The stimulus used by Cheung and Daniel was
5ms, 1/740 of the 3.7 s average cycle length, so we felt brief
enough for approximation. The infinitesimal phase response
curve was,

Z (t) =







0 t < a

h t−a
b−a

a < t < b

−h x−2π
2π−b

t > b

a = π

b = 1.3π

h = 2π − b (6)

where a is the length of the cycle when the oscillator is refractory
to a stimulus and; b is the point in the cycle beyond which the
oscillator is fully phase advanced by a stimulus (i.e., responds to
a stimulus by immediate “firing” or fully synchronizes with the
stimulating oscillator) (Figure 1D).

Physiologically the impulse is the part of the ICC
depolarization that can effect a neighboring, coupled ICC
(it doesn’t have to correspond to the whole slow wave, just up
to where there is no more phase change induced). This was
modeled as a simple square wave of width w, as a fraction of the
complete cycle,

V(t) =
{

(2πw)−1 t ≤ 2πw
0 t > 2πw

w = 0.1

(7)

Z(t) and V(t) were one side convolved to create a “look up table”
of H(φij) at discrete values of φ. This was passed to the ODE
evaluation function and H for a particular value of φ was found
from it by linear interpolation.

RESULTS

Frequency Steps and Localized Decoupling
The parameters of the model were determined as much as
possible by experimental data. The natural frequency gradient
was estimated from the observed contraction intervals at either
end of the mouse intestine, 1.2–1.5 s, proximal to distal (Parsons
and Huizinga, 2015a). The interaction function was calculated
from the phase response curve of slow waves in the rabbit
small intestine (Cheung and Daniel, 1980) and a square impulse

representing the depolarising phase of the slow wave. This left
one free parameter, the coupling strength, k.

When kwas varied over a wide range, phase waves propagated
distally along the length of the chain but there were no frequency
steps or dislocations (Figure 2). At higher coupling strengths the
whole chain was entrained to the same frequency (Figure 2A).
The lack of frequency steps was not due to coupling being
so strong as to result in entrainment to a single oscillator
(the proximal, highest frequency oscillator). At lower coupling
strengths entrainment weakened but instead of steps and plateaus
forming, frequency varied smoothly, eventually following the
natural frequency gradient (Figures 2B,C). Also the phase wave
velocity increasingly oscillated as coupling was reduced. Smooth
variations in wave frequency or velocity of this magnitude
were not seen in the mouse small intestine (Parsons and
Huizinga, 2015a and Figure 3B). In previous coupled oscillator
models frequency steps occurred spontaneously given a large
enough frequency gradient (Diamant et al., 1970; Brown et al.,
1971, 1975; Sarna et al., 1971, 1972; Specht and Bortoff,
1972; Robertson-Dunn and Linkens, 1974; Akwari et al., 1975;
Linkens, 1977; Linkens and Datardina, 1977; Publicover and
Sanders, 1989; Kopell et al., 1990; Daniel et al., 1994). It
appeared that the physiological frequency gradient in the mouse
was not large enough to explain frequency steps. Instead we
made the novel hypothesis that steps in the mouse result
from localized decoupling between ICC at the frequency step.
Reducing coupling between two oscillators would allow a distal
(lower natural frequency) oscillator to escape entrainment by
its proximal neighbor and thus allow a plateau step to form.
Indeed when this was done by reducing k by 90% at two points,
two frequency steps (three plateaus) formed and dislocations
occurred rhythmically at these points (Figure 3A). This pattern
was very similar to that seen in diametermaps of the wholemouse
small intestine in vitro (Figure 3B). Wave velocity decreased
distally across each plateau in both the model and intestine
(Figures 3A,B) as phase lag increased due to the larger difference
between the oscillator’s natural and entrained frequency (Somers
and Kopell, 1995). Dislocations were also very similar between
the intestine and model (Figures 3C,D).

