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Parkinson’s disease (PD) is a complex neurodegenerative disorder that manifests through

hallmark motor symptoms, often accompanied by a range of non-motor symptoms.

There is a putative delay between the onset of the neurodegenerative process, marked

by the death of dopamine-producing cells, and the onset of motor symptoms, creating

an urgent need to develop biomarkers that may yield early PD detection. Neuroimaging

offers a non-invasive approach to examining the potential utility of a vast number of

functional and structural brain characteristics as biomarkers. We present a statistical

framework for analyzing neuroimaging data frommultiplemodalities to determine features

that reliably distinguish PD patients from healthy control (HC) subjects. Our approach

builds on elastic net, performing regularization and variable selection, while introducing

additional criteria centering on parsimony and reproducibility. We apply our method

to data from 42 subjects (28 PD patients and 14 HC). Our approach demonstrates

extremely high accuracy, assessed via cross-validation, and isolates brain regions that

are implicated in the neurodegenerative PD process.

Keywords: multimodal imaging, MRI, prediction, classification, penalized regression, Parkinson’s disease,

biomarker

INTRODUCTION

Parkinson’s disease (PD) is a devastating, progressive movement disorder affecting 7–10 million
individuals worldwide (Parkinson’s Disease Foundation, 2015). PD usually affects people over 50
years of age, but a subset of patients experience early onset. The hallmark pathology of PD is
the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), but the disease
manifests with a diversity of symptoms referable to multi-system neuropathology. The clinical
features of PD include the classic motor symptoms of tremor, rigidity, bradykinesia, and gait
impairment, as well as a host of non-motor symptoms (Kalia and Lang, 2015). At the time of
PD diagnosis it has been estimated based on histopathology that over 50% of dopamine neurons
in the SNpc have died (Fearnley and Lees, 1991). Braak et al. (2003) posit a process of phased
pathology of PD, which suggests that early neurodegeneration occurs in lower brainstem structures
and progresses in ascending fashion, in particular affecting the locus coeruleus in Stage II and SNpc
in Stage III. Further progression extends to higher-level sensory association areas and prefrontal
cortical regions, eventually impacting first order sensory association areas, premotor regions, and
primary sensory and motor fields (Del Tredici and Braak, 2013). The putative delay in the onset
of motor symptoms leading to PD diagnosis is portrayed in Figure 1, and the corresponding
neurodegeneration occurring throughout this pre-motor period represents a missed opportunity
for early therapeutic intervention that may significantly slow or halt the progression of PD related
decline.

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2016.00131
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2016.00131&domain=pdf&date_stamp=2016-04-18
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:dubois.bowman@columbia.edu
http://dx.doi.org/10.3389/fnins.2016.00131
http://journal.frontiersin.org/article/10.3389/fnins.2016.00131/abstract
http://loop.frontiersin.org/people/104740/overview
http://loop.frontiersin.org/people/133914/overview
http://loop.frontiersin.org/people/333670/overview


Bowman et al. Multimodal Imaging Signatures of Parkinson’s Disease

FIGURE 1 | Characterization of the onset and progression of

Parkinson’s disease neurodegeneration (green and yellow), which

persists through the commencement of motor symptoms (orange) and

ultimately clinical diagnosis and beyond (red).

There is so far no reliable method to accurately diagnose PD
in its pre-motor stages, and addressing this unmet need is a key
challenge in the field of PD biomarker development. Many pre-
motor symptoms of PD are non-specific, including depression,
anxiety, constipation, and excessive daytime sleepiness (Tolosa
and Pont-Sunyer, 2011). REM sleep behavior disorder (RBD) in
the absence of dementia, hallucinations, autonomic dysfunction
or parkinsonian motor symptoms, referred to as idiopathic RBD
(iRBD), portends a high likelihood of eventual conversion to
a synucleinopathy: PD, multiple system atrophy or Lewy body
dementia (Iranzo et al., 2013). However, simply identifying iRBD
does not allow prediction of the specific clinical phenotype
a patient will develop, and the duration to phenoconversion
is variable from the time of iRBD diagnosis (Iranzo et al.,
2013; Postuma et al., 2015), which makes pre-motor PD
study design in this group more challenging. Furthermore,
clinical presentation with iRBD prior to evidence of a broader
neurodegenerative syndrome is also relatively uncommon and
most PD patients have not sought treatment for iRBD prior
to phenoconversion with motor symptoms. Other strategies for
pre-motor diagnosis of PD have included combining clinical
features, such as olfactory loss and family history, with dopamine
transporter radionuclide imaging (The Parkinson At-Risk Study
or PARS), or an algorithmic approach to develop a cohort
enriched with an at-risk genotype, such as LRRK2 G2019S
mutation (Tolosa and Pont-Sunyer, 2011; Foroud et al., 2015).
While it appears likely that a multi-tiered screening process to
identify pre-motor or asymptomatic at risk subjects has promise,
inclusion of neuroimaging in a cost-effective manner for in vivo
confirmation of PD associated brain pathology may speed up
and improve the efficiency of these studies. MRI is a fraction
of the cost of radionuclide imaging (Fiandaca et al., 2014), and
allows efficient collection of multiple types of disease-relevant
brain measurements, including assessment of structural and
functional connectivity, which are expected to be impacted by
the degeneration of the widely projecting catecholamine neurons
affected in PD. Here we leverage advanced statistical methods

