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We present a novel one-transistor/one-resistor (1T1R) synapse for neuromorphic

networks, based on phase change memory (PCM) technology. The synapse is capable

of spike-timing dependent plasticity (STDP), where gradual potentiation relies on set

transition, namely crystallization, in the PCM, while depression is achieved via reset or

amorphization of a chalcogenide active volume. STDP characteristics are demonstrated

by experiments under variable initial conditions and number of pulses. Finally, we support

the applicability of the 1T1R synapse for learning and recognition of visual patterns

by simulations of fully connected neuromorphic networks with 2 or 3 layers with high

recognition efficiency. The proposed scheme provides a feasible low-power solution for

on-line unsupervised machine learning in smart reconfigurable sensors.

Keywords: neuromorphic circuits, spike timing dependent plasticity, phase change memory, neural network,

memristor, pattern recognition, cognitive computing

INTRODUCTION

Neuromorphic engineering represents one of the most promising fields for developing new
computing paradigms complementing or even replacing current Von Neumann architecture
(Indiveri and Liu, 2015). Tasks such as learning and recognition of visual and auditory patterns
are naturally achieved in the human brain, whereas they require a comparably long time and
excessive power consumption in a digital central processor unit (CPU). To address the learning
task, one approach is to manipulate the synaptic weights in a multilayer neuron architecture called
perceptron, where neurons consist of CMOS analog circuits to perform spike integration and firing,
while synapses serve as interneuron connections with reconfigurable weights (Suri et al., 2011;
Kuzum et al., 2012; Indiveri et al., 2013; Wang et al., 2015). Recent advances in nanotechnology
have provided neuromorphic engineers with new devices which allow for synaptic plasticity, such
as resistive switching memory (RRAM; Waser and Aono, 2007; Jo et al., 2010; Ohno et al., 2011;
Ambrogio et al., 2013; Prezioso et al., 2015), spin-transfer-torque memory (STT-RAM; Locatelli
et al., 2014; Thomas et al., 2015; Vincent et al., 2015), or phase change memory (PCM; Suri et al.,
2011; Bichler et al., 2012; Burr et al., 2014; Eryilmaz et al., 2014). In particular, recent works have
shown the ability to train real networks for pattern learning, adopting backpropagation (Burr
et al., 2014) and recurrently-connected network (Eryilmaz et al., 2014). The advantage of these
devices over CMOS is the small area, enabling the high synaptic density which is required to
achieve the large connectivity (i.e., ratio between synapses and neurons) and highly parallelized
architecture of the human brain. In addition, nanoelectronic synapses allow for low-voltage
operation in hybrid CMOS-memristive circuits, and for augmented functionality with respect to
CMOS technology, thanks to the peculiar phenomena taking place in the memristive element.
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For instance, the CMOS-memristive synapse showed the ability
to perform spike-timing dependent plasticity (STDP; Yu et al.,
2011; Ambrogio et al., 2013), the transition from short-term
to long-term learning (Ohno et al., 2011), a multilevel cell
operation allowing for gradual weight update (Wang et al., 2015)
and a stochastic operation suitable to redundant neuromorphic
networks (Suri et al., 2012; Yu et al., 2013; Garbin et al., 2015;
Querlioz et al., 2015).

In this context, PCM technology is an attractive solution
for nanoelectronic synapse in high density neuromorphic
systems. PCM is currently under consideration for stand-alone
(Servalli, 2009) and embedded memories (Annunziata et al.,
2009; Zuliani et al., 2013). Generally, the device appears with
one-transistor/one-resistor (1T1R) architecture which allows for
strong immunity to voltage variations as well as relatively
compact structure. Either metal-oxide-semiconductor (MOS) or
bipolar junction transistor (BJT) have been used in the 1T1R
architecture. In some case, the one-diode/one-resistor (1D1R)
structure has been demonstrated, capable of extremely small
area and high density using the crosspoint architecture (Kau
et al., 2009). The PCM technology platform has been used for
computing applications for Boolean logic functions (Cassinerio
et al., 2013) and arithmetic computation (Wright et al., 2011),
including numerical addition, subtraction and factorization
(Hosseini et al., 2015). Neuromorphic synapses have also been
studied: Kuzum et al., have first demonstrated STDP in PCM
by use of an ad-hoc train of pulses at either terminal of the
device (Kuzum et al., 2012). Suri et al., have presented a 2-
PCM synapse, where the 2 PCM devices serve as complementary
potentiation and depression via gradual crystallization (Suri et al.,
2011; Bichler et al., 2012). Supervised training and learning
using back-propagation schemes were recently shown using
PCM arrays (Burr et al., 2014; Eryilmaz et al., 2014). Despite the
wealth of novel demonstrations of PCM technology, no STDP-
based unsupervised learning and recognition with PCM synapse
circuits has been presented so far.

Here we present a novel 1T1R synapse based on PCM
capable of STDP. Potentiation of the synapse is achieved via
partial crystallization enabling a gradual increase of synapse
conductance, while synapse depression occurs by amorphization
in the reset transition. STDP characteristics are demonstrated by
experiments as a function of the initial resistance state and of
the number of potentiating pulses. We demonstrate the ability to
learn and recognize patterns in a fully-connected neuromorphic
network and we propose for the first time the input noise as a
means to depress background synapses, thus enabling on-line
pattern learning, forgetting and updating. Training of the PCM
synapse network with alternating and multiple visual patterns
according to the MNIST data base is shown. Pattern recognition
with multiple layers is finally addressed for improved learning
efficiency.