As k was incrementally reduced between the middle two
oscillators of the chain, there was no distinguishable change until
k was reduced to 40% of the control value of three, when there
was an instantaneous change in phase at the point of reduction, a
“phase slip.” (Figure 4). As k was reduced further the magnitude
(phase difference) of this slip increased, until at 20% the waves
proximal and distal to the reduction point were anti phase. At
17.5% a frequency step and wave drops were induced. With
further reduction down to 0%, the frequency of wave drops
increased as the magnitude of the step increased.

Spatial Noise in Coupling Strength
In our previous study of the small intestine, frequency steps
were very stable in position. Inhibition of gap junctions with
carbenoxolone induced new steps but the old steps were
conserved (Figures 6B,E in Parsons and Huizinga, 2015a).
This suggests to us that step positions reflect underlying
structural discontinuities rather than being the result of a
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FIGURE 2 | Phase wave patterns and frequency as coupling strength (k) is varied. Model diameter maps (left), and their autocorrelation (right). The top of the

maps correspond to the proximal (higher natural frequency) end. Time scales are indicated below (C). Autocorrelation lag runs from left to right and red is positive

correlation while blue is negative. After zero lag the first peak in correlation (first red band) corresponds to correlation between every consecutive oscillation, the

second peak (second red band) corresponds to correlation between every other oscillation and so on (see Section Materials and Methods). The model has a noiseless

frequency gradient (ζlow = 1.2 s, ζhigh = 1.5 s, σζ = 0 s) and uniform coupling strength. (A) k = 3. (B) k = 1. (C) k = 0.1.

physiochemical dynamic equilibrium. The model suggests that
these discontinuities are a reduction in coupling strength
(Figure 3), either in the density of gap junctions or equivalently
the density of ICC or cellular connections between ICC. It is
possible that discontinuities occur at well spaced points against
a uniform background as modeled above (Figure 3A), perhaps
through a targeted developmental mechanism. Or perhaps more
likely the coupling strength could vary randomly along the length
of the intestine, at certain points falling below the threshold
to give steps. In other words the coupling strength would be
spatially noisy.

If coupling strength is spatially noisy, its distribution must be
known to model it. Given the low number of steps under basal
conditions and that their number only increases 2–3 times with
carbenoxolone (Figure 6 in Parsons and Huizinga, 2015a) we
hypothesized that the distribution of coupling strengths should
have a long left tail (Figure 5). That way if the threshold for
step formation is on the tail, the vast majority of coupling
strengths will be above threshold and the relative position of
the tail and threshold can vary widely without greatly changing
the fraction of strengths below threshold, the number of steps

(Figure 5B). We put these considerations into a model for the
coupling strength (Equation 3) (Figure 5). k was the product
of a gap junction conductance (gjunc) and a gap junction
density (djunc). djunc was varied randomly along the chain
between 0 and 1 according to a Lévy distribution, a long tailed
distribution. gjunc was a single value that was decreased to
model inhibition of gap junction conductance. Steps occurred
at points of low djunc (Figure 6A). As gjunc was decreased
six fold, the number of steps/plateaus increased from ∼1–2
to 5–10 (Figures 6B,C), in line with the increase seen with
carbenoxolone in the small intestine (Figure 6 in Parsons and
Huizinga, 2015a).

Spatial Noise in Natural Frequency
Carbenoxolone produced a zigzagging reversal of wave direction
(Figure 7D here and Figure 6A in Parsons and Huizinga, 2015a),
but this was not observed when we decreased gjunc (Figure 6).
In the presence of carbenoxolone, “high frequency islands”
(plateaus with higher frequency than both their distal and
proximal neighbors) were seen (Parsons and Huizinga, 2015a)
and this gave us a hypothesis as to the development of the
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FIGURE 3 | Induction of frequency steps by localized decoupling. (A) Model diameter map (left), and its autocorrelation (right). The top of the map corresponds

to the proximal (higher frequency) end. Time scales are indicated below (B). The model has the same parameters as in Figure 2A, but with coupling strength reduced

by 90% (k = 0.3) at the points marked with red arrows. At the points of reduced coupling there are clear steps in frequency, corresponding to positions of dislocations

in the DMap. (B) Experimental diameter map of murine small intestine (left) in the presence of 0.5mM lidocaine to block enteric nervous system activity and its

autocorrelation (right). The top of the map corresponds to the proximal end. (C) A dislocation from the model DMap in (A). (D) A dislocation from the small intestine

