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Autism spectrum disorders (ASDs) and drug addiction do not share substantial

comorbidity or obvious similarities in etiology or symptomatology. It is thus surprising

that a number of recent studies implicate overlapping neural circuits and molecular

signaling pathways in both disorders. The purpose of this review is to highlight this

emerging intersection and consider implications for understanding the pathophysiology

of these seemingly distinct disorders. One area of overlap involves neural circuits and

neuromodulatory systems in the striatum and basal ganglia, which play an established

role in addiction and reward but are increasingly implicated in clinical and preclinical

studies of ASDs. A second area of overlap relates to molecules like Fragile X mental

retardation protein (FMRP) and methyl CpG-binding protein-2 (MECP2), which are

best known for their contribution to the pathogenesis of syndromic ASDs, but have

recently been shown to regulate behavioral and neurobiological responses to addictive

drug exposure. These shared pathways and molecules point to common dimensions

of behavioral dysfunction, including the repetition of behavioral patterns and aberrant

reward processing. The synthesis of knowledge gained through parallel investigations of

ASDs and addiction may inspire the design of new therapeutic interventions to correct

common elements of striatal dysfunction.
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INTRODUCTION

Autism spectrum disorders (ASDs) are prevalent and devastating neuropsychiatric conditions with
a pathophysiology that remains poorly understood. The high heritability of ASDs has motivated the
widespread application of advanced sequencing technology to identify genetic variants associated
with these disorders (McCarroll and Hyman, 2013). The resulting data sets have revealed an
extremely complex genetic architecture, including many genes that each contribute to a fraction of
cases (Chen et al., 2015). To sift through this complexity, a growing number of studies have taken
genetic variants identified in human patients with ASDs, and introduced corresponding mutations
into the genome of laboratorymice.Mice carrying genetic variants associated with neuropsychiatric
disease provide an opportunity to probe brain function in a highly specific fashion, and explore
underlying mechanisms in a manner that can inform the rational design of therapeutics (Fuccillo
et al., 2016). In terms of modeling complex disorders like ASDs, a significant strength of this
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approach is the construct validity provided by studying genetic
variants in mice with known ASD association in humans
(Nestler and Hyman, 2010). Mice carrying ASD-associated
genetic mutations also exhibit behavioral phenotypes that map
onto primary ASD symptom domains, including reduced social
interaction and repetitive patterns of behavior (Silverman et al.,
2010), providing an additional degree of face validity. Some
of these behavioral phenotypes can be corrected by drugs
approved for treatment of ASDs in humans (e.g., Peñagarikano
et al., 2011), although the limited number of effective
medications precludes more rigorous evaluation of predictive
validity.

Many of the genes associated with ASDs play a role in
regulating synaptic transmission between neurons (Zoghbi and
Bear, 2012), including synaptic cell adhesion molecules like
neurexins and neuroligins (Südhof, 2008), as well as postsynaptic
scaffolding molecules like SHANK (Jiang and Ehlers, 2013).
The generation of mouse lines carrying these ASD-associated
genetic mutations has provided opportunities to evaluate changes
in synaptic transmission across a variety of brain regions. The
emerging synaptic architecture of ASDs is nearly as complex as
its genetic architecture, with little consistency when phenotypes
are compared across different brain regions or different ASD-
associated mutations. For instance, the same genetic mutation
can produce distinct functional changes at different synapses
(Etherton et al., 2011; Földy et al., 2013), and the same
synaptic process can be oppositely affected by different mutations
(Auerbach et al., 2011). These perplexing results highlight the
importance of winnowing down the essential synaptic circuits
that contribute to ASD pathogenesis.

One such critical pathway may involve the striatum and
interconnected basal ganglia nuclei, which have been implicated
by a number of recent mouse studies, and exhibit functional
and structural changes in human patients with ASDs that often
correlate with symptom severity (e.g., Sears et al., 1999; Hollander
et al., 2005; Rojas et al., 2006; Voelbel et al., 2006; Langen
et al., 2009, 2014; Delmonte et al., 2012; Abrams et al., 2013).
This growing literature on striatal dysfunction in ASDs has,
rather surprisingly, implicated pathways and circuit elements
known to play a role in drug addiction. The development and
progression of addiction have long been tied to a number
of striatal neurochemical systems (e.g., Wise, 1987; Koob and
Bloom, 1988; Sarnyai and Kovacs, 1994). More recently, chronic
drug exposure has been shown to cause changes in the structure
and function of striatal synapses (Russo et al., 2010; Grueter
et al., 2012), and these forms of drug-evoked synaptic plasticity
contribute to a variety of addiction-related behaviors in rodents.
Several recent studies suggest genes and molecules canonically
associated with ASDs function in the striatum to regulate drug-
evoked synaptic and behavioral plasticity in addiction models -
another surprising connection between these seemingly distinct
disorders.