MATERIALS AND METHODS

PCM Characteristics
Figure 1 shows the PCM device used in this work (a) and its
characteristics. The PCM was fabricated with 45 nm technology

FIGURE 1 | Cross sectional view of a PCM obtained by transmission

electron microscopy (TEM) (A), measured quasi-stationary I-V curves

for the PCM device in the crystalline and amorphous phase (B), reset

characteristic of R as a function of the write voltage for pulse-width 40

ns (C) and set characteristics of R as a function of the set pulse-width

tP and voltage Vset = 1.05V for variable initial PCM state (D). The PCM

device shows fast switching at low voltage, thus supporting PCM technology

for low-voltage, low-power synapses in neuromorphic systems.

and consists of an active Ge2Sb2Te5 (GST) layer between a
confined bottom electrode (or heater) and a top electrode
(Servalli, 2009). The PCM top electrode wasmade of a Cu/W/TiN
multilayer connecting all cells along a row in the array, while
the bottom electrode consisted of a tungsten plug and a sub-
lithographic TiN heater connected to the GST layer. The active
material GST is a well-known phase change material, which
remains stable in 2 phases, namely the crystalline phase and the
amorphous phase (Wong et al., 2010). The 2 phases differ by
their respective resistance, as displayed by the I-V characteristics
in Figure 1B: while the crystalline (set) state shows a relatively
low resistance, the amorphous (reset) state shows high resistance
and a typical threshold switching behavior at a characteristic
threshold voltage VT (Ielmini and Zhang, 2007). To change
the PCM state, positive voltage pulses are applied between the
top electrode and the heater. Figure 1C shows the resistance R
measured after the application of a rectangular write pulse as a
function of the pulse amplitude V. The PCM device was initially
prepared in the set state with R = 10 k� by application of a pulse
with amplitude 1.2V for 250 ns, before any applied pulse. Data
show that R remains constant, until the applied voltage exceeds
the voltage Vm for GST melting, causing amorphization, around
1.2V, which corresponds to the melting voltage of the device.
Above Vm, the applied pulse is able to induce melting, which
leaves the GST volume in an amorphous phase as the voltage
pulse is completed. The amorphous volume increases with V,
thus leading to the increase of R with V in the characteristic of
Figure 1C. To recover the initial crystalline phase, a rectangular
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pulse with voltage below Vm is applied. A voltage Vreset =

1.75V is sufficient to induce a resistance change to about 20
M�, corresponding to a full reset state. Figure 1D shows the
resistance R measured after a set pulse with voltage Vset =

1.05V as a function of the pulse-width tP and for increasing
initial R from 15 k� to 10 M� of the PCM (different colors
in Figure 1D). In general, R decreases with increase in tP as
a result of the increased crystalline fraction (Cassinerio et al.,
2013). A pulse width of about 250 ns is generally sufficient to
complete crystallization within the GST layer irrespective of the
initial value of R, thus supporting the good quality of PCM
in terms of fast memory, low write voltage and low power
consumption.

1T1R Architecture
Figure 2 schematically shows a neuron/synapse/neuron block of
the neuromorphic network. Here, the synapse consists in a 1T1R
structure where the PCM cell is connected in series with a MOS
transistor. The transistor width and length must be suitable to
drive a current around 300µA, which is needed for set and
reset transition in the PCM with 45 nm technology (Servalli,
2009). As a reference, an embedded PCM device with 1T1R
structure has an area (almost equal to the transistor area) of
36F2, where F is the minimum feature size of the technology,
for F = 90 nm and a write current of 400µA (Annunziata
et al., 2009). The 1T1R synapse has 3 terminals, namely the
gate electrode of the transistor, the top electrode (TE) of the
PCM and the bottom electrode consisting of the transistor
channel contact not connected to the PCM. The synapse gate
voltage VG is driven by the pre-synaptic neuron (PRE), which
applies a sequence of rectangular spikes. The positive gate voltage
activates a current spike in the synapse which is fed into the
post-synaptic neuron (POST). Each neuron in the neuromorphic
network consists of a leaky integrate and fire (LIF) circuit,
where the input current spike is integrated by the first stage,
thus raising the internal (or membrane) potential Vint. The
TE voltage VTE is controlled by the POST, and is normally
equal to a negative constant value, e.g., −30mV. Thanks to
the negative VTE, a negative current spike is generated in the
1T1R in correspondence of the PRE spike, hence causing a
positive increase of Vint in the inverting integrator of Figure 2.
The relatively low VTE ensures that the resistance state of
the PCM is not changed, thus avoiding unwanted synaptic
plasticity during the communication mode. The POST also
controls the gate voltage of the synapse in the connection
to the neuron in the next layer (not shown in Figure 2).
Therefore, the scheme in Figure 2 represents the building block
to be replicated to achieve a generic multilayer neuromorphic
array. Note finally that the 1T1R synapse in Figure 2 can be
considered a simplified version of the 2-transistor/1-resistor
(2T1R) synapse presented by Wang et al. where communication
and plasticity were achieved by 2 separate transistors (Wang
et al., 2015), instead of only one transistor in the present
solution.