DMap in (B).

zigzagging waves. We hypothesized that natural frequency is
spatially noisy, but the magnitude of this noise is normally
insignificant compared to the natural frequency change over the
span of a plateau. As plateaus get shorter with gap junction
inhibition, their natural frequency span also gets smaller, to
within the range of the natural frequency noise. Therefore, the
chances increase that a local spike in natural frequency will be
the highest frequency within its plateau, entraining the slow
wave frequency within its plateau, and be higher than any
natural frequency in the neighboring proximal plateau, resulting
in a high frequency island. Spatial noise in natural frequency
would also explain the zigzagging seen with carbenoxolone
as local gradients in natural frequency coupled with local
variations in coupling strength drive the phase wave in different
directions. To test our hypothesis, the natural intervals were
varied randomly with a normal distribution of 30ms standard
deviation, about the 1.2–1.5 s proximal to distal gradient. The
magnitude of this variation is comparable to the temporal
variation of slow wave frequency measured experimentally. It
gives a coefficient of variation (cv = standard deviation/mean)
of 0.022 (0.03/1.35). In the dog small intestine (Table 1 of
Szurszewski et al., 1970) slow wave frequency for a single animal
was 14.8 ± 0.08 S.E. min−1 (measured as slow waves over a

minute period), n = 17 and so cv = 0.08
√
17/14.8 = 0.022.

As gjunc was decreased the number of plateaus increased as
before, but also the phase waves zigzagged and high frequency
islands developed (Figures 7A–C). Waves formed a V across
each plateau (Figure 7C) exactly like the small intestine in
the presence of carbenoxolone (Figure 7D). Also the frequency
between steps was often not uniform, varying smoothly in the
manner of an oscillating slope rather than a plateau (Figure 7C)
and again this was seen in the small intestine (Figure 7D). In
some cases frequency steps did not correspond with minima in
junction density (Figure 7C).

DISCUSSION

Random variation, spatial, or temporal noise, is a natural
property of any biological system. The role of temporal noise
in slow wave generation has been recognized in the form of
stochastic miniature depolarizations called unitary events or
spontaneous transient depolarizations (Hashitani et al., 1996;
Edwards et al., 1999; Hirst and Edwards, 2001). Here we show
that spatial noise in key parameters of the pacemaker network
play a decisive role in the orchestration of intestinal motor
patterns. The evidence was provided by using experimental data
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FIGURE 4 | Dependence of dislocations on strength of localized decoupling. All 200 oscillators had the same coupling strength (k = 3), except between

oscillators 100 and 101 where the coupling was reduced to a percentage of this, indicated at left. Left, DMaps showing the middle 20 oscillators. Red ticks indicate

times of wave drops (dislocations). Right, corresponding autocorrelations.

to constrain the few parameters of a chain of weakly coupled
phase oscillators and introducing spatial noise.