to identify robust candidate biomarkers and profiles from a
large number of MRI features to differentiate patients with early
to moderate PD from controls. Because the neurodegeneration
process is already advanced at the time of PD diagnosis, a highly
robust biomarker in early to moderate (motor) PD patients is
likely to be detectable in the pre-motor state as well. Therefore,
the outputs of this study may serve as candidate neuroimaging
biomarkers in future studies of pre-motor or asymptomatic PD.

Our research is driven by a broad initiative called the
Parkinson’s Disease Biomarker Program (PDBP) at the National
Institutes of Health’s (NIH’s) National Institute of Neurological
Disorders and Stroke to identify early stage biomarkers for PD. In
the context of our study, we regard biomarkers in a general sense,
defined by an NIH Biomarkers Definitions Working Group as
“a characteristic that is objectively measured and evaluated as an
indicator of normal biological processes, pathogenic processes, or
pharmacologic responses to a therapeutic intervention,” although
more specific molecular definitions have been proposed (Strimbu
and Tavel, 2010). A first step in identifying early stage PD
neuroimaging biomarkers is to determine neural characteristics
that reliably distinguish patients with mild to moderate PD from
healthy control subjects.

Neuroimaging has shown early promise for identifying
alterations associated with PD. There is emerging evidence of
cortical thinning in PD patients determined from T1 MRI
(Lee et al., 2013; Zarei et al., 2013; Zhang et al., 2015).
Vaillancourt et al. (2009) established neuroimaging correlates of
PD through decreases in fractional anisotropy generated from
diffusion tensor imaging (DTI) data within caudal regions of
the substantia nigra. Du et al. (2011) found that augmenting
fractional anisotropy measures of the substantia nigra with its
transverse relaxation rate, R2∗, improved the discrimination of
PD patients from controls over that of using fractional anisotropy
alone. Kahan et al. (2014) target effective connectivity in PD
using resting state fMRI (rs-fMRI) in patients with deep brain
stimulation, suggesting that subthalamic nucleus modulates
major components of the motor cortico-striato-thalamo-cortical
loop.

Single modality neuroimaging renders only a partial
view toward understanding the neural basis for PD. When
targeting classification or prediction, simultaneously examining
data from multiple imaging modalities stands to increase
accuracy, to provide a more complete picture of the multiple
neuropathophysiologic manifestations of PD, and to determine
the relative predictive strengths of the PD-related functional and
structural changes.

We conduct a novel multimodal imaging investigation that
seeks to identify functional and structural changes in mild to
moderate PD, which collectively yield high prediction accuracy in
dissociating patients from healthy control subjects. Of note, our
goals extend beyond simply achieving high prediction accuracy.
We aim to contribute to PD biomarker discovery efforts by
determining the potential involvement of specific brain regions
in the disease process, whether novel or previously studied,
which will help to direct future research. Therefore, we balance
our objective of high accuracy with criteria of parsimony and
reproducibility.
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We utilize elastic net, an advanced statistical learning
technique, building in novel refinements to enhance performance
and to achieve desired levels of parsimony and reproducibility.
Elastic net blends both L1 and L2 penalties, applied here in
context of logistic regression, to perform both regularization
and variable selection (Zou and Hastie, 2005). We apply the
analysis techniques to a set of measures based on magnetic
resonance imaging (MRI), including structural T1 images, rs-
fMRI, and DTI from PD patients and healthy control subjects.
We perform cross-validation to assess accuracy. Overall, the
approach achieves extremely high accuracy and reveals key
neuroimaging contributors that help to reliably distinguish PD
patients from healthy controls.

EXPERIMENTAL DATA AND METHODS

Experimental Data
All subject records and data, collected under the auspices
of a previous study, were supplied de-identified, stripped
of any protected health information (PHI) and personally
identifiable information (PII). Accordingly, this research qualifies
as Research of Existing Data, Records, Specimens [Basic Exempt
Criteria 45 CFR 46.101(b)(4)], and has been deemed “Not
Human Subjects Research” (HS Code 10 in IPMAC II as
referenced in the manual chapter 7410) by NIH and Columbia
University Medical Center Institutional Review Board (Protocol:
IRB-AAAO0062).