The purpose of this article is to review the emerging
intersection between ASDs and addiction in the striatum, and
consider potential implications for the pathophysiology and
treatment of both disorders. Many of the topics covered below
relate recent publications in the realm of ASDs to longstanding

or established concepts in addiction research, though recent
examples of addiction research are included when appropriate.
The topics and references are drawn from personal familiarity
with both fields of research, as well as manual review of literature
searches including autism and addiction, autism and striatum,
or autism and each of the various signaling pathways discussed
below. The manuscript is organized on the basis of emerging
common themes, and thus represents an integrative review of
select literature that highlights areas of overlap and potential
shared mechanisms, rather than a comprehensive or systematic
review of research on either ASDs or addiction (Whittemore
et al., 2014).

STRIATAL PATHWAYS IN ASDs

The striatum serves as a gateway to the basal ganglia,
receiving synaptic input from numerous cortical, thalamic, and
limbic brain regions, and relaying information to downstream
processing stations in the basal ganglia (Sesack and Grace, 2010;
Nelson and Kreitzer, 2014). In humans and primates, the striatal
complex includes the caudate nucleus, the putamen, and a ventral
striatal region known as the nucleus accumbens. In rodents,
the nucleus accumbens also occupies the ventral portion of
striatum, while the caudate and putamen roughly correspond
to medial and lateral subregions of the dorsal striatum,
respectively (Graybiel, 2008). Of these striatal subregions, the
nucleus accumbens is most closely associated with reward-
related behavioral functions (Carlezon and Thomas, 2009; Sesack
and Grace, 2010). Many of these functions pertain to learning
reward-related associations, either in terms of cues that predict
delivery of reward (classical/Pavlovian conditioning), or actions
that must be completed to obtain reward (operant/instrumental
conditioning). In human brain imaging studies, normal reward-
related activation of the nucleus accumbens is disturbed in
patients with ASDs (e.g., Scott-Van Zeeland et al., 2010;
Delmonte et al., 2012; Dichter et al., 2012; Kohls et al., 2013;
Richey et al., 2014).

Dorsal striatal subregions also play a role in processing reward,
particularly in terms of the movements and actions that must be
learned and executed in order to obtain reward (Balleine et al.,
2007). A number of important dissociations have been reported
in the behavioral functions of dorsomedial and dorsolateral
striatum in rodents (Yin and Knowlton, 2006; Balleine and
O’Doherty, 2010). The model emerging from these studies
suggests that dorsomedial striatum is important for behaviors
that are flexible and sensitive to outcome, which is often the case
early in learning. As actions are repeated many times and become
streamlined and automatic, they also become less sensitive to
outcome, and this late stage of learning involves dorsolateral
striatum. These inflexible and ingrained patterns of behavior are
considered “habitual,” and the process of habit formation could
contribute to some of the repetitive and stereotyped routines and
rituals observed in patients with ASDs. Indeed, many studies
have reported structural and functional alterations in the caudate
and putamen of human patients with ASDs (e.g., Sears et al.,
1999; Eliez et al., 2001; Levitt et al., 2003; Hollander et al., 2005;
Haznedar et al., 2006; Silk et al., 2006; Turner et al., 2006; Voelbel
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et al., 2006; Langen et al., 2007, 2012; Takarae et al., 2007; Di
Martino et al., 2011).

Many robust behavioral assays for striatum-dependent reward
processing have been developed in rodents. One example is the
place conditioning assay, which involves the association between
a rewarding stimulus and a distinct set of contextual cues (e.g.,
floor texture, wall pattern, or chamber odor). The choice to
spend time in the presence of these cues vs. a neutral set of
cues is operationally defined as a conditioned place preference
(CPP), andmost drugs of abuse produce CPP (Tzschentke, 1998).
Rodents will also develop CPP for contextual cues associated with
social interaction with conspecifics, relative to cues experienced
during social isolation (Panksepp and Lahvis, 2007; Trezza et al.,
2009). This preference for cues associated with social interactions
(i.e., “social CPP”) is likely related to the preference for pair-
bonded partners exhibited by monogamous species like prairie
voles (Carter et al., 1995) and titi monkeys (Carp et al., 2015).
Many of the same striatal pathways contribute to social behavior
as well as drug reward, suggesting neurochemical systems that
originally evolved to mediate social attachment may be hijacked
by drugs of abuse (Insel, 2003; Burkett and Young, 2012). Recent
studies of mice carrying ASD-associated genetic mutations point
to dysfunction of these same striatal systems, which will be
reviewed below in terms of both basic function as well as
dysfunction in ASDs.

Oxytocin
The peptide hormone oxytocin contributes to a myriad of
social behaviors across many mammalian species (Anacker
and Beery, 2013). The pro-social effects of oxytocin have
generated substantial interest in its use as a treatment for
social deficits associated with ASDs, and there is also some
evidence for genetic polymorphisms in the oxytocin receptor
associated with ASDs (reviewed by Yamasue et al., 2012). The
monogamous behavior of prairie voles is associated with a high
density of oxytocin receptors in the nucleus accumbens, and
pharmacological blockade of these receptors prevents pair bond
formation (reviewed by Insel and Young, 2001), pointing to a key
role for oxytocin signaling in the nucleus accumbens in social
behavior.