There are many mechanisms through which a particular
distribution of coupling strength could be achieved. Long tailed
distributions of connectivity (node degree) in mathematical
networks (graphs) can be produced by targeted removal or
addition of connections (edges) at nodes that already have few
or more connections, respectively (Barabasi and Albert, 1999;
Barrat et al., 2008), i.e., positive feedback. Targeted addition
is called preferential attachment. A long left tailed distribution
of coupling strength could result if connections were removed
between already poorly connected ICC (low djunc). In the brain
an excess of neural connections are formed during embryonic
development and this is followed postnatally by targeted removal
of synapses, dendrites, and neurons themselves, according to
each neuron’s activity (Hua and Smith, 2004) and thus dependent
on the number of connections. This was first observed by Cajal
(Schuldiner and Yaron, 2015). He called it “process resorption”

and it is now called “pruning.” Gao and colleagues have shown
that pruning occurs in the myenteric ICC network (Gao et al.,
2013a, 2014). ICC density reaches a peak 2 weeks after birth
and after this the distance between ICC increases. Though it
is not known whether this pruning is targeted, the fact that it
occurs 2 weeks after birth, by which time ICC generate slow
waves, suggests the possibility of activity-dependent preferential
detachment. It is also possible that gap junction density spatial
noise could be independent of a variation in ICC density, ICC
having varying gap junction expression levels. There is no data
on this. Or gap junction density may not itself be noisy but rather
the gap junction conductance. Conductance is determined by
the unitary conductance and the open probability and these are
controlled by pH and connexin phosphorylation (Nielsen et al.,
2012) which could remain stable over minutes.

Imtiaz et al. (2006) applied weakly coupled oscillator theory to
slow waves starting with a biophysical model of a single oscillator
based on a decade of experimental dissection of the slow wave

Frontiers in Neuroscience | www.frontiersin.org 8 February 2016 | Volume 10 | Article 19

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Parsons and Huizinga Weakly Coupled Oscillators

FIGURE 5 | Coupling strength (k) distribution and the number of

frequency steps. The number of steps is proportional to the area of the k

distribution left of the threshold (t) for inducing steps. As the distribution of k is

contracted P(k)→P(k/a) or shifted left P(k)→P(k − a), the area left of threshold

increases and so does the number of steps. Starting with normal (A) and long

left tailed (B) distributions with equal area left of threshold (dark shading), when

each is contracted by the same amount the area left of threshold (light shading)

is much greater in the normal distribution. The same relative effect occurs with

shift. Thus, the parameters of a normal distribution have to be much more

finely tuned to obtain a particular number of steps. This is important when

considering coupling strength in the small intestine because the number of

steps does not vary widely between intestines, nor does the number of steps

increase exponentially with reduction of coupling by carbenoxolone. In our

model k is the product of a gap junction density (djunc), which varies between

oscillators, and a gap junction conductance (gjunc), a single value for all

oscillators. Thus, the distribution of k is an expansion/contraction of the

distribution of djunc, according to the value of gjunc. (C) The Lévy-stable

distribution of djunc used in our model (Section Materials and Methods) has a

long left tail (black line) in comparison to a normal distribution (gray line). Both

distributions were calculated numerically (n = 105). Based on the data in

Figure 3 the threshold for step induction is k = 0.525 (17.5% of gjunc = 3). (D)

Lévy-stable and Gaussian djunc distributions were adjusted so that the

corresponding k distributions had equal areas left of threshold [P(k < 0.525)] at

gjunc = 3, so starting with the same number of steps [N(k < t)] (two, a typical

number without carbenoxolone). As gjunc is decreased from three and the

distribution of k is contracted, N(k < t) rises much faster for the normal

distribution (gray line) than for the Lévy-stable distribution (black line). Both

reach P(k < t) = 1, as gjunc goes to t (the whole of the k distribution is to the

(Continued)

FIGURE 5 | Continued

left of t). Similarly as gjunc is increased above three, N(k < t) decreases further

for the normal distribution, but only decreases a little for the Lévy-stable

distribution. Again the conclusion is that gjunc has to much more finely tuned

with a normal distribution of djunc then with a long-left tailed distribution.