We consider data from 42 subjects, including 28 PD
patients and 14 healthy control (HC) subjects. The data
include a collection of magnetic resonance (MR) derived scans
characterizing different structural and functional properties of
the brain as well as demographic measures. Specifically, we
use T1- weighted anatomical MRI scans, rs-fMRI, and DTI.
The mean age of the subjects is 65.0 years (9.0 years standard
deviation), and the subjects include 21 males and 21 females.
The mean age is 61.9 years (8.7 years standard deviation) for
PD patients and 71.4 years (5.8 years standard deviation) for
controls (a significant difference, with p < 0.001). The PD group
has 13 females (46.4% of PD patients) and the control group has
8 females (57.1% of controls), reflecting a small sex difference
between groups, although not statistically significant (p = 0.74).
The mean Unified Parkinson’s Disease Rating Scale (UPDRS)
Part III (motor) score for these patients was 19.4 (standard
deviation 10.2). The mean duration of disease was 7.7 years
(standard deviation 3.3 years), although the duration was not
calculable for 5 patients due to missing data.

All scans were captured with a Siemens Trio Tim 3T MRI
scanner; the first 36 subjects were scanned with a 12 channel
head coil and the remaining 6 subjects (5 PD and 1 control)
were scanned with a 32 channel head coil (we control for this
difference in the statistical analyses). The structural T1 scans were
acquired usingMPRAGE (TR= 2600 ms, TE= 3 ms, 192 sagittal
slices at 1 mm; 256 × 232 1 mm isotropic pixels). Echo planar
imaging (EPI) was used to acquire 140 frames of rs-fMRI scans
(TR = 3000 ms, TE = 30 ms, 48 axial slices at 3 mm, 128 × 128
2 mm isotropic pixels) for each subject. DTI data were captured

using a biphase approach with consecutive left-to-right and right-
to-left phase scans. The first thirty six subjects underwent DTI
scans (TR = 8700ms, TE = 94ms, 64 axial slices at 2 mm, 128
× 128 2 mm isotropic pixels) comprised of 64 directions (B =

1000s/mm2), with three leading and three trailing B0 scans. The
remaining 6 subjects followed a DTI protocol (TR = 3292 ms,
TE = 97.6 ms, 66 axial slices at 2 mm, 92 × 106 2 mm pixels)
comprised of 128 directions (B = 1000s/mm2), with six leading
and five trailing B0 scans.

We implemented standard neuroimaging preprocessing steps
including voxel-based morphometry (VBM) on the anatomical
T1 scan, using the VBM toolbox (Gaser, 2010) under SPM8,
produced voxel-wise estimates of gray matter density in MNI
space, along with subject-specific native-to-MNI DARTEL
transformations (and their inverses) and gray matter, white
matter, and cerebral spinal fluid segmentations. The inverse
transformations were used to map MNI-defined parcelations
back to each subject’s native space. Resting state preprocessing,
performed with AFNI (Cox, 1996), consisted of a despiking stage,
slice time correction, motion correction, spatial normalization
to MNI and smoothing by 6mm FWHM. The resulting rs-
fMRI time courses were orthogonalized relative to Legendre
polynomials orders 0 through 3; motion parameters and their
derivatives; and global white matter and ventricular cerebral
spinal fluid (CSF) signals. Finally, the time courses were filtered
to the band 0.01–0.1 Hz.

A t-test applied to the resting state scans shows no difference
inmean temporal SNR between PD (54.4± 2.9) and control (53.9
± 4.9) subjects (p = 0.92), with standard error of the mean used
to express variability. Similarly, a Wilcoxon rank sum test shows
no significant difference in the maximum absolute displacement
over the duration of the scan between PD (1.67 mm ± 0.21 mm)
and control (1.31 mm ± 0.17 mm) subjects (p = 0.53). Finally,
another motion-related quantity, the average motion per TR, also
does not differ significantly between PD (0.10 mm ± 0.01 mm)
and control (0.08 mm± 0.01 mm) subjects (p= 0.38).

For DTI scans, each subject’s two opposing phase DTI
scans were combined to estimate the susceptibility-induced off-
resonance field using a method similar to that described in
Andersson et al. (2003) as implemented in FSL (Smith et al., 2004)
and the two images were combined into a single corrected one.
The resulting composite scan was corrected for eddy currents.
After preprocessing, we have 121 × 145 × 121 voxels (1.5 mm
isotropic) for DTI and VBM and 91× 109× 91 (2 mm isotropic)
for rs-fMRI.

Methods
Modality-Specific Data Representations
The first step is to determine the spatial scale for data
representations. The imaging data from MRI, rs-fMRI, and DTI
are acquired at a voxel level. We utilize a popular neuranatomic
parcellation of the brain, the Automated Anatomical Labeling
(AAL) (Tzourio-Mazoyer et al., 2002) system, to define 90
brain regions. For MRI and rs-fMRI, we further refine the
standard AAL parcellation by defining subregions to yield
more homogeneous collections of voxels within subregions.
This refinement of the AAL-90 parcellation uses a hierarchical
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clustering algorithm to subdivide each region based on a metric
that combines distance, structural and functional connectivity,
and tissue type to identify homogeneous subregions of the
encompassing region. The resulting extended parcellation
produces 290 subregions (AAL-290), with a given subregion
falling entirely within a single AAL region. The regional
parcellations appear in Figure 2.