A recent study by Dölen et al. (2013) found that
pharmacological antagonism of oxytocin receptors in the
nucleus accumbens also blocks social CPP in mice. This result
was somewhat surprising, as mice were previously reported
to have a relatively low density of oxytocin receptors in the
nucleus accumbens compared to other rodent species (Olazábal
and Young, 2006). However, conditional genetic deletion of
the oxytocin receptors in the nucleus accumbens itself did not
impair social CPP. Instead, the oxytocin receptors that mediate
social CPP appeared to be expressed on the axon terminals of
serotonergic fibers that originate in the dorsal raphe nucleus,
and pharmacological antagonism of serotonin 5HT1B receptors
in the nucleus accumbens also blocked social CPP (Dölen et al.,
2013).

Synaptic plasticity in the nucleus accumbens may be
important for encoding the association between social interaction
and contextual cues that leads to social CPP. In acute brain

slice preparations, stimulation of either oxytocin or serotonin
5HT1B receptors in the nucleus accumbens produced a long-
term depression (LTD) of excitatory synapses onto MSNs
(Dölen et al., 2013). This reduction of excitatory synaptic
drive was associated with a decrease in the probability of
presynaptic glutamate release, and provides a plausible synaptic
mechanism that may contribute to social reward. Other forms
of nucleus accumbens LTD that involve presynaptic changes
in glutamate release are impaired by addictive drug exposure
(e.g., Fourgeaud et al., 2004; Grueter et al., 2010). This occlusion
could contribute to decrements in social behavior caused by
drug exposure, like the impairment of social bonding in prairie
voles caused by amphetamine exposure (Liu et al., 2010).
This impairment can be reversed by oxytocin administration
(Young et al., 2014), and oxytocin can attenuate other behavioral
effects of psychostimulant administration (reviewed by Sarnyai
and Kovács, 2014), clearly demonstrating an interaction
between drug effects and the oxytocin system. However, the
neurobiological substrata of social and drug reward are at
least partially separable, because pharmacological antagonism of
oxytocin receptors does not block cocaine CPP (Dölen et al.,
2013).

Dopamine Release
Dopaminergic input to the nucleus accumbens originates from
dopamine neurons in the ventral tegmental area of the midbrain,
and this “mesolimbic” dopamine pathway is closely tied to
motivation, reward, and the development of addiction (for
reviews, see Wise, 2004; Berridge, 2007; Salamone and Correa,
2012).Mesolimbic dopamine is also important for social behavior
in rodents, including pair bond formation in prairie voles
(reviewed by Curtis et al., 2006). In mice, activity of the
mesolimbic dopamine pathway corresponds to social behavior
in real time, and optogenetic manipulations of this pathway
affect social interaction (Gunaydin et al., 2014). Given these
critical functions of dopamine in social behavior and reward, it is
perhaps not surprising that genetic polymorphisms in dopamine
signaling genes are also associated with ASDs (e.g., Comings
et al., 1991; Hettinger et al., 2008, 2012; De Krom et al., 2009;
Hamilton et al., 2013; Bowton et al., 2014; Staal et al., 2015).

A recent report by Karayannis et al. (2014) examined the
function of the mesolimbic dopamine system in mice following
genetic deletion of Cntnap4 (also known as Caspr4), the
gene encoding contactin-associated protein-like 4 (Cntnap4).
Cntnap4 is a transmembrane protein that belongs to the
neurexin superfamily of cell adhesion molecules, which interact
with presynaptic proteins involved in neurotransmitter release
(Spiegel et al., 2002). Genetic mutations in other members of
this family of molecules have been previously reported in patients
with ASDs, and Karayannis et al. (2014) report several new ASD
probands with CNTNAP4 gene disruptions. In mice, they found
that expression of Cntnap4 was enriched in midbrain dopamine
neurons, as well as inhibitory interneurons in the cerebral cortex,
and therefore examined the release of dopamine and GABA
from these populations of brain cells. While the release of
GABA from cortical interneurons was substantially reduced in
Cntnap4 mutant mice, the release of dopamine in the nucleus
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accumbens was significantly increased. These divergent effects
on release of two different neurotransmitters further underscore
the heterogeneous effects that a single ASD-associated genetic
mutation can have on different types of synapses.

Cntnap4 mutant mice also exhibited a variety of aberrant
behavioral phenotypes (Karayannis et al., 2014). Most striking
was hair loss on the snout, face, and body, which was
caused by over-grooming of offspring by parents carrying the
Cntnap4 mutation. This excessive grooming phenotype was
reversed by chronic treatment with haloperidol, a dopamine D2
receptor antagonist, suggesting over-grooming was caused by
excessive dopamine signaling. Social behavior was not assessed
by Karayannis et al. (2014) in Cntnap4 mutant mice, though it
is disrupted by mutations of Cntnap2, another member of this
protein family (Peñagarikano et al., 2011; Burkett et al., 2015). It
will be fascinating to see whether excessive dopamine signaling
in the nucleus accumbens of Cntnap4 mutant mice alters either
social reward or behavioral responses to addictive drug exposure.