by van Helden, Hirst, Kito and Suzuki (Hirst and Ward, 2003;
van Helden et al., 2010 for review). Each oscillator has two
pools of calcium, the cytosol and an intracellular store. Release
from the store to the cytosol is through inositol trisphosphate
(IP3) gated channels, with the synthesis of IP3 modulated by
membrane potential. A rise in cytosolic calcium depolarises
membrane potential (such as through calcium activated chloride
channels) and causes further store calcium release (i.e., calcium
induced calcium release). In this way oscillations are generated
by feedback between calcium, IP3 and membrane potential.
Imtiaz et al. determined the −φ∗(φ) phase response curve for
a single oscillator stimulated with a depolarising pulse (Figures
2, 14 of Imtiaz et al., 2006) and this was almost identical to
the experimental phase response curve of Cheung and Daniel
(1980), used here. The model cell was refractory for the first
half of its cycle, dipped to a small phase delay near T/2, after
which the cell rapidly switched to full phase advance. When
two oscillators were coupled they synchronized (Imtiaz et al.,
2006) and when coupling was lowered in the middle of a chain
of oscillators, the oscillators at either side would desynchronize
(van Helden and Imtiaz, 2003). This modeled an ingenious
experiment where they recorded slow waves from two ends of a
strip of gastric muscle and then applied glycyrrhetinic acid (an
analog of carbenoxolone) or 2-APB (an IP3R inhibitor) to the
intervening portion as a perfused stream (vanHelden and Imtiaz,
2003). In the model the sensitivity of stores to IP3 was varied
randomly across the array of cells with a normal distribution. As
this sensitivity largely determined natural frequency it parallels,
and could be a biological basis for, the spatial noise of the natural
frequency in our model.

Imtiaz et al. also analyzed the interaction function by phase
reducing their biophysical model (Imtiaz et al., 2006). The rate
of change of the phase difference (φ) between two symmetrically
coupled, equal frequency oscillators as a function of φ is

dφ

dt
=

dθi

dt
−

dθj

dt
;φ = θi − θj

= k
[

H
(

θj − θi
)

−H
(

θi − θj
)]

= k
[

H(−φ)−H(φ)
]

= −kHodd(φ);Hodd = H(φ)−H(−φ)

= kG(φ);G(φ) = −Hodd(φ) (8)

The odd part of the interaction function (Hodd), or the equivalent
growth function (G), give the equilibrium values of φ, where G
or Hodd is zero with a slope < 0 (G) or > 0 (Hodd). Thus, one
can determine not just that the oscillators can synchronize, but
also whether they might stably oscillate out of phase in “phase
locked” states. Imtiaz et al. found that as the basal rate of IP3
synthesis increased,Hodd presented a series of phase locked states
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FIGURE 6 | Increase in frequency steps as gap junction conductance is decreased. Model djunc (left), DMaps (middle), and autocorrelation (right). The top of

the maps correspond to the proximal (higher frequency) end. Gap junction density (djunc) had a long tailed distribution and gap junction conductance (gjunc) was

either 3 (A), 1 (B), or 0.5 (C). Red and black horizontal bars, frequency step positions.

(Imtiaz et al., 2006). We did not present G(φ) for our interaction
function because we were primarily concerned with a qualitative
analysis and the extra complications of our model (spatial noise
and gradients over multiple oscillators) would confound a simple
interpretation of G(φ). In our model, neighboring oscillators are
always incrementally out of phase (the phase waves have a finite
velocity) because of the natural frequency gradient. G(φ) is not
responsible for this, but if it were there would have to be one
equilibrium point very close to φ = 0. Stable phase differences
of larger magnitude that might reflect G(φ) equilibrium points
at significant distant from φ = 0, were seen at phase slips,
but these were at points of decoupling, independent of G(φ).
The magnitude of the phase slip increased incrementally, again

independently of any change in G(φ), as the transition between
complete entrainment (synchrony) and induction of frequency
steps (Figure 4).