We generate data representations (or features) for each
imaging modality and specify the spatial scale. Figure 3 provides
a conceptual overview describing the multiple modalities
generating data, estimates obtained from each reflecting
particular structural or functional properties of the brain, the
spatial scale for each summary, and ultimately the features
constituting the global set of potential neuroimaging markers of
PD. We use 290 regions from the extended AAL map (AAL-290)
to compute regional averages of local volumetric MRI measures,
specifically from voxel-based morphometry (VBM) (see Table 1).
We use rs-fMRI data to generate both localized and connectivity
features. To quantify the power concentrated at low frequencies
for fMRI data, we use fractional amplitude of low frequency
fluctuation (fALFF), which calculates the ratio of the power
spectrum at low-frequencies (0.01–0.10 Hz) to that of the entire
frequency range (Zou et al., 2008). We compute fALFF at a voxel
level, for all voxels, and average within each of the 290 subregions.
We quantify functional connectivity (FC) by calculating pairwise
correlations between the average time courses within each pair
of the 290 subregions. We compute fractional anisotropy (FA)
for each voxel and obtain regional summaries by averaging over
each of the AAL-90 regions. Thus our summary measure will
increase both as a function of the restricted diffusion in the
regional white matter and the proportion of white matter within
a region. We calculate structural connectivity (SC) derived from
DTI, using anisotropy to constrain tracking. We use FSL to
perform estimation of the diffusion tensor (BEDPOSTX) and
tractography (PROBTRACKX) (Behrens et al., 2007).

We perform marginal screening to reduce the 46,580 features
prior to analysis by eliminating features that are unlikely to
carry strong predictive power. Screening typically improves
the performance and facilitates implementation of subsequent
modeling by eliminating sources of noise and reducing data
dimensionality. Toward our goal of attaining reproducible PD
biomarkers, we perform a bootstrap screening procedure for each

FIGURE 2 | Depiction of AAL-90 parcellation and a hierarchical

subparcellation with 290 brain regions. The subregions are constructed

from resting state fMRI data of healthy controls (outside of the current sample)

based on functional characteristics with anatomical constraints to keep

subregions contiguous and bounded within a single region.

feature independently using logistic regression, with modality-
specific screening thresholds. The bootstrap procedure isolates a
set of viable markers, after accounting for sampling variability,
which increases the likelihood that the identified features will
emerge in other samples. Specifically, our screening rule selects
features satisfying the following:

p∗ =
1

B

B
∑

b=1

I[pb < p0] ≥ r.

In our analysis, we perform independent screening within each
of B = 100 bootstrap samples indexed by b = 1, . . . ,B to
obtain a corresponding p-value pb, apply designated modality-
specific thresholds p0, and determine features that are selected in
at least r = 0.75 proportion of the bootstrap samples. After our
screening process, we retained 24 regional VBM features (p0 =

0.2), 6 fALFF (p0 = 0.2), 225 FC estimates across the brain (p0 =
0.05), 6 regional FA measures (p0 = 0.2), and 10 SC estimates
(p0 = 0.2), giving 271 features in total (Table 1).

Statistical Learning and Prediction Methods
We propose an analytic approach that uses imaging data
from multiple modalities and demographic information to
classify subjects as either PD patients or HCs. We present an
approach that builds on elastic net with refinements to encourage
parsimony and reproducibility. Let Di = 1, if the i th subject
has PD and Di = 0, if subject i is a healthy control, i =

1, . . . , n. The predictors and an intercept term are arrayed in

a vector Xi =
(

1,Xi1, . . . ,Xip

)′
, with p denoting the number

of predictors following screening. We standardize each of the

predictors so that
n
∑

i=1
xij = 0 and (1/n)

n
∑

i=1
x2ij = 1. We let

πi = Pr (Di = 1|Xi) represent the probability that subject i has
PD, given a set of predictors, and use logistic regression to model
log

[

πi/(1− πi)
]

= Xi
′β . The elastic net procedure applied to

logistic regression maximizes the likelihood function

max
β

{

1
n

n
∑

i=1
[Di log(πi)+ (1− Di) log(1− πi)]−

λ
p

∑

j=0

[

1
2 (1− α) β2

j + α|βj|

]

}

.

TABLE 1 | Description of modalities, corresponding features, spatial scale,

and screening-based dimension reduction.

Modality Feature Spatial

Scale

Number of Features Post-screening

MRI VBM AAL-290 290 regions 24

rs-fMRI fALFF AAL-290 290 subregions 6

rs-fMRI FC AAL-290 41,905 subregion pairs 225

DTI FA AAL-90 90 regions 6

DTI SC AAL-90 4005 region pairs 10

Total 46,580 271
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FIGURE 3 | Overview of the multiple modalities generating data, estimates obtained from each reflecting particular structural or functional properties,

spatial scale for summary data representations, and ultimately the features constituting the global set of potential neuroimaging markers of PD.

