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Throughout development, neural stem cells (NSCs) give rise to differentiated neurons,

astrocytes, and oligodendrocytes which together modulate perception, memory, and

behavior in the adult nervous system. To understand how NSCs contribute to

postnatal/adult brain remodeling and repair after injury, the lateral ventricular (LV)

neurogenic niche in the rodent postnatal brain serves as an excellent model system.

It is a specialized area containing self-renewing GFAP+ astrocytes functioning as NSCs

generating new neurons throughout life. In addition to this now well-studied regenerative

process, the LV niche also generates differentiated astrocytes, playing an important role

for glial scar formation after cortical injury. While LV NSCs can be clearly distinguished

from their neuroblast and oligodendrocyte progeny via molecular markers, the astrocytic

identity of NSCs has complicated their distinction from terminally-differentiated astrocytes

in the niche. Our current models of postnatal/adult LV neurogenesis do not take

into account local astrogenesis, or the possibility that cellular markers may be similar

between non-dividing GFAP+ NSCs and their differentiated astrocyte daughters.

Postnatal LV neurogenesis is regulated by NSC-intrinsic mechanisms interacting with

extracellular/niche-driven cues. It is generally believed that these local effects are

responsible for sustaining neurogenesis, though behavioral paradigms and disease

states have suggested possibilities for neural circuit-level modulation. With recent

experimental findings that neuronal stimulation can directly evoke responses in LV

NSCs, it is possible that this exciting property will add a new dimension to identifying

postnatal/adult NSCs. Here, we put forth a notion that neural circuit-level input can be a

distinct characteristic defining postnatal/adult NSCs from non-neurogenic astroglia.
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INTRODUCTION

During embryonic neurogenesis, the brain is constructed in a systematic and reproducible way
by the division of NSCs, and the migration/differentiation of their progeny (Ma et al., 2009;
Urbán and Guillemot, 2014). The requirements for neurogenesis to persist in distinct regions
of the adult mammalian brain, which include the subgranular zone (SGZ) of the hippocampus
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and the lateral wall of the LV, but not others, are still not fully
understood. It is generally believed that proliferation of adult
NSCs to generate new neurons serves the functional needs of
established neural circuits in a region-specific and stimulus-
dependent manner. Thus, it is possible that network activity,
driven by environmental stimuli, instructs the proliferation,
migration and differentiation of postnatal NSCs. In this fashion,
postnatal/adult neurogenesis may actively contribute to neural
plasticity via a stimuli-driven feedback loop, in contrast to
embryonic neurogenesis, which operates on a well-tuned timer
for reproducible anatomical construction. Classically, for a cell
to be defined as an NSC, it should possess the ability to
undergo asymmetrical cell division for both self-renewal and
generation of new neurons. How to positively identify NSCs
from a seemingly heterogeneous population of cell types in the
postnatal/adult neurogenic niche presents a significant challenge
for experimental design and data interpretation. Currently,
the most utilized methods for identifying adult NSCs based
on morphological and molecular methods are perhaps overly
inclusive or exclusive depending on context. When we visualize
a GFAP+ glia in the neurogenic niche, how do we tell whether
it is neurogenic or not? What if the niche produced local,
terminally-differentiated astrocytes with similar morphological
and molecular characteristics as those defining NSCs? Our
current models do not distinguish these important differences
(Figure 1). This perspective summarizes emerging studies of LV
astrogenesis as well as alternative strategies for defining postnatal
NSCs and their potential drawbacks. We argue that circuit-level
drive to sustain progenitor proliferation is an important aspect
of adult neurogenesis/astrogenesis, and this property could be

FIGURE 1 | Distinguishing neurogenic vs. non-neurogenic adult LV astrocytes. Schematic representation of an area of postnatal/adult LV neurogenesis needing

reconsideration: the incorporation of astrogenesis in the context of ongoing neurogenesis. It is currently unclear how newly-generated (but terminally-differentiated)

local astrocytes can be distinguished from NSCs that are not actively dividing. Response to neuronal activation may separate LV NSCs from other niche astrocytes.

utilized to further define LV NSCs vs. terminally differentiated
local astrocytes.