As Vint exceeds a given threshold Vth of a comparator, the
fire stage delivers a pulse back to the TE to update the weight
of the synapse. The TE spike contains 2 rectangular pulses, the

FIGURE 2 | Schematic illustration of the neuromorphic network with a

1T1R synapse. The PRE drives the MOS transistor gate voltage VG, thus

activating a current spike due to the low negative TE voltage (VTE = −30mV)

set by the POST. The current spikes are fed into the POST, which eventually

delivers a VTE spike back to the synapse as the internal voltage Vint exceeds a

threshold Vth. The VTE spike includes a set and reset pulse to induce

potentiation/depression according to the STDP protocol.

second pulse having a higher amplitude than the first one. The
specific shape of the VTE spike results in a change in the PCM
resistance depending on the relative time delay between the
PRE and POST spikes, in agreement with the STDP protocol.
STDP in the PCM synapse is illustrated in Figure 3, showing
the applied pulses from the PRE and the POST. The PRE spike
is rectangular, with a 10ms pulse-width and amplitude VG =

0.87V, followed by a 10ms after-pulse at zero voltage. The POST
spike lasts 20ms overall, and includes two pulses of width tP at
the beginning of the first and the second halves of the total pulse.
The amplitudes of the first and second pulses are Vset = 1.05V
and Vreset = 1.75V, respectively, intercalated by wait times at
zero voltage. Amplitudes Vset and Vreset are tuned to induce set
transition (crystallization) and reset transition (amorphization),
respectively, according to the PCM characteristics in
Figure 1. These values should be suitably adjusted according
to the specific memory technology integrated in the
synapse.

We define the relative time delay 1t given by:

1t = tpost − tpre,

where tpost is the initial time of the POST spike and tpre is
the initial time of the PRE spike, as shown in Figure 3. If
the PRE spike appears before the POST spike (a), the relative
delay 1t is positive and the PRE spike overlaps with the POST
spike during the set pulse of voltage Vset, thus inducing set
transition in the PCM with a consequent decrease of resistance.
This corresponds to the so-called long-term potentiation (LTP)
in the STDP protocol. If the PRE spike appears after the
POST spike (b), the relative delay 1t is negative and the PRE
spike overlaps with the POST spike during the reset pulse
of voltage Vreset, thus inducing reset transition in the PCM
with a consequent increase of resistance. This corresponds
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FIGURE 3 | Scheme of the applied pulses from the PRE and POST neurons to the 1T1R synapse. In the case of small positive delay 1t (A), when the PRE

spike is applied just before the POST spike, the PCM receives a potentiating pulse with voltage Vset inducing set transition. On the other hand, for small negative delay

1t (B), when the PRE spike is applied just after the POST spike, the PCM receives a depressing pulse with voltage Vreset inducing reset transition. For

positive/negative delays larger than 10ms, there is no overlap between PRE and POST spikes, thus no potentiation/depression can take place.

FIGURE 4 | STDP characteristics, namely measured change of conductance R0/R as a function of delay 1t, for various PCM states, namely state A

(R0 = 15 k�), state B (R0 = 500 k�), and state C (R0 = 10 M�), also reported in Figure 1D. Depression and/or potentiation are shown depending on delay and

initial state, providing a confirmation of the STDP capability in our 1T1R synapse.

to the so-called long-term depression (LTD) in the STDP
protocol.

RESULTS

STDP Characteristics
We characterized STDP characteristics in a 1T1R synapse,
obtained by wire-bonding a MOS transistor and a PCM device
on 2 separate chips. The transistor size was L = 1µm and
W = 10µm and the device was able to deliver sufficient
current to switch the PCM device during set and reset. To
demonstrate STDP operation, voltage pulses as in Figure 3 were
applied to the transistor gate and to the TE terminal with variable
delay 1t and variable initial resistance R0 of the PCM device.
We used a pulse-width tP = 40 ns of set/reset pulses in the
POST spike, i.e., the same as in Figures 1C,D. Figure 4 shows
the measured change of conductance R0/R, where R0 and R
were measured before and after the applied gate/TE pulses, for
the 3 initial states of the PCM shown in Figure 1D, namely
state A close to the full set state (R0 = 15 k�), state B which
is intermediate between set and reset states (R0 = 500 k�),
and state C close to the full reset state (R0 = 10 M�). R was
measured after one spike event in all cases except for state C,
where 1, 3, and 5 spikes were used in the experiments. State A
(Figure 4A) displays strong depression for 1t < 0, indicating a