From the large set of variables, the method performs shrinkage
and variable selection by blending ridge-regression (α = 0)
using an L2 penalty and the lasso (α = 1) using an L1 penalty
(Zou and Hastie, 2005). The parameters α and λ are determined
by optimizing an objective function via cross-validation, e.g.,
minimizing the cross-validation error.

The penalized framework, implemented here in context of
a logistic model, points to the predictive ability of a specific
subset of imaging and demographic variables that constitute
a signature for PD in our sample. Ridge regression shrinks
the coefficients and tends to draw the coefficients of correlated
predictors towards each other. The lasso tends to pull many
coefficients near zero, with a small subset of coefficients with
larger magnitudes, therefore serving as a useful tool for variable
selection. We perform covariate adjustment for demographic
variables (age and sex) and scan differences (head coil) in our
models. The elastic net penalty is particularly useful when p≫ n,
and when the set of predictors includes some highly correlated
variables, which poses a challenge for L1 penalization alone.

We modify the usual optimization procedure for the tuning
parameters, when necessary, to promote parsimony, accuracy,

and reproducibility (see Results section for details). Our
procedure defines a restricted or bounded tuning parameter
space, B, in which to optimize (α, λ). Specifically, we consider

B =
{

(α, λ) | p ≤ p1, AUC ≥ q1
}

,

where AUC represents the area under the receiver operating
characteristic (ROC) curve. Inducing parsimony may sacrifice
accuracy, so the subspace B incorporates a lower bound on AUC
as a measure of accuracy.

We evaluate accuracy using an iterated k-fold cross
validation scheme for model training and testing to promote
reproducibility. A typical implementation of k-fold cross
validation splits the data into k groups, trains the model
by fitting the data from k − 1 groups (training set), and
uses the estimates obtained to predict the disease status of
each subject in the remaining group (validation set). The
process then rotates the training sets and validation sets
until testing has been performed on each group, hence each
subject. Variability is inherent in k-fold cross validation, which
is not typically accounted for in practice. For example,
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by constructing the folds differently, one may obtain a
different estimate of accuracy and detect the involvement
of different predictors. To encourage the identification of
neuroimaging markers of PD that are reproducible and have
high predictive strength and to account for variability in the
cross-validation process, we implement an iterated framework.
Specifically, we implement two-fold cross-validation and
repeat the process 100 times, randomly assigning subjects to
folds in each iteration. This process results in 200 training
samples.

The cross-validation approach presents an important
advantage in the context of our quest to identify likely PD
biomarkers, allowing us to gauge the overall importance of each
feature by virtue of its average predictive effect. Since the features
were standardized, coefficient strengths are comparable: a larger
average coefficient strength indicates a greater predictive effect.
At each (α, λ) in B, we aim to select the top 10% of features based
on these coefficient strengths. Let M be the random variable
representing the magnitude of a predictive effect at (α, λ).
Conceptually, imaging features βj satisfying Pr

(

M ≥ |βj|
)

≤ τS,
and which contribute to high predictive accuracy, are regarded
as strong candidates for potential biomarkers. In practice,
we use the cross-validation process to estimate the empirical
distribution function of M and determine predictors that have
the most sizable effects (on average) across 200 training samples.
So for our data, we specifically seek to determine the features
satisfying |βj| ≥ ξ0.10, where |βj| is the average magnitude of the
j th effect and ξ0.10 is defined by Pr (M ≥ ξ0.10) = 0.10.

Moreover, we track the consistency with which these
predictors with sizable effects are selected for specific values
(α, λ) and ultimately choose features that are consistently
strong across various combinations (α, λ). Let S(α, λ)
represent the set of features satisfying the above condition
for coefficient strength, i.e., S(α, λ) =

{

βj

∣

∣|βj| ≥ ξ0.10 and
Pr (M ≥ ξ0.10) = 0.10; (α, λ)

}

. Our procedure selects features

C =







βj

∣

∣





1

# [B]

∑

(α,λ)∈B

I
[

βj ∈ S(α, λ)
]



 ≥ τC







,

where the notation #[B] denotes the cardinality or number of
elements in set B, and I is the indicator function. We set τC =

0.90, effectively taking the features that were selected to be in set
S(α, λ) in 90% or more of the points in B. The set of features in
C are deemed to have high predictive strength, to be extremely
parsimonious, to have high likelihood of emerging in other
samples, and to be robust over a range of values in the tuning
parameter space. These properties aid the delivery of potential PD
biomarkers that can be investigated further in future research. In
the application of our methods to the multimodal imaging data
of PD patients and healthy controls discussed below, we explore
further reductions of the set C.