Dopamine-Sensitive Medium Spiny
Neurons
A variety of dopamine receptors are expressed by different cell
types in the striatum (Gerfen and Surmeier, 2011). While a small
fraction of striatal cells are interneurons that release acetylcholine
or GABA, the vast majority of striatal cells are medium spiny
projection neurons (MSNs). MSNs are the principal neurons of
the striatum and relay information to downstream processing
stations in the basal ganglia, including the substantia nigra
pars reticulata and the globus pallidus. In the dorsal striatum,
striatonigral and striatopallidal MSNs represent two discrete
subpopulations that differ in expression of D1 vs. D2 dopamine
receptors, as well as a variety of other properties (Gerfen and
Surmeier, 2011). The nucleus accumbens also contains discrete
populations of D1-MSNs and D2-MSNs, but D1-MSNs in the
nucleus accumbens project to both the ventral mesencephalon
and ventral pallidum, whereas D2-MSNs project only to the
ventral pallidum (Kupchik et al., 2015).

The ability to identify and manipulate specific MSN subtypes
was dramatically advanced by the development of bacterial
artificial chromosome (BAC) transgenic mice (Heintz, 2001),
which allow cell type-specific expression of fluorescent proteins
(Gong et al., 2003; Shuen et al., 2008) as well as Cre recombinase
(Gong et al., 2007; Durieux et al., 2009). The application of these
tools to research on drug addiction has revealed that activation
of D1-MSNs promotes addiction-related behaviors, whereas
activation of D2-MSNs tends to inhibit the same behaviors (Lobo
et al., 2010; Bock et al., 2013; Pascoli et al., 2014; reviewed by
Smith et al., 2013). These divergent effects are consistent with
classic models of basal ganglia function, in which the direct
pathway formed by D1-MSNs and the indirect pathway formed
by D2-MSNs exert opposite influences on overall basal ganglia
output (Albin et al., 1989; DeLong, 1990).

Striatal MSNs show enriched expression of genes associated
with ASDs (Chang et al., 2015), and recent studies have begun
to explore how ASD-associated mutations affect specific MSN
subtypes. One study focused on ASD-associated mutations in
neuroligin-3 (Nlgn3), a synaptic cell adhesion molecule that

plays important roles in shaping the functional properties
of synaptic transmission. Loss-of-function genetic mutations
in Nlgn3 caused a specific impairment of inhibitory synaptic
transmission onto nucleus accumbens D1-MSNs (Rothwell
et al., 2014). This reduction of inhibitory synaptic transmission
is intriguing because human patients with ASDs have been
reported to have decreased GABA receptor binding in the
nucleus accumbens (Mendez et al., 2013). In mice, nucleus
accumbens D1-MSNs appeared to be selectively vulnerable to
genetic deletion of Nlgn3 because it is expressed at a relatively
high level compared to neighboring D2-MSNs, or MSNs in
the dorsal striatum. Conditional genetic deletion of Nlgn3 from
nucleus accumbens D1-MSNs also caused the development of a
more repetitive motor routine on the accelerating rotarod task
(Rothwell et al., 2014). This behavioral phenotype has also been
reported in several other mouse lines carrying ASD-associated
genetic mutations (Kwon et al., 2006; Etherton et al., 2009;
Nakatani et al., 2009), and thus might have some relevance to the
repetitive and stereotyped movements and routines associated
with ASDs in human patients.

Altered striatal structure and function have also been
reported in mice lacking the genes normally found on human
chromosome 16p11.2 that are deleted in some human patients
with ASDs (Weiss et al., 2008). These 16p11 mutant mice have
an increased number of striatal cells expressing markers of D2-
MSNs, as well as more MSNs co-expressing both D1 and D2
markers, but no change in the number of D1-MSNs (Portmann
et al., 2014). These changes in cell number were associated with
a relative enlargement in the size of the nucleus accumbens as
well as the globus pallidus, which receives synaptic input from
D2-MSNs. In 16p11 mutant mice, D2-MSNs also appeared to
send ectopic projections to the medial globus pallidus, which
is normally only targeted by D1-MSNs. Nucleus accumbens
MSNs of 16p11 mutant mice had altered excitatory synaptic
properties, including a presynaptic increase in the probability of
glutamate release and changes in postsynaptic glutamate receptor
complement. Mutant mice also exhibited behavioral phenotypes
that included hyperactivity, circling, and a lack of habituation to
novelty.

Opioids
Striatal opioid systems play an important role in the rewarding
aspects of social interaction (Burkett et al., 2011; Trezza et al.,
2011; Resendez et al., 2013), as well as the rewarding properties
of opiate narcotics and other abused drugs (Befort, 2015). The
mu opioid receptor (MOR) is a particularly critical mediator
of the rewarding effects of opiates like morphine (Matthes
et al., 1996). Juvenile mice lacking the MOR gene (Oprm1)
exhibit a diminished behavioral response to separation from their
mothers, suggesting that interaction with the mother may be
less rewarding (Moles et al., 2004). Adult Oprm1 knockout mice
also exhibit other ASD-related behavioral phenotypes, including
decreased sociability and stereotyped behaviors (Becker et al.,
2014). These behavioral changes were associated with dramatic
gene expression changes in the nucleus accumbens and dorsal
striatum, including a number of genes involved in excitatory
synaptic signaling. One of these genes (Grm4) encodes the
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metabotropic glutamate receptor mGluR4, and administration
of an mGluR4 positive allosteric modulator effectively relieved
many of the behavioral phenotypes exhibited by MOR knockout
mice.