resistance increase by about 3 orders ofmagnitude corresponding
to the full resistance window of the PCM device between set
and reset states in Figure 1C. On the other hand, state A does
not show any potentiation, since the phase is already almost
completely crystallized in this state. State B (Figure 4B) shows
both depression (1t < 0) and potentiation (1t > 0), since both
set and reset transition are possible for this intermediate state.
Finally, state C (Figure 4C) shows no depression, since this state
is already fully amorphized. In the case of one spike, the PCM also
shows no potentiation, since a 40-ns pulse is not able to induce
significant crystallization in the fully-amorphized state according
to the set characteristics in Figure 1D. Potentiation however
arises after an increasing number of spikes, reaching about a
factor 103× in the case of 5 repeated spikes with the same delay.
These characteristics demonstrated STDPwith abrupt depression
and gradual potentiation due to cumulative crystallization in the
PCM device (Cassinerio et al., 2013). Note that tP = 40 ns was
chosen to be long enough to allow for full reset of the PCMdevice,
while providing a partial and additive crystallization according
to Figure 1D. A longer tP would result in slightly different
STDP characteristics, due to the larger crystallization similar
to the enhanced potentiation with larger number of spikes in
Figure 4C. On the other hand, depression would not be affected
by increasing tP, since the reset transition only depends on the
quenching time.
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FIGURE 5 | Result of a random spiking experiment, showing the

random delay 1t as a function of the epoch (A), corresponding synapse

resistance as a function of the epoch (B), and correlation between 1t

and R0/R (C). The correlation between delay and conductance change is

consistent with the STDP characteristics at variable resistance in Figure 4.

We also verified that continuous spiking with random relative
delay 1t leads to random potentiation and depression of a
single PCM synapse. Figure 5 shows the results of a random
1t spiking experiment over 1000 epochs (i.e., spike events),
reporting the 1t (a), the synapse resistance R as a function of
the number of epochs (b), and a correlation between R0/R and
1t (c), where R0 and R were measured before and after each
spike in the sequence. Due to the uniform distribution of 1t
adopted in our experiment, R in Figure 5B remains close to the
full reset state for most of the experiment. Only few obvious
resistance drops were obtained, since at least 3 pulses with 1t
> 0 are needed in Figure 4C to achieve potentiation from the
full reset state. The correlation between 1t and R0/R over 104

spikes in Figure 5C nicely agrees with the STDP characteristics
in Figure 4, thus further supporting the STDP capability in our
PCM–based synapse.

Note that potentiation/depression in Figures 4, 5 only take
place during the set/reset pulses of pulse-width 40 ns, which is
a negligible fraction of the spike timescale of 10ms. This ensures
that the energy consumption is negligible for synaptic plasticity
as required by low power applications of the neuromorphic
system.

Neuromorphic Network
Due to the simplicity of the POST spike shape including a set
pulse and a reset pulse, the STDP characteristics in Figures 4,
5 show constant depression and potentiation for 1t <0 and

1t >0, respectively, in contrast to the exponential-like decay
which was revealed by previous in-vivo experiments (Bi and
Poo, 1998). In addition, STDP characteristics in Figures 4, 5 are
affected by a large window which can reach 1000x in one single
spike, as opposed to the gradual change of only few percent
of biological synapses (Bi and Poo, 1998). To demonstrate that
the simplified features of our STDP do not prevent a proper
learning capability in our synapse, we performed simulations of
pattern learning in a fully-connected perceptron with 2 neuron
layers and 1T1R PCM-based synapses. Figure 6 schematically
illustrates the adopted architecture (a) and shows a practical
circuit implementation with 1T1R synapses (b). The input
pattern stimulates the first layer of neurons, consisting of a 28×28
retina in our simulations. Each of these 1st layer (PRE) neurons is
connected to each 2nd-layer (POST) neurons via a synapse. We
varied the number of POSTs in the 2nd layer and the intra-layer
synaptic interaction depending on the purpose of the simulation.
The 2-layer neuromorphic network can be arranged in the array-
type synaptic architecture in Figure 6B, where a synapse in row
i and column j, with i = 1, 2, 3, . . . , N and j = 1, 2, 3,
. . . , M, represents the connection between the i-th PRE and
the j-th POST. Therefore, the generic i-th PRE drives the gate
terminals of all 1T1R synapses within the corresponding row,
while the generic j-th POST receives the total current generated
in the j-th column of synapses and drives the TE terminals of
all synapses in the j-th column, according to the scheme in
Figure 2.

Simulation of Learning of a Single Pattern
Figure 7 shows the simulation results for the case of a 28x28 PRE
retina array (N = 784) with a single POST (M = 1). Simulations
were obtained with the software MATLAB and the model for
PCM crystallization dynamics was obtained by interpolating data
in Figure 1D. CMOS neuron circuitry was modeled with ideal
integrators, comparators and arbitrary waveform generators,
while the transistor in the 1T1Rwasmodeled as a series resistance
of 2.4 k� during communication and fire. The input pattern
in Figure 7A consists of a handwritten “1” chosen within the
MNIST database (LeCun et al., 1998). The pattern was randomly
alternated with random noise (Figure 7B) for the purpose of
inducing random spikes which uniformly depress all background
synapses not belonging to the pattern. PRE-synaptic neurons
were randomly activated during each noise event to allow for
uniform depression of the background. Pattern and noise were
presented with probability 50% each with clock time tck =

10ms. Noise consists in the excitation of an average of 51
neurons randomly selected within the 784 PREs, corresponding
to a fraction of 6.5% of neurons. During each noise epoch we
extracted a different instance of white 1/0 noise. PRE spikes led
to the excitation of synaptic currents that were integrated by the
single POST in the 2nd layer, causing fire events every time the
internal voltage exceeded Vth.