RESULTS

We applied the methods above to our multimodal imaging data.
We consider a 51 × 151 grid of elastic net tuning parameters,

with α ∈ [0, 1] and λ ∈
[

10−5, 101
]

, with 25 points per decade.
For every (α, λ) pair, we fit elastic net to half the subjects, then
apply the resulting model to the other half of the subjects to
predict their disease status. We control for head coil, sex, and
age in the model fit. Then we swap sets of subjects and perform
the operation again; i.e., two-fold cross validation. We compare
the result of the predictions with true disease status to compute
the ROC curve and associated AUC value. Finally, we perform
this operation 100 times at every (α, λ) in the grid and record the
average AUC and various statistics on the model coefficients for
each of the 271 features.

The resulting average AUC values in the (α, λ) grid are shown
in Figure 4A. Point A indicates the (α, λ) combination with the
maximum average area under the curve, AUC = 0.989. The
corresponding average ROC curve (black) is shown in Figure 4B,
along with the individual ROC curves from each cross-validation
fit, indicating the degree of variability across samples. Point A, at
α = 0.02, is very close to ridge regression and, correspondingly,
there is only a slight degree of feature selection. The average
number of nonzero coefficients over the 200 training samples
is 245.3 (out of 271). Moreover, no feature is consistently
excluded over the 200 samples. So, while on average the models
achieve remarkable accuracy in distinguishing PD patients from
healthy controls, the large number of contributing variables
involved does not advance our goal of identifying potential
biomarkers that can be considered in future research to explore
possible biological mechanisms. Therefore, despite attaining high
prediction accuracy, our pursuit of potential markers prompts us
to seek additional parsimony.

We proceed by constructing a bounded search region,
B =

{

(α, λ) | p ≤ 75,AUC ≥ 0.9
}

, for the tuning parameters
to induce parsimony (see Figure 4A). The white boundary
partitions the search region so that the area to the right has, on
average, p ≤ 75 variables. To the left, the black trace defines the
area with average AUC ≥ 0.9 to ensure that we retain a sufficient
level of accuracy. The operating points between the two lines
make up set B.

From the previously described elastic net with repeated
two-fold cross-validation, Figure 5A shows scatter plots of the
mean absolute coefficient of each standardized feature vs. the
proportion of instances the feature is retained (i.e., has a
nonzero coefficient) over the 200 training samples. Each plot
corresponds to operating points A, B, C, and D in Figure 4A.
At point A, we see that the mean absolute coefficient values
are relatively large, and that every feature is selected 75% or
more of the 200 trials. Points B, C, and D explore different
extremes of our bounded search region. As alpha increases,
the rate at which features are selected decreases. At large
lambda (point B), the mean coefficient values are small. In
each panel, the horizontal line indicates the threshold ξ0.10
signifying the top 10% with the strongest predictive features
(based on mean absolute coefficient value). Figure 5B shows
an enlarged plot at point E, a representative point near the
middle of the search region. Using color, the plot illustrates
the distribution associated with the different modalities. At
point E, modalities FC, SC, and VBM yield the most predictive
features.
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FIGURE 4 | (A) AUC for different tuning parameters, with each point averaged over 100 applications of two-fold cross-validation. The point A reflects the tuning

parameter value yielding the maximum AUC, and is depicted in the curves in (B). The traces define a restricted space of tuning parameters. Above and to the right of

the white trace yields no more than an average of 75 predictors, and below and to the left of the black trace reflects at least 0.90 AUC on average. (B) ROC curve (in

black) reflecting high prediction accuracy based on 271 imaging predictors; AUC is 0.989. The colored curves highlight the variability associated with each separate

CV sample.

FIGURE 5 | (A) Plots of the mean absolute coefficient (standardized) vs. the proportion of times the feature is retained over 200 training samples at (α, λ)

corresponding to points (B–E) in Figure 4A. The enlarged plot shown in (B) is point E from Figure 4A, with colors depicting the modality. The reference lines in all

plots reveal the 10% of values with strongest predictive power over the training samples. At point E, modalities FC, SC, and VBM yield the most predictive features.

Considering all operating points in the search area, the
resulting set C includes 24 features, each of which is consistently
among the most predictive for at least 90% (τC = 0.9)
of the operating points in B. The features are listed in
Table 2 and include 21 FC, 1 SC, and 2 regional VBM
measures.

The 24 features contribute extremely strong predictive power.
Using logistic regression, still controlling for head coil, sex,
and age, one can achieve perfect separation between PD
patients and HC using subsets of as few as three of these
multimodal imaging features. In fact, out of all possible
three-feature models, three of them achieve perfect separation
between the groups, and comprise an aggregate of eight
separate features. The three models and the associated map
of features are presented in Figure 6. No model of less than

three features achieves perfect separation; however many such
models exist when more than three out of the 24 features are
considered.

Performing univariate screening as a separate step prior
to cross validation of the elastic net could potentially impact
variable selection and classification performance. To examine
this possibility for our analysis, we performed univariate
screening using the same 200 (2x100) cross validation training
samples constructed in the elastic net stage. Note that for
this sensitivity analysis, we did not additionally implement
our bootstrap procedure within each of the cross validation
samples, given the computational cost. We track the number
of times each feature’s corresponding p-value falls below the
designated modality-specific threshold across the 200 samples.
Features that pass the threshold in 75% or more of the 200 cross
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TABLE 2 | List of 24 features that are consistently the most predictive across a restricted tuning parameter space for (α, λ) in the elastic net procedure.

