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Previous studies applying automatic preprocessing methods on Structural Magnetic

Resonance Imaging (sMRI) report inconsistent neuroanatomical abnormalities in Autism

Spectrum Disorder (ASD). In this study we investigate inter-method differences as

a possible cause behind these inconsistent findings. In particular, we focus on the

estimation of the following brain volumes: gray matter (GM), white matter (WM),

cerebrospinal fluid (CSF), and total intra cranial volume (TIV). T1-weighted sMRIs of

417 ASD subjects and 459 typically developing controls (TDC) from the ABIDE dataset

were estimated using three popular preprocessing methods: SPM, FSL, and FreeSurfer

(FS). Brain volumes estimated by the three methods were correlated but had significant

inter-method differences; except TIVSPM vs. TIVFS, all inter-method differences were

significant. ASD vs. TDC group differences in all brain volume estimates were dependent

on the method used. SPM showed that TIV, GM, and CSF volumes of ASD were larger

than TDC with statistical significance, whereas FS and FSL did not show significant

differences in any of the volumes; in some cases, the direction of the differences

were opposite to SPM. When methods were compared with each other, they showed

differential biases for autism, and several biases were larger than ASD vs. TDC differences

of the respectivemethods. After manual inspection, we found inter-method segmentation

mismatches in the cerebellum, sub-cortical structures, and inter-sulcal CSF. In addition,

to validate automated TIV estimates we performed manual segmentation on a subset

of subjects. Results indicate that SPM estimates are closest to manual segmentation,

followed by FS while FSL estimates were significantly lower. In summary, we show

that ASD vs. TDC brain volume differences are method dependent and that these

inter-method discrepancies can contribute to inconsistent neuroimaging findings in

general. We suggest cross-validation across methods and emphasize the need to

develop better methods to increase the robustness of neuroimaging findings.
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INTRODUCTION

Structural magnetic resonance imaging (sMRI) is a powerful
tool used to investigate the human brain in vivo and to find
associations between brain morphometry and brain disorders.
Although a large number of sMRI studies have been conducted,
consistent sMRI markers for brain disorders are yet to be
found (Chen et al., 2011). This can mainly be attributed to
low statistical power of neuroimaging and neuroscience studies
(Button et al., 2013). Inconsistent results may be due to
differences in the demographics of data (Stanfield et al., 2008),
image acquisition settings (Styner et al., 2002; Auzias et al., 2014),
assumptions made on data and algorithms used (Eggert et al.,
2012; Nordenskjöld et al., 2013; Fellhauer et al., 2015), and even
machines used to process the data (Gronenschild