The evolution of the synaptic weights is shown by the color
maps of conductance 1/R at t = 0 s (Figure 7C), t = 3.5 s
(d) and t = 7 s (e), also corresponding to the total simulated
time. We assumed that the initial distribution of weights is
random between set and reset states, which can be obtained, for
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FIGURE 6 | Neuromorphic network adopted in our simulations: schematic illustration (A) and corresponding circuit (B). A first neuron layer with

N = 28× 28 neurons is fully connected to a second neuron layer withM neurons through 1T1R PCM-based synapses. The first layer delivers spikes in response to

presentation of one or more visual patterns. During training, STDP within the synapses leads to LTP/LTD update of the synapse weights eventually resulting in the

specialization of the output neurons in recognizing the submitted patterns.

FIGURE 7 | Simulation results for pattern learning. The input pattern “1” (A) is presented at the input together with noise (B). Synaptic weights are random at

t = 0 s (C), then they specialize at progressive times 3.5 s (D) and 7 s (E). The corresponding complete evolution of synapse weights for increasing time is shown in

(F), with positions A, B, and C related to (C–E). Red lines represent synapses for pattern, cyan lines are the background synapses, while the black and blue lines are

the mean pattern and background synapses, showing progressive learning and specialization.

instance, by initially resetting all cells, then applying relatively
short set pulse with voltage close to the PCM threshold voltage
VT. A random-set operation was shown to generate random bits
in RRAM, thus enabling true random number generation (Balatti
et al., 2015). Figure 7F shows the detailed time evolution of the
synaptic weights, including 25, out of a total of 76, representative
synapses within the pattern and other 236, from a total of
708, from the background, together with the corresponding
average weights. Starting from the initial random distribution,

the pattern weights (in red in Figure 7F) start to potentiate after
approximately 0.3 s, reaching a value of 10−4 �−1 around about
0.4 s. This is the result of cumulative crystallization in the PCM
as a result of multiple STDP events with 1t > 0, corresponding,
e.g., to the presentation of a pattern which induces a fire in the
POST. Background synapses (in cyan in Figure 7F) are instead
depressed over a longer scale of about 3.5 s, where they reach
a conductance of about 10−7 �−1 corresponding to the full
reset state. The depression mechanism takes advantage of the
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random noise appearing at the PRE neuron layer. Since noise is
uncorrelated, it only causes synapse depression when the noise
PRE spike comes soon after a previous fire (thus with 1t <

0) most probably induced by pattern spikes. Therefore, noise
plays a key role in depression, although it should be kept to a
moderate frequency and moderate density (6.5% in Figure 7)
during training to avoid interference with stable pattern learning.
Note the fast pattern learning relatively to the slow background
depression, as also evidenced by the evolution of synapse weights
in Figure 7D at 3.5 s, where depression is still not uniformly
achieved in the background. The rate of background depression
might be enhanced by increasing the noise density, however at
the expense of a disturbed potentiation of pattern synapses. In
fact, a high noise density might lead to an increased probability
of noise-induced fire, which, if followed by pattern presentation,
may result in the depression of pattern synapses according to
STDP. Therefore, the ideal noise density should be dictated by
the tradeoff between fast background depression and efficient
pattern learning. The real time evolution of synapse during
a representative simulation is reported in the movie M1 in
the Supplementary Material. We did not implement device-to-
device variability for simplicity. However, the impact should be
negligible, since the network relies on the bistable device behavior
rather than on the analog weight update of the synapse (Suri et al.,
2013).

Energy and Power Consumption
To assess the power consumption of our synaptic network,
we calculated the average dissipated energy Esyn and power
Psyn = Esyn/tck per synapse, which is shown in Figure 8A

as a function of time during learning. The most significant
contribution to energy dissipation is due to the PRE spike
(communication) which induces a current spike of tck = 10ms
due to the constant VTE = −30mV. The dissipated energy
Esyn,c due to communication (not including fire) in a synapse is
given by:

Esyn,c = tck
∑

i
V2
TE/(Ri + RMOS)/(NM),

where Ri is the resistance of the i-th synapse, RMOS is the
resistance of the MOS transistor in the on state, N andM are
the numbers of PRE (N = 784 in our simulation) and POST
(M = 1 in our simulation), respectively, and the summation is
extended over all synapses that were activated by a PRE spike. In
our calculations, we used a constant resistance RMOS = 2.4 k� for
simplicity. The red filled points in Figure 8A show the calculated
Esyn,c due to the communication mode, reaching a peak of about
80 pJ as the pattern is presented to potentiated synapses after
stable learning in the neuromorphic network. The corresponding
dissipated power Psyn,c = Esyn,c/tck is in the range of 8 nW. The
dissipated energy is lower in the initial stages when the pattern
is not yet learned, given the relatively low conductance of the
pattern synapses.