GLIAL IDENTITY OF LV NSCs

In a seminal 1999 study, Alvarez-Buylla and colleagues showed
convincingly that a subset of LV cells expressing glial fibrillary
acidic protein (GFAP) had the characteristics of NSCs (Doetsch
et al., 1999a). GFAP+ cells in the LV niche (also termed type B
cells) were labeled with proliferation markers over long survival
periods, and an intraventricularly-injected retrovirus targeting
GFAP+ cells resulted in labeled neuroblasts and neurons in the
olfactory bulb. After elimination of proliferating LV cell types
with the antimitotic agent Ara-C, GFAP+ cells remained in the
niche, began to divide and could be traced as the precursors of
Mash1+ transient amplifying cells (type C cells) and migrating
neuroblasts (type A cells; Doetsch et al., 1999a; Alvarez-Buylla
and Lim, 2004).

In addition to the neurogenic subset of type B astrocytes,
designated type B1, GFAP+ cells within the LV niche include
type B2 astrocytes (García-Verdugo et al., 1998; Mirzadeh et al.,
2008) and stellate astrocytes (Ma et al., 2005). These cell types
are not always morphologically distinct (Garcia et al., 2004;
Shen et al., 2008), and can be a challenge to distinguish during
tissue experiments probing NSC function. In recent years, for
simplicity, the process of adult LV neurogenesis has mostly
been described in schematics to illustrate subependymal zone
(SEZ) astrocytes functioning as NSCs. Figure 2 shows native
GFP fluorescence (without antibody staining) from an LV
wholemount harvested from adult GFAP-GFP animal, showing
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FIGURE 2 | Morphological diversity of postnatal LV niche GFAP-GFP+

cells. LV lateral wall wholemount tissue preparation from P32 GFAP-GFP

reporter mouse, imaged via endogenous GFP fluorescence. (A)

Representative confocal enface view of lateral wall surface, at the level of

anterior commissure, known to contain ependymal niche pinwheel-like

structures. (B–D) Close-up views of example GFP+ subependymal cells. Note

the differences in cellular morphologies. Bars = 100 µm (A), 5 µm (B–D).

the difficulty in distinguishing different GFP+ cell types based on
morphology in real time. For simplicity during experimentation
using live cells, GFAP and other astrocytic markers, such as
GLAST1, have nonetheless been generalized in many instances
as positive identifiers of NSCs within the SEZ of the LV niche.

Progress in moving away from such generalized astrocytic
markers has been hindered by a lack of reliable, alternative
expression markers that can clearly distinguish neurogenic vs.
non-neurogenic LV astrocytes (Mamber et al., 2013). Further
complicating this problem, adult NSCs can become quiescent
in vivo over long timespans and change their proliferative
profile/markers in the process (Doetsch et al., 1999b; Codega
et al., 2014; Calzolari et al., 2015). Single-cell sequencing
technology can be a powerful tool for expression profiling of LV
NSCs in different states. Combined with fluorescent activated cell
sorting (FACS) using cell surface markers, these approaches may
provide the necessary specificity to more accurately characterize
NSCs (Pastrana et al., 2009; Mich et al., 2014; Llorens-Bobadilla
et al., 2015). However, an important consideration is that multi-
genetic fluorescence labeling are difficult/time-consuming to
generate for use in live tissue experiments, such as in vitro
recording or live cell imaging.

MORPHOLOGICAL DEFINITION OF LV
NSCs

Anatomical features of NSCs have been combined with GFAP
expression to further refine the positional and morphological
definition of a postnatal/adult LV NSC. B1 type astrocytes
within the LV niche had originally been described to possess
a primary cilium contacting the cerebrospinal fluid from the
apical surface (Doetsch et al., 1997). Subsequent experiments
revealed that they: (1) possess polarized and extended basal
endfeet to contact blood vessels (Shen et al., 2008; Tavazoie et al.,
2008); and (2) are arranged into a pinwheel-like architecture
together with neighboring ependymal niche cells (Mirzadeh
et al., 2008; Paez-Gonzalez et al., 2011). The combinatorial usage

of astrocytic marker + anatomical features represents perhaps
our current state-of-the-art in identifying LV niche NSCs in
immunohistochemical experiments and their analyses. It has
been well-described that the endfeet of stellate astrocytes also
contact blood vessels and are an integral modulator of the blood-
brain-barrier (Abbott et al., 2006). Also, the LVmedialwall can be
neurogenic (Merkle et al., 2007), although ependymal pinwheel-
like niche structures have not been described in this brain region.
Thus, it is difficult to conclude that contacting blood vessels
and/or arranging into ependymal pinwheel structures are specific
anatomical features for postnatal/adult LV NSCs.