Ermentrout and Kopell, “partially motivated by certain
phenomena observed in mammalian small intestine”
(Ermentrout and Kopell, 1984), modeled chains of coupled
phase oscillators with a natural frequency gradient (Ermentrout
and Kopell, 1984, 1991; Kopell and Ermentrout, 1986, 1990;
Kopell et al., 1990). As with earlier papers on chains of coupled
relaxation oscillators (see Section Introduction) frequency
plateaus arose without decoupling. In these cases the frequency
gradient was often in the region of 50% to obtain 2–3 plateaus
vs. 20% in our model. This greater frequency difference was
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FIGURE 7 | Effect of natural frequency spatial noise on emergence of frequency steps. (A–C) Model djunc (left), DMaps (middle) and autocorrelation (right).

The top of the maps correspond to the proximal (higher frequency) end. The natural intervals were distributed normally about their gradient (1.2–1.5 s) with a standard

deviation of 30ms. Gap junction density (djunc) had a long tailed distribution and gap junction conductance (gjunc) was either 3 (A), 1 (B) or 0.5 (C). Red and black

horizontal bars, frequency step positions. Bars with asterisk indicate where frequency steps are not coincident with dips in djunc. High frequency islands are indicated

by vertical bars at the right of the autocorrelation. (D) DMap and autocorrelation of murine small intestine in the presence of 40µM carbenoxolone. The top of the map

corresponds to the proximal end.
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probably enough on its own to break entrainment. Somers and
Kopell (1995) gave a proof that when a phase oscillator chain
is divided into domains that are out of synchrony with each
other (such as with frequency plateaus or decoupling) then
waves will propagate in both directions from the center of each
domain. This phenomenon, which they called fractured waves,
can be clearly seen in both our model and the experimental data
(Figure 7). For each plateau, with boundaries determined by
decoupling, waves spread in a V from the center of the plateau.
However, we only saw this in the model when we introduced
the natural frequency spatial noise. Somers and Kopell make
no mention of this in their proof, however they do say that in
addition to being independent domains, the boundary oscillators
at neighboring domains must be out of phase. This might depend
on increasing their natural frequency difference with noise.

A waxing and waning of contraction amplitude occurs at
frequency steps in the small intestine (Diamant and Bortoff,
1969; Suzuki et al., 1986; Parsons and Huizinga, 2015a). This
likely results from superposition of waves at either side of
the step, an effect well characterized in acoustics (Discussion
of Parsons and Huizinga, 2015a). A weakly coupled oscillator
model can have little to say about this interpretation as it does
not include amplitude as a variable. Oscillator phase can be
converted to amplitude by a fixed function (as done here by
sine function) but as each oscillator must pass through the full
phase range, the amplitude range during each cycle will also
always be the same. Waxing waning of contraction amplitude
can occur in the absence of frequency steps through an unrelated
mechanism, modulation of slow wave amplitude by a lower
frequency pacemaker activity (“phase-amplitude modulation”)
(Huizinga et al., 2014).

Arrays of cellular automata have been used to model slow
wave propagation in the small intestine (Lammers et al., 2011;
Gao et al., 2013b). Lammers et al. (2011) found that when an

increasing percentage of cells were made inactive, propagation
first slowed and then began to fail. The percentage of active
cells would be analogous to coupling strength in our model
and though we did not measure velocity changes in the
model, propagation velocity does decrease with decoupling by
carbenoxolone in the small intestine (Parsons and Huizinga,
2015a).

Weakly coupled oscillator theory is extremely powerful as it
can distill into a single equation, biophysical models, via phase
reduction, and experimental data and classical physiological
concepts such as refractory period, via the phase response
curve. Thus, one can tie together biophysics, mathematical
analysis, experiment, and modeling to reveal connections that
might not otherwise be apparent and better allowing one to
feed the other. We have demonstrated a novel connection
between spatial variation or noise and the physiological and
experimental phenomena of frequency step stability, V-waves
and high frequency islands, a connection that would not have
been in any way obvious or trivial without the guide of the theory.
This connection suggests further experimental, biophysical and
mathematical investigations.
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