Figure 8B shows the distribution of Esyn,c due to spiking
communication after consolidation of weights between t =

4.2 s and 7 s in Figure 8A. Note that there are 3 sub-
distributions of Esyn,c, consisting of a high energy range (group
I) due to pattern spiking and a low energy range, including
a medium low sub-distribution (group II) and an extreme
low sub-distribution (group III). Group II can be attributed
to noise spikes exciting potentiated pattern synapses, which
have large weights but only few are activated by the noise
spikes. On the other hand, group III can be attributed to
noise spikes exciting the background depressed synapses, thus
corresponding to relatively few synapses with small weight on the
average.

Figure 8A also shows the calculated Esyn,f corresponding to
the fire event, when a POST spike overlaps with the PRE spike,
thus giving rise to LTP or LTD. These events generally involve a
much larger VTE and a larger corresponding current compared
to the communication spike, since updating the PCM resistance
requires set and reset transitions with significant Joule heating.
On the other hand, due to the short pulse-width tP = 40 ns, the

FIGURE 8 | Energy Esyn and mean power Psyn per synapse as a function of time during the learning process of Figure 7 (A) and corresponding

histogram distribution of energy consumption Esyn,c due to communication from 4.2 s to 7 s, namely after completing potentiation/depression (B).

Consumption due to communication (in red) is directly induced by PRE spikes, while fire energy (in blue) corresponds to set/reset events induced by POST spikes. The

energy histogram reveals 3 energy levels: Group I around 80 pJ reflects communication of pattern spikes at potentiated synapses. Group II around 5 pJ represents

communication of noise spikes at potentiated pattern synapses, while group III just below 100 fJ corresponds to noise spikes at depressed background synapses.
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energy dissipation is around 1 pJ, hence negligible compared to
the communication energy.

Multiple Pattern Learning in Sequence or
in Parallel
For on-line unsupervised pattern learning, it is important to
demonstrate not only learning of a specific pattern, but also
the capability to forget a previous pattern and learn a new one.
The ability to reconfigure synaptic weights by learning a new
pattern is in fact a key feature to rapidly interact with stimuli
from a continuously-changing environment as in the real world.
To verify the reconfiguration function in our neuromorphic
network, we presented an input pattern to the PRE neurons for
7 s, then we presented a different pattern, where both the first and
second patterns were chosen from the MNIST database. Figure 9
shows the simulation results, including the first pattern (a), the
second pattern (b), the color maps of the synaptic weights for
t = 7 s (c), t = 7.5 s (d), and t = 14 s (e), and the synaptic
conductance 1/R as a function of time (f). During the initial 7 s,
pattern “1” and noise were provided with equal probabilities of
50%: the average synaptic weights show a potentiation of pattern
synapse weights at 0.5 s, which is in line with Figure 7. At the
same time, the background synapses are gradually depressed
and the pattern is completely learnt after 1 s, as also shown by
the weights at 7 s in Figure 9C. After 7 s, the input pattern is
suddenly changed from “1” to “2,” which causes depression of
weights within pattern “1” and potentiation of weights in pattern
“2.” No conductance change is seen for synapses remaining in
the background or pattern area. Pattern “2” is fully learned
around 9 s, with depression taking slightly longer time. Sequential
learning of 2 patterns is further described by movie M2 in the
Supplementary Material.

We also verified the capability to learn multiple patterns in
parallel, rather than in sequence as in Figure 9. Since a neuron

can only specialize to one pattern at a time (see Figure 9), we
extended the simulation to a network of multipleM neurons in
the POST layer. Figure 10A shows a fully connected network
including N PRE neurons and 3 POST neurons in the 2nd
layer, where 3 different patterns were presented alternatively as
shown in Figure 10B. The purpose is that each of the 3 neurons
eventually specializes to a separate pattern, thus emulating
the capability to recognize different patterns, such as letters,
numbers, or words, by our brain. To avoid co-specialization to
the same pattern, the 3 neurons were connected by inhibitory
synapses, where a successful fire in any neuron leads to a
partial discharge of the internal potential in all other neurons, to
inhibit fire in correspondence of the same pattern and encourage
specialization to other patterns. The inhibitory synapses have
fixed weights, hence they can be implemented by simple resistors.
The 3 input patterns in Figure 10B were presented with 5%
probability each, with the remaining 85% consisting of noise
with an average number of PRE spikes of 4 per epoch, or 0.5%
of all PREs. Such low percentage of noise activity over PREs is
balanced by a relatively large frequency of noise equal to 85%.
After a simulated total time of 300 s, the 3 different patterns were
learnt each in a different neuron, as shown by the final synaptic
weights in Figure 10C. Decreasing the pattern presentation rate
below 5% in Figure 10would result in a lower learning rate, while
increasing the rate would cause learning instabilities. We have
observed, in fact, that high pattern presentation rates cause the
network to learn superposed patterns (e.g., a “1” plus a “2”) or
difference patterns (e.g., a “1” with the pixels of “2” excluded).
This results from interaction of distinct patterns in the STDP.
A low pattern rate helps reducing the probability of having
interaction between different patterns.