GENETIC LINEAGE-TRACING OF
POSTNATAL NSCS

While molecular markers and anatomical features are
indispensable for NSC identification, they do not directly
address the key cellular feature for these cells to generate
neuronal progeny in the adult brain. Nestin is an intermediate
filament protein expressed in nervous system cells during active
division (Lendahl et al., 1990). To genetically define the cellular
activity of postnatal/adult NSCs, we and others have generated
tamoxifen-inducible Nestin-CreER transgenic drivers, together
with Cre-driven reporters, to lineage-trace and understand
the developmental process of neurogenesis (Kuo et al., 2006;
Lagace et al., 2007; Aponso et al., 2008; Giachino and Taylor,
2009; Dhaliwal and Lagace, 2011; Benner et al., 2013; Faiz et al.,
2015; Sohn et al., 2015). While this approach has been highly
successful and widely adopted, Nestin-CreER also targets LV
niche ependymal cells (Kuo et al., 2006), which are generally
believed to be post-mitotic but express Nestin like their NSC
counterpart. It is also important to note that, due to the nature
of transgenic approaches, the different Nestin-CreER lines vary
in NSC targeting efficiency as well as niche ependymal cells
labeled (Kuo et al., 2006; Lagace et al., 2007; Giachino and Taylor,
2009). This labeling presents a significant challenge for NSC
identification, as several publications have indicated neurogenic
potential for ependymal niche cells under physiological and/or
injury conditions (Johansson et al., 1999; Coskun et al., 2008;
Carlén et al., 2009; Nomura et al., 2010; Luo et al., 2015).

GFAP-CreER and GLAST1-CreER lines have also been
used to quantify the production of newborn neurons and
oligodendrocytes from LVNSCs (Menn et al., 2006; Dhaliwal and
Lagace, 2011; Calzolari et al., 2015). These drivers by definition
will label mature astrocytes in the brain, and so they were used
mainly to identify terminally-differentiated NSC progeny that
had migrated away from the LV niche. However, these lines
cannot clearly identify the cellular origins of newborn neurons
or oligodendrocytes within the LV niche as both neurogenic and
non-neurogenic astrocytes are targeted.

POSTNATAL/ADULT LV NICHE
ASTROGENESIS

While it has long been observed that LV NSCs cultured in
a dish can differentiate into GFAP+ astrocytes, in contrast to
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neurogenesis, LV niche astrogenesis in vivo had been largely
ignored. If there is significant baseline astrogenesis from LV
NSCs and/or astrogenic progenitors, this will present significant
challenges to NSC identification using glial markers since newly
generated astrocytes may be indistinguishable. Nestin-CreER
lineage-tracing experiments have recently revealed significant
astrogenesis from the postnatal LV niche following cortical
stroke (Benner et al., 2013; Faiz et al., 2015). While these
migrating cells from the niche to cortical regions retain some
cellular plasticity (Faiz et al., 2015), they mainly become reactive
astrocytes important for normal glial scar formation at the injury
site (Benner et al., 2013; Faiz et al., 2015). Additionally, the LV
niche can also generate mature astrocytes under physiological
conditions (Sohn et al., 2015). Further experimentation would
benefit from a set of cellular markers for newborn LV
niche astrocytes that are distinct from those used to identify
NSCs.