Endogenous opioids may interact with other
neuromodulatory systems in the nucleus accumbens. MOR
knockout mice exhibit a dramatic decrease in mRNA levels for
oxytocin in the NAc (Becker et al., 2014). Conversely, oxytocin
receptor levels in the NAc are increased (Gigliucci et al., 2014),
which could represent a homeostatic response to compensate for
loss of endogenous ligand. Intranasal administration of oxytocin
to adult male MOR-KO mice led to an increase in the number
of ultrasonic vocalizations emitted during interaction with a
female mouse (Gigliucci et al., 2014). This interaction between
opioid and oxytocin signaling in the NAc suggests a convergence
of multiple signaling pathways that may contribute to ASD
pathophysiology.

Endocannabinoids
Brain cannabinoid receptors are activated by both exogenous and
endogenous cannabinoids, and play an important role in drug
reward (Befort, 2015). Endogenous cannabinoid systems in the
nucleus accumbens also regulate social behavior, as local blockade
of endocannabinoid degradation enhances social play (Trezza
et al., 2012). Social interaction increases levels of anandamide
(an endogenous cannabinoid) in the nucleus accumbens, an
effect that is stimulated by oxytocin and may contribute to
social reward (Wei et al., 2015). Endocannabinoids are important
for regulating synaptic function in a variety of ways, including
a key role in many forms of synaptic plasticity. Mice lacking
FMRP have an impairment of endocannabinoid-dependent LTD
of excitatory synapses in the NAc (Jung et al., 2012). This
impairment is due to a mislocalization of diacylglycerol lipase-
α (DGL-α), a key enzyme in the biosynthetic pathway for
the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG). In the
absence of FMRP, DGL-α is localized farther away from the
postsynaptic density and is not robustly activated by stimulation
of mGluR5. However, this signaling deficit could be rescued by
inhibiting the degradation of 2-AG, leading to a normalization
of LTD in the NAc as well as some behavioral phenotypes
of FMRP knockout mice. ASD-associated genetic mutations
in Nlgn3 did not appear to affect endocannabinoid-dependent
LTD in the nucleus accumbens (Rothwell et al., 2014), though
these mutations do alter endocannabinoid signaling in other
parts of the brain (Földy et al., 2013). In the dorsal striatum,
exaggerated LTD has been reported in mice overexpressing
eukaryotic translation initiation factor 4E (Santini et al., 2013),
which is encoded by the ASD candidate gene Eif3e (Neves-Pereira
et al., 2009).

Pathways to Dorsal Striatum
The progression of drug abuse is thought to involve a transition
in the control of behavior from ventral to dorsal striatum (for
a recent review, see Everitt and Robbins, 2016). This transition
corresponds with a shift in the motivation to take drugs, which
becomes less goal-directed and more compulsive or habitual
(i.e., insensitive to outcome), leading to continued use despite

adverse consequences. This transition in behavioral control may
involve polysynaptic pathways that link ventral striatum with
dorsal striatum, as neurons in the nucleus accumbens project to
dopaminergic centers in the midbrain that subsequently project
to more dorsal striatal subregions (Haber et al., 2000; Ikemoto,
2007). This ascending spiral of connectivity may be engaged over
the course of chronic drug use and contribute to habitual patterns
of addiction (Belin and Everitt, 2008).

Changes in the nucleus accumbens caused by ASD-associated
genetic variants could accelerate the transition of behavioral
control to more dorsal striatal subregions, leading to more
repetitive, stereotyped, or habitual patterns of behavior. However,
changes that directly affect the dorsal striatum may also produce
similar behavioral consequences: for example, the exaggeration
of dorsal striatal LTD in Eif3e mutant mice could potentially
affect the process of habit formation (Santini et al., 2013).
Dysfunction in the dorsal striatum has also been reported in
mice carrying gene deletions of Shank3 (Peca et al., 2011),
which encodes a synaptic scaffolding protein and is disrupted in
Phelan-McDermid syndrome (an autism spectrum disorder) as
well as idiopathic ASDs (reviewed by Jiang and Ehlers, 2013).
These Shank3 mutant mice exhibit reduced social interaction
and excessive self-grooming to the point of skin lesions (Peca
et al., 2011). MSNs in the dorsal striatum exhibited abnormal
morphology and impaired excitatory synaptic transmission,
although it is presently unclear if D1- or D2-MSNs were
preferentially affected.

ASD MOLECULES IN ADDICTION

Genes and molecules that have been extensively studied in the
realm of ASDs have recently emerged as potential mediators of
addiction-related behavior. These include the genes known to
cause Rett syndrome (MECP2—Amir et al., 1999) and fragile
X syndrome (FMR1—Pieretti et al., 1991), which have been
topics of sustained research since their initial identification.
MeCP2 and FMRP play important roles in the regulation
of gene transcription and translation, respectively. In mice,
genetic mutations in Mecp2 and Fmr1 cause a variety of deficits
in synaptic transmission and plasticity throughout the brain,
which are thought to contribute to the ASD-related symptoms
frequently observed in patients with these syndromes (Zoghbi
and Bear, 2012).