Figure 10D shows the synaptic weights as a function of time,
including the pattern weights and background weights (only
synapses belonging to the background in all 3 patterns were

FIGURE 9 | Simulation results for pattern learning and updating. Pattern “1” and noise (A) were presented for the first 7 s, followed by pattern “2”

(B) and noise for the last 7 s. After the first 7 s, in A, pattern “1” was learnt (C). After starting with “2,” synapses showed a mixed specialization at 7.5 s in B (D),

where “1” was being forgotten and “2” was being learned. Finally, at 14 s in C (E), “2” was learnt. (F) shows the temporal evolution of synapses, with initial learning of

“1,” followed by updating with “2.”
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FIGURE 10 | Simulation results for multiple pattern learning. A first layer with 28× 28 = 784 neurons is fully connected to three second layer neurons, each of

them connected with three inhibitory synapses (A). We provided three patterns “1,” “2,” and “3” (B) to the input. The three neurons specialize on different patterns (C).

(D) shows the evolution of the synapses connected to one of the post neurons, in particular the mean weight for synapses of pattern “1,” “2,” “3” and background.

While the background gradually decreases, the learnt pattern (the highest mean conductivity) changes during time due to interference between patterns.

shown). Learning takes place in a relatively short time at the
beginning of the simulation, while depression of background
weights requires about 200 s due to the low activity of noise. Note
also the significant oscillations of pattern weights, which are due
to the instability of pattern weights due to noise. In particular, the
neuron specializes on one single pattern at a time, corresponding
to the highest conductance of 10−4 �−1. However, the network is
unable to stabilize on a single pattern due to the interference with
different patterns. Nonetheless, the network is able to recognize
distinct patterns in distinct POST neurons, although sometimes
different POSTs learn the same input pattern. This is an unwanted
effect due to the low inhibitory effect we used in the simulations,
where we discharged only 20% of the capacitance of a neuron
during the inhibitory action. The increase of the inhibitory factor
would improve the selectivity to input patterns, although it
would also cause the blockade of some POST neurons due to
repeated fire in another successful POST neurons. In summary, a
careful trade-off must be searched to minimize blockade events,
maximize the learning efficiency and minimize the learning time.
Parallel learning of 3 patterns is further described by movie M3
in the Supplementary Material.

DISCUSSION

Reducing Power Consumption via Spiking
Communication
Our results support PCM devices as highly-functional synapses
with learning capability and low power consumption required

for the synaptic plasticity. A key limitation of the proposed
scheme is however the relatively large power consumed during
communication (Figure 8). Assuming a synapse density of 1011

cm−2 as in the human cortex, a power per synapse of 8 nW
would translate in a power density of almost 1 kWcm−2, which is
comparable to a multicore CPU in conventional Von Neumann
computing. The large power consumption is due to the relatively
long current spike lasting 10ms in response to the PRE spike
applied to the transistor gate, where the relatively long pulse
width is dictated by the STDP dynamics in the 10–100ms time
scale for real time learning and interaction (Bi and Poo, 1998).
However, a spiking VTE can be adopted to reduce the dissipated
energy during the spike. For instance, Figure 11 shows a spiking
waveform of VTE, consisting of pulses of tspike = 1µs width
and spiking period Tspike = 1ms, corresponding to a spiking

frequency of 1 kHz and a duty cycle of 10−3. The reduced duty
cycle results in a reduction of power consumption by a factor 103,
clearly bringing our neuromorphic solution in the territory of low
power chips.

An additional advantage of adopting a spiking VTE with low
duty cycle is the ability to reduce the capacitance in the neuron
integrator stage. In fact, the capacitance can be estimated by:

C ≈ 1Q/Vth,

where 1Q is the integrated charge contributed by the current,
equal to 1Q = I1t in the case of a constant VTE as in
Figure 2. Assuming an array of 784 PRE neurons with 10%
potentiated synapses after learning, a VTE of−30mV, a resistance
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FIGURE 11 | Scheme for implementing low energy consumption

communication. Instead of applying a constant VTE = −30mV, sequences

of spikes lasting tspike can allow for efficient communication (A), while

reducing energy and power consumption by a factor tspike/Tspike, where

Tspike is the time between adjacent pulses (B).

of potentiated synapse of 15 k�, and a comparator threshold
voltage Vth = 0.5V, we obtain a capacitance of about 3µF,
which is clearly unfeasible in an integrated circuit. A duty cycle
of 10−3 would result in a reduction of the capacitance by a
factor 103, hence in the range of few nF. Further reduction of
the power consumption and of the integrator capacitance can
be obtained by reducing the duty cycle, the value of VTE, and
the conductivity of the PCM in the potentiated state, e.g., by
adopting suitable low-conductivity phase change materials or by
reducing the size of the heater controlling the cross section of
the PCM device. Separation of communication and fire paths by
2T1R architecture of the synapse would allow to further reduce
the current consumption and capacitor area by adopting sub-
threshold bias and short pulse width of the communication gate
(Kim et al., 2015;Wang et al., 2015). Finally, adopting accelerated,
non-biological dynamics of tenths of ns instead of 10ms range
could allow for smaller values of integrated capacitances in the
range of hundreds of fF.

Another issue consists in the wire capacitance charging
energy, which is higher in the pulsing scheme. Synapses are
arranged in a relatively large array, hence wires would cause a
high parasitic capacitance, leading to an increase in capacitive
energy dissipation in the pulsing scheme. One way to reduce
the issue is to arrange synapses in a multiple smaller synapse
arrays, with shorter interconnects. This approach would reduce
the fan-in/fan-out of the neurons, however, with a proper design
of the neuromorphic network, the issue could be acceptable,
while preserving the reduction in the energy dissipation due to
synapses. The capacitive energy would also be reduced by suitable
voltage scaling via PCM engineering.