Feature Upper 10% predictive strength over (α, λ) (%) Upper 10% selection rate over (α, λ) (%) Direction of effect

FC: Frontal Sup Orb L ×Temporal Pole Sup L 94.4 99.4 1

FC: Amygdala R × Angular R* 97.5 46.0 1

FC: Amygdala R × Lingual L 100.0 100.0 1

FC: Calcarine L × Thalamus L 100.0 100.0 −1

FC. Cingulum Ant R × Cingulum Post L 100.0 100.0 1

FC: Cuneus R × Precuneus R 100.0 100.0 −1

FC: Frontal Inf Orb R × Temporal Mid R 99.7 90.7 1

FC: Frontal Inf Orb R × Temporal Mid L 100.0 100 1

FC: Frontal Inf Tri R × Temporal Pole Mid R 100.0 100.0 1

FC: Frontal Mid Orb L × Hippocampus L 100.0 100.0 1

FC: Frontal Sup Medial L × Cingulum Ant L 95.2 0.85 1

FC: Frontal Sup Orb L × Insula L 100.0 100.0 1

FC: Frontal Sup Orb L × Parietal Inf L 100.0 100.0 1

FC: Frontal Sup Orb L × Temporal Sup R 100.0 100.0 −1

FC: Occipital Mid L × Occipital Inf R 99.1 98.0 1

FC: Occipital Sup L × Temporal Mid R 100.0 100.0 −1

FC: Occipital Sup R × Precuneus R 100.0 61.2 −1

FC: Temporal Mid R × Temporal Pole Mid R 100.0 100.0 1

FC: Temporal Sup R × Temporal Pole Mid L 100.0 99.7 1

FC: Thalamus L × Temporal Pole Mid L 100.0 100.0 −1

SC: Calcarine L × Precuneus_R 100.0 87.5 −1

VBM: Frontal Inf Orb R 100.0 100.0 −1

VBM: Frontal Mid R 100.0 98.9 −1

Predictive strength, for a given (α, λ), was computed as the mean absolute coefficient (normalized) across 200 training samples. 18 features were retained at 100% of the tuning

parameter values considered. The list includes 21 FC features, 2 regional VBM measures, and 1 SC measure. *Two distinct FC links between these regions.

FIGURE 6 | Models achieving perfect separation between PD patients and HC subjects with a minimum number of variables. Each three feature model is

adjusted for age, sex, and head coil. The models are comprised of eight distinct features.

validation samples are regarded to pass univariate screening in
our sensitivity analysis.

Nearly all (23 of 24) features that emerged from the elastic net
stage in our original analysis were also selected by this revised
cross-validation univariate screening. The excluded feature, the
functional connectivity between the right frontal inferior orb and
the middle temporal lobe, fell just below our threshold by being
selected in only 73% of the 2 × 100 cross-validation trials. Thus
our findings suggest that the final panel of 24 features is not

substantially impacted by the decoupling of screening and cross
validation, perhaps buffered by the addition of our bootstrap
screening procedure which accounts for sampling variability.

High dimensional prediction and classification methods are
subject to inflated measures of accuracy for the particular
data set under consideration, resulting in findings that are not
reproducible on independent data sets. We take measures to
minimize the risk of overfitting and to assess the potential
influence of overfitting in our analysis. In particular, we perform
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iterated two-fold cross-validation in the elastic net procedure
with 271 variables as outlined above. To assess the presence
and potential influence of overfitting, we conduct a null
randomization experiment in which we combine all subjects and
then randomly assign the subjects to one of two groups, with the
group sizes matched to the actual sizes of the PD and control
groups in our experimental data. In our null data, one would
not expect to observe systematic between-group differences given
the random mixing of PD and control subjects. We repeat our
analysis on the null data and, as expected, obtain an ROC curve
that roughly tracks a 45◦ line (chance), giving no indication of
inflated accuracy due to our methods.

We note that this null hypothesis verification was performed
only within the cross-validated elastic net analysis, using the 271
features that had previously passed screening and hence been
deemed to be strongly associated to disease status. Given the
massive number of features relative to the number of subjects
in the analysis, it is entirely possible that other sets of features
could be found, which have high explanatory affinity for random
(perhaps meaningless) subject groupings. We assume that the
PD (vs. control) labels reflect true manifestation of disease and
thus that the identified features are strong candidates for PD
biomarkers.