These ASD-associated molecules have been shown to regulate
multiple aspects of striatal function. For example, dopamine
signaling in the striatum is regulated by both MeCP2 (Su et al.,
2015) and FMRP (Wang et al., 2008). Genetic deletion of Fmr1
also affects synaptic structure, function, and plasticity in the
nucleus accumbens (Jung et al., 2012; Smith et al., 2014; Neuhofer
et al., 2015) as well as the dorsal striatum (Centonze et al., 2008;
Maccarrone et al., 2010). The development of drug addiction
is strongly tied to dopamine signaling and synaptic remodeling
in the striatum, motivating several recent investigations of
how genetic mutations in Mecp2 and Fmr1 affect behavioral
responses to addictive drugs. These studies focused on common
behavioral outcomes in addiction research, including CPP as a
measure of drug reward, as well as performance an instrumental
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response to receive contingent delivery of the drug (i.e., drug
self-administration). These studies also examined psychomotor
activation following acute drug administration, as well as the
psychomotor sensitization that occurs following repeated drug
exposure, as these behavioral processes are closely tied to
striatal dopamine release and remodeling of striatal circuitry (for
reviews, see Vanderschuren and Kalivas, 2000; Grueter et al.,
2012).

Methyl CpG-Binding Protein-2 (MeCP2)
Psychostimulant administration induces MeCP2
phosphorylation in the nucleus accumbens (Deng et al.,
2010, 2014). This effect is not seen in MSNs, but is instead
selective for fast-spiking GABAergic interneurons that express
parvalbumin and GAD67. Behavioral responses to amphetamine
administration are altered by a constitutive hypomorphic
mutation in Mecp2 (Deng et al., 2010), as well as a Ser421Ala
mutation in Mecp2 that prevents psychostimulant-induced
phosphorylation (Deng et al., 2014). Enhanced behavioral
sensitivity to psychostimulants is also observed following
restricted knockdown of Mecp2 expression in the nucleus
accumbens. These findings suggest phosphorylation of MeCP2
in the nucleus accumbens plays a role in constraining behavioral
responses to psychostimulants. However, the role of MeCP2 may
be different in the dorsal striatum, as a separate study found
cocaine self-administration was reduced following restricted
knockdown ofMecp2 expression in the dorsal striatum (Im et al.,
2010).

Fragile X Mental Retardation Protein
(FMRP)
Constitutive genetic deletion of Fmr1 did not alter the
acute locomotor response to cocaine, but decreased locomotor
sensitization over course of repeated cocaine exposure, and
also attenuated cocaine CPP (Smith et al., 2014). Conditional
genetic deletion of Fmr1 in the nucleus accumbens also decreased
locomotor sensitization, though it did not affect cocaine CPP.
Cocaine-evoked changes in the structure and function of
excitatory synapses onto nucleus accumbens MSNs were also
enhanced in Fmr1 constitutive knockout mice. These data
suggest that FMRP serves as a negative regulator of the structural
and functional changes at nucleus accumbens synapses caused by
chronic drug exposure, similar to MeCP2 (Deng et al., 2014).

OUTLOOK AND OPEN QUESTIONS

How do these emerging parallels between ASDs and addiction
(Table 1) inform our understanding of the pathophysiology of
each disorder in relationship to the striatum? Despite these
parallels, these are clearly two distinct disorders, as evidenced
not only by distinct symptomatology but also the lack of
comorbidity. Nevertheless, ongoing research may benefit from
more careful consideration of neurobiological and psychological
process that may be commonly affected in both disorders.
This approach is reminiscent the Research Domain Criterion
(RDoC) initiative by the U.S. National Institute of Mental Health

(Insel et al., 2010; Insel and Cuthbert, 2015), which aims to
establish a new framework for psychiatric research that moves
away from specific clinical diagnoses and toward dimensions or
constructs with well-defined neurobiological substrata that may
be impaired across multiple mental disorders. Below, I consider
two behavioral dimensions that may be commonly affected in
both ASDs and addiction, as well as potential neural mechanisms
and therapeutic implications raised by the shared and distinct
elements of these disorders.

Repetitive Behavioral Patterns as a
Common Dimension of Dysfunction
One hallmark of both ASDs and addiction is the repetition of
specific patterns of behavior, sometimes in the absence of an
obvious goal or even in the face of adverse consequences. Indeed,
the transition from casual to compulsive or habitual drug use
is one of the defining features of addiction. Conversely, ASDs
are associated with behavioral patterns that are performed in a
stereotyped fashion and are resistant the change. This can include
simple movements like hand flapping, as well as more complex
routines and rituals. While somewhat different terminology is
used to describe these behavioral patterns (e.g., “compulsive” or
“habitual” for addiction, “repetitive” or “stereotyped” for ASDs),
all may be characterized by a failure to inhibit the repetition of
behavioral patterns. This lack of inhibitory control over repetitive
behavior may also contribute to other mental disorders, such
as obsessive-compulsive disorder, which is also linked to striatal
dysfunction (Burguière et al., 2015).