Multi-Layer Neuromorphic Network
To assess the learning efficiency of the neuromorphic network
with PCM synapses, we performed 100 simulations of pattern
learning with a total time of 2 s per each simulation.We evaluated

the recognition probability Plearn as the number np,f of fire events
in the POST neuron in correspondence of the presentation of
pattern “1,” divided by the total number np of appearances of
the same pattern, Plearn = np,f/np (see Figure 12A). Similarly, we
evaluated the error probability Perr as the number nn,f of POST
fire events taking place in correspondence of the presentation of
noise in the input (false recognitions) divided by the total number
nn of input noise appearances, Perr = nn,f/nn. Note that np + nn
= n, where n is the total number of PRE spikes within the 2 s
interval of simulation. With a 2-layer network with 28× 28 PREs
and 1 POST neuron, Plearn was equal to 33% and Perr was around
6%, thus quite unsatisfactory for the purpose of on-line learning
and recognition. We found that unsuccessful learning was due
most of the times to depression events of pattern synapses in the
case of noise causing a POST fire, followed by the presentation
of the pattern in the input. In fact, PCM is particularly prone to
complete depression for 1t < 0, since the reset pulse results in
a large resistance increase in just one shot. After this depression
event, potentiation of pattern synapses is quite difficult, since the
current flowing in the depressed pattern synapse is extremely low,
making a POST fire event in response to the presentation pattern
quite unlikely.

To solve this issue and improve the recognition probability,
we implemented a 3-layer network, as sketched in Figure 12B.
This was done by inserting an intermediate layer withM neurons
between a 28×28 input retina and an output layer consisting of a
single neuron. All neurons between the first and the second layer
were connected, and all second-layer neurons were connected
to the output neuron, making the network a fully-connected
architecture. The numberM of neurons in the second layer was
varied to study the recognition efficiency and error rates with
the same pattern and noise conditions as in the calculations in
Figure 7. Figure 12 shows the calculated recognition probability
(c) and the error probability (d) as a function of M. The
recognition probability increases withM from almost 36% up to
76%, while the error rate decreases from 6 to 3%, as shown by
the blue lines. The improvement is due to the compensation of
synapse blockade by the additional layer, thanks to the increased
number of parallel channels.

To further improve the network efficiency, we reduced the
input noise from 6.5 to 5.5%. The optimized results are shown
by the red curve in Figures 12C,D. The noise reduction leads to
a slight increase in the time needed for depression of background
synapses. On the other hand, the recognition efficiency increases
up to 95.5% for 256 neurons in the second layer, while the
error probability decreases to 0.35% in a 2 s simulation time.
These results strongly support PCM-based neuromorphic chip
for on-line unsupervised learning and recognition.

Impact of Noise Density on Learning
Efficiency
Noise presentation alternated to the pattern allows for proper
background depression and on-line unsupervised pattern
updating. The randomness and non-correlation of noise allow
for a general background depression and, in general, a forgetting
mechanism. Figure 13 explores more deeply the impact of
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FIGURE 12 | Multi-layer simulation results. The number n of PRE spikes is composed by np pattern and nn noise inputs. np is composed by np,f (pattern leading

to output spike) and np,0 (missing recognition). nn is composed by nn,f (false recognition) and nn,0 (absence of spike for input noise) (A). After an input layer with

28× 28 neurons, a second layer with variableM neurons and a third layer with one output neuron are implemented (B). The recognition rate Plearn = np,f/np increases

with respect to the two layers network and it increases for increasing numberM of second layer neurons (C), while the error rate Perr = nn,f/nn decreases (D). Plearn
further increases for optimized conditions (lower noise), reaching a 95.5% recognition, while Perr drops to 0.35%.

FIGURE 13 | Probability of recognizing an input pattern Plearn, solid

line, and probability of spurious fires Perr, dashed line, as a function of

input noise.

noise on learning efficiency. We performed pattern learning
simulations as in Figure 7, varying the input noise density,
namely the average percentage of PRE delivering a noise
spike. Plearn shows a decrease for increasing noise density
which is explained by the competition between pattern learning
caused by pattern input appearance and increasing pattern
forgetting induced by noise. At the same time, for increasing
noise, Perr increases due to the increasing noise current
contribution. However, note that zero noise, which seems to be
the best situation, is not applicable, since background depression
and pattern updating as in Figure 9 would not be possible.
Therefore, a careful trade-off between noise density and learning
performance must be considered.

In conclusion, our work demonstrates PCM-based electronic
synapses based on 1T1R architecture. The synapses are
capable of STDP thanks to the time-dependent overlap among
PRE and POST spikes in the 1T1R circuit. On-line pattern
learning, recognition, forgetting and updating is demonstrated
by simulations assuming the alternation of pattern and noise
spikes from the PRE layer. Reduction of energy consumption
and improvement of recognition efficiency are discussed
with the help of simulation results. These results support
PCM as promising element for electronic synapses in future
neuromorphic hardware.
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