DISCUSSION

Our analysis provides a broad multimodal view of prevailing
alterations in PD, which serve as accurate and reliable predictors.
We identify 24 neural manifestations of PD, which contribute
extremely strong predictive power in these subjects (Table 2).
FC from resting-state fMRI emerges as the most prominent
modality. Decreased SC between the left calcarine area and the
right precuneus also is an indicator aiding dissociation of PD and
HC subjects. VBM calculated from anatomical T1-MRI scans also
contributes to accurate prediction, with PD patients revealing
reduced volume in the right inferior orbital frontal cortex (OFC)
and right middle frontal gyrus. Our findings support a previous
report of volumetric changes in gray matter associated with
PD, including bilateral OFC and the right inferior frontal gyrus
(rIFG) (Xia et al., 2013) and are consistent with reports of
cortical thinning in PD (without dementia) in the middle frontal
gyrus and other regions including inferior and superior parietal
areas, superior frontal, superior temporal, precuneus, pre- and
postcentral, and fusiform regions (Zhang et al., 2015).

Bilaterally, the middle temporal pole (MTP) exhibited strong
discriminatory power and consistency. For PD patients, the right
MTP shows increased FC with the rIFG pars triangularis (rIFG-
PT) and with the right middle temporal gyrus (MTG). The left
MTP exhibits decreased FC with the left thalamus in PD patients
and increased FC the right superior temporal sulcus (STS). The
OFC, which is linked to inhibitory control, exhibits functional
connections with several regions that are predictive of PD. Right
inferior areas of the OFC show increased FC bilaterally with
the MTG. The left middle areas of the OFC show increased
FC with the left hippocampus. The left superior OFC exhibits
increased FC in PD patients with the left insula, the left inferior

parietal region, and the left superior temporal pole; and decreased
FC with the right STS. Our analysis also reveals increased FC
between the left medial superior frontal gyrus, which includes the
supplementary motor area (SMA) and the preSMA, and the left
ACC. These FC alterations all yield strong power to dissociate PD
patients from controls.

PD symptoms have been linked to FC between the pars
triangularis and the orbito-frontal cortex, specifically with
FC shown to be positively associated with the Movement
Disorder Society (MDS) Unified Parkinson’s Disease Rating
Scale (UPDRS), part II, entitled Motor Aspects of Experiences
of Daily Living (Yoo et al., 2015). Also, some of the OFC
functional connections map anatomical tracts known from
macaque monkey studies between the orbitofrontal cortex and
limbic areas including insular cortex and the hippocampus
(Cavada et al., 2000).

Discriminatory power is also drawn from decreased FC in PD
patients between the left calcarine and thalamus and between
the right cuneus and precuneus as well as increased FC for PD
patients between right anterior cingulate cortex (ACC) and the
posterior cingulate cortex (PCC) and between the right amygdala
and both the left lingual gyrus and the right angular gyrus. In
contrast to our work examining specific connections between
pairs of brain regions, graph-theoretic approaches seek to
characterize whole brain topological properties of brain networks
(Simpson et al., 2013). In this complementary view, Göttlich
et al. (2013) show that the degree of whole-brain connectivity
was decreased in the occipital lobe (cuneus and calcarine), but
increased in the superior parietal cortex, PCC, supramarginal
gyrus and supplementary motor area.

Several of the above regions have been identified for PD-
related alterations or dysfunction. The amygdala plays a key
role in memory, decision-making, and emotional response. The
amygdala may undergo a loss of gray-matter volume in PD due
to neurodegeneration (Harding et al., 2002). Hu et al. (2015)
found that, relative to healthy controls, depressed PD patients
exhibited decreased right amygdala FC with the left gyrus rectus,
left inferior OFC, and right putamen. The FC alterations in the
amygdala may be driven by the severe pathological changes that
occur in this region and the major projections to the prefrontal
cortex and limbic system (hippocampus and entorhinal region),
among others (Braak et al., 1994). Van Eimeren et al. (2009)
detected different deactivation patterns in the PCC and the
precuneus in PD patients relative to healthy controls.

Our analysis considers extremely high-dimensional data and
eventually selects a small number of variables, representing
just 0.051% of the original features considered, with subsets
representing 0.0064% of the features achieving perfect separation
of the PD patients and the HC subjects. An important step
in the route to developing reliable biomarkers is to validate
the identified features in independent data sets. We take many
steps to encourage reproducibility here within our sample, but
ultimately adoption of biomarkers requires external validation.
It is likely that many other useful predictors are present in the
data, so our results do not preclude the possibility that important
predictive information may be gleaned from a neuroimaging
modality/feature that was ultimately excluded from our final
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model. Moreover, our data representations may have excluded
potentially useful markers. For example, we focused our analysis
on AAL ROIs, opting to maintain consistency of the regions
across modalities (with possibly nested subregions). AAL regions
are predominantly composed of gray matter and contain
relatively less white matter (median across regions and subjects
is roughly 15%). As such, we may have excluded potentially
predictive markers from DTI-related measures (FA or SC)
sampled from regions dominated by white matter. Also, the
features extracted from the multimodal imaging data reflect
particular characteristics at a selected spatial scale. Some data
reduction is necessary, e.g., to limit the data from generating
billions of features. We cannot determine in advance, which
spatial scale will extract maximal information for the purpose of
dissociating PD patients from controls.
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