Rodent models of ASDs and addiction obviously lack
the nuance and specificity of the clinical condition, but
some interesting similarities in repetitive behavioral patterns
seem to suggest common striatal circuitry may be affected
in both disorders. For example, stereotyped patterns of
rotational behavior caused by ASD-associated genetic mutations
(Portmann et al., 2014; Rothwell et al., 2014) are also observed
following exposure to psychostimulants (Fowler et al., 2001).
Similarly, the orofacial stereotypy caused by repeated exposure
to a high dose of cocaine is exacerbated in Fmr1 knockout mice
(Smith et al., 2014). While it is obviously difficult to extrapolate
these simple rodent behaviors to the symptoms of complex
human disorders likes ASDs and addiction, these examples at
least illustrate that some elementary forms of repetitive behavior
can be similarly affected by addictive drugs and ASD-associated
genetic mutations.

Aberrant Reward Processing as a
Common Dimension of Dysfunction
The processing of reward-related information represents another
behavioral dimension that may be affected in both ASDs
and addiction. The concept of reward figures prominently in
addiction, where decades of research have led to the identification
and dissection of distinct components of reward (reviewed by
Berridge et al., 2009). One important distinction is between
the hedonic impact or “liking” of reward, and the incentive
salience or “wanting” associated with rewards and related
environmental stimuli. Repeated drug exposure is thought to
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TABLE 1 | Striatal signaling pathways and molecules commonly implicated in both addiction and autism spectrum disorders (ASDs); see text for details.

Pathway/Molecule Relevance to addiction Relevance to ASDs

Oxytocin Attenuates behavioral effects of psychostimulant

administration (Sarnyai and Kovács, 2014)

Social reward involves actions of oxytocin in the nucleus

accumbens (Dölen et al., 2013)

Dopamine Important for reward and attribution of incentive salience

(Wise, 2004; Berridge, 2007)

Increased release in Cntnap4 mutant mice (Karayannis et al.,

2014)

Opioids Contribute to rewarding effects of exogenous opiates and

other drugs (Befort, 2015)

Autism-related behavioral phenotypes in Oprm1 mutant mice

(Moles et al., 2004; Becker et al., 2014)

Endocannabinoids Contribute to drug reward and synaptic plasticity (Befort,

2015)

Altered striatal synaptic plasticity in Fmr1 and Eif3e mutant

mice (Jung et al., 2012; Santini et al., 2013)

Methyl CpG-Binding Protein-2

(MECP2)

Altered behavioral responses to psychostimulant

administration (Deng et al., 2010, 2014; Im et al., 2010)

Deletions cause Rett syndrome (Amir et al., 1999)

Fragile X Mental Retardation Protein

(FMRP)

Altered behavioral and synaptic responses to cocaine

exposure (Smith et al., 2014)

Deletions cause fragile X syndrome (Pieretti et al., 1991)

selectively exaggerate or sensitize the incentive salience attributed
to drugs and drug-related cues, a process that is closely linked to
dopamine transmission (for a recent review, see Robinson and
Berridge, 2008).

In ASD research, aberrant “reward processing” often refers to
altered patterns of brain activity in response to social stimuli or
monetary reward (e.g., Scott-Van Zeeland et al., 2010; Delmonte
et al., 2012; Dichter et al., 2012; Kohls et al., 2013; Richey et al.,
2014). Reduced sensitivity to social stimuli may contribute to the
deficits in social behavior associated with ASDs, but the precise
nature of this aberrant reward processing remains unclear. For
instance, are social deficits in ASDs due to decreased hedonic
impact or “liking” of social interaction, or rather to a decrease in
the incentive salience or “wanting” associated with social stimuli?
An alternative possibility (discussed in more detail below) is that
ASDs are associated with indiscriminate attribution of incentive
salience to inappropriate stimuli in the environment, which
could lead to fixation on these stimuli at the expense of social
interaction. Rodents carrying ASD-associated genetic mutations
may provide a tractable model to begin disentangling these
possibilities, through behavioral assays and direct manipulations
of brain function needed to fractionate the different components
of reward (Berridge et al., 2009).

Neural Mechanisms for Common and
Distinct Dimensions of Dysfunction
In light of the putative behavioral dimensions that are commonly
impaired in ASDs and addiction, an obvious question arises
regarding the elements of striatal circuitry that could commonly
contribute to both disorders. One intriguing possibility involves
D1-MSNs in the nucleus accumbens, as these cells appear to be
a key locus for structural and functional synaptic changes caused
by chronic drug exposure (Grueter et al., 2012; Smith et al., 2013).
Drug-evoked plasticity at excitatory synapses on D1-MSNs in the
nucleus accumbens appears to drive multiple forms of addiction-
related behavior (Pascoli et al., 2012, 2014). Furthermore, direct
activation of D1-MSNs in the nucleus accumbens enhances both
drug reward and the development of psychomotor sensitization
(Lobo et al., 2010; Koo et al., 2014), whereas inhibition of these
cells reduces the same behavioral effects (Hikida et al., 2010;
Ferguson et al., 2011).

Given this established link between addiction and D1-MSNs
in the nucleus accumbens, it was both surprising and fascinating
that recent reports linked these same cells to social behavior
in wild-type mice (Gunaydin et al., 2014), as well as repetitive
behavior in mice carrying ASD-associated mutations in Nlgn3
(Rothwell et al., 2014). The former study suggests dopamine
release and activation of D1-MSNs are both important for the
expression of social behavior in mice (Gunaydin et al., 2014),
whereas the latter study suggests synaptic disinhibition of D1-
MSNs leads to repetitive behavior (Rothwell et al., 2014). These
two patterns of results may appear contradictory in relation to
ASDs, which are associated with less social behavior and more
repetitive behavior. One potential explanation for this apparent
contradiction (considered below) also provides insight into how
the altered activity of one cell type could lead to both common
and distinct dimensions of dysfunction.

Continuous synaptic disinhibition of D1-MSNs may lead
to chronic elevation of baseline activity in these cells, thereby
occluding phasic increases in activity that encode normal social
behavior. Chronic elevation of baseline activity in D1-MSNs
may also influence dopamine levels in the striatum, as axonal
projections from these cells to the ventral tegmental area
appear to synapse preferentially onto interneurons, which in
turn inhibit dopamine neurons (Xia et al., 2011; Bocklisch
et al., 2013). Disinhibition of D1-MSNs may therefore translate
into disinhibition of dopamine neurons and increase dopamine
release in the back into the striatum. This continuous increase in
dopamine release would resemble the effects of ASD-associated
genetic mutations in Cntnap4 (Karayannis et al., 2014), and
could lead to indiscriminate attribution of incentive salience to
inappropriate stimuli in the environment. This “non-specific”
attribution of incentive salience would be fundamentally different
from the attribution of incentive salience in addiction, which is
excessively large in magnitude but still specifically attributed to
drugs and drug-related cues. Thus, increased activation of D1-
MSNs and excessive dopamine release may be a common feature
of ASDs and addiction, but there may be differences in how
this cellular change is manifested in the clinical features of each
disorder.

It is also becoming increasingly apparent that D1-MSNs in the
nucleus accumbens exhibit heterogeneity in terms of function,
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structure, and neurochemistry. D1-MSNs specifically co-express
the neuropeptide dynorphin, and activation of dynorphinergic
cells in different subregions of the nucleus accumbens can
lead to opposite behavioral effects (Al-Hasani et al., 2015). D1-
MSNs in the nucleus accumbens also send axonal projections
to both the ventral mesencephalon and ventral pallidum, and
therefore contribute to both the direct and indirect pathways
through the basal ganglia (Kupchik et al., 2015). Furthermore,
a small population of MSNs in the nucleus accumbens appears
to express both D1 and D2 dopamine receptor subtypes
(Perreault et al., 2011). Subtle differences in how ASDs and
addiction impact different subpopulations of D1-MSNs could
also contribute to distinct clinical manifestations of these
disorders.

Therapeutic Implications
Parallel dissection of striatal circuitry in ASDs and addiction
may enable therapeutic advances in one field to inform progress
in the other. For example, in the realm of addiction, the key
role for D1-MSNs in promoting the behavioral effects of cocaine
recently inspired an intersectional approach to reversing cocaine-
evoked synaptic plasticity in mice, through the combination
of deep brain stimulation of the nucleus accumbens and a
pharmacological manipulation that selectively targets D1-MSNs
(Creed et al., 2015). This type of intersectional strategy may
prove beneficial as deep brain stimulation and other forms of
neuromodulation are developed for clinical treatment of patients
with ASDs (Sturm et al., 2012; Enticott et al., 2014; Sinha et al.,
2015). Other types of intersectional therapeutic strategies could
involve simultaneousmanipulation ofmultiple neuromodulatory
systems that intersect in the nucleus accumbens, such as oxytocin
and serotonin (Dölen et al., 2013), or opioids and cannabinoids

(Befort, 2015). The opioid and cannabinoid systems may be
particularly tractable therapeutic targets, given their rich and
diverse pharmacology as well as active drug development efforts
for treatment of pain.

ASDs and drug addiction are complicated disorders that likely
involve many parts of the brain, but the literature reviewed
here highlights a central role for the striatum and basal ganglia
in both disorders. In the striatum, these disorders impact a
variety of neuromodulatory systems converging on multiple
postsynaptic cells types. This intrinsic complexity makes it
challenging to study striatal circuits in the context of disease,
but also increases the number of potential therapeutic targets as
well as the possibility of developing interventions that specifically
affect individual circuit elements. It is quite likely that some
common elements of this circuitry (like D1-MSNs in the nucleus
accumbens) contribute to the pathophysiology of both ASDs and
addiction, while other elements within or beyond the striatum are
uniquely involved in only one disorder. A growing knowledge of
both common and distinct dimensions of dysfunction will help
guide the development of interventions that could be broadly
useful for normalizing neural circuit dysfunction that contributes
to behavioral deficits in both ASDs and addiction.
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