NEUROTRANSMITTER AND
ACTIVITY-DEPENDENT CONTROL IN THE
LV NICHE

While the actual neural circuitry inputs to the LV niche are
poorly understood and an important area for future study,
there is mounting evidence that LV niche NSCs are controlled
by neurotransmitters and neuronal activity. Several studies
have shown that applications of synaptic and modulatory
neurotransmitters to the LV niche alter the quantity of
proliferative cells. (Banasr et al., 2004; Cooper-Kuhn et al.,
2004; Van Kampen et al., 2004; Brazel et al., 2005; Liu et al.,
2005; Mudò et al., 2007; O’Keeffe et al., 2009; Alfonso et al.,
2012; Paez-Gonzalez et al., 2014; Tong et al., 2014). These
results suggest that either the presence of neurotransmitters
in the niche causes the release of factors that stimulate
NSC proliferation, or that NSCs respond directly to network
activity through membrane receptors. Slice electrophysiology
experiments using GFAP-GFP reporter mice showed that GFAP+

LV astrocytes respond directly to GABA (Liu et al., 2005).
Another study performing in vitro whole-cell recording chose
NSCs based on GFAP-GFP expression combined with the
presence of a long cellular projection, and found that local
application of serotonin (5HT) caused inward currents in
B1 cells that were blocked by 5HT antagonists (Tong et al.,
2014). These example studies and others verified the existence
of neurotransmitter receptors on GFAP+ cells in the LV
niche. However, they do not rule out the possibility that
non-neurogenic niche astrocytes express the same receptors.
Furthermore, GFAP+ LV cells have similar resting membrane
potentials and input resistances to stellate astrocytes, thus NSCs
may not be identified solely based on intrinsic membrane
properties (Liu et al., 2005; Lacar et al., 2010; Tong et al.,
2014).

We have recently identified a distinct population of
cholinergic neurons residing within the postnatal/adult
LV niche. Functional experiments utilizing optogenetics to
examine circuit connectivity of cholinergic neurons to LV

NSCs uncovered neuronal activity-dependent responses in
NSCs. NSCs were chosen by a combination of Nestin-CreER
lineage-tracing, cellular morphology, and Nestin expression.
Acetylcholine (ACh) responses were seen in patch-clamped
NSCs following light activation of channelrhodopsin-
expressing ChAT+ neurons (Paez-Gonzalez et al., 2014).
Similar optogenetic activation of ChAT+ neurons resulted
in no noticeable responses in ependymal niche cells or
transiently amplifying Mash1+ cells, although there was a
consistent response in DCX+ neuroblasts. To our knowledge,
this may perhaps be the first report of recorded response
in a LV NSC as a result of direct neuronal activation. It
remains unclear whether differentiated astrocytes in the LV
niche have similar capacities to respond to ChAT+ neuron
activity.

CAN ACTIVITY RESPONSE BE UTILIZED
TO DEFINE NSCs?

Whether the proliferation and differentiation of LV NSCs can
be directly regulated by neural activity is a source of debate.
In one view, NSCs are programmed to undergo mitosis and
sustain cell division as a part of their identity, and the controlled
environment of the niche is protected from outside signals
by astrocytic boundaries (Ma et al., 2009). In the olfactory
bulb (OB), the main target location for interneurons produced
from the LV niche, enhanced sensory activation does not
appear to stimulate LV NSC proliferation, suggesting that OB
circuit activity is removed from NSC control (Rochefort et al.,
2002). In fact, LV proliferation persists following complete
bulbectomy (Kirschenbaum et al., 1999). On the other hand,
increased LV NSC proliferation is observed after OB neuron
cell death (Mandairon et al., 2003), as well as during odor-
dependent behaviors such as paternal recognition (Mak and
Weiss, 2010) and pheromone mating response (Mak et al.,
2007). LV NSCs can also migrate to other brain regions
and differentiate into varied cell types in response to cortical
injury (Benner et al., 2013; Faiz et al., 2015), demyelination
(El Waly et al., 2014), chemical lesions (Aponso et al., 2008),
and electrical stimulation (Jahanshahi et al., 2013). Finally, if
postnatal/adult NSCs are instructed to produce new neurons
or glia for distinct neural circuits, theoretically it would be
beneficial for NSCs to be in direct communication with those
respective circuits. The finding that local cholinergic neurons
can directly innervate LV NSCs is a step toward showing the
existence of that neural circuit feedback. It remains possible
that these responses may change depending on NSC states
in quiescence vs. activation, and future exploration of these
neuronal activity-dependent NSC responses may yet provide
further refinements to our definitions for postnatal/adult NSC
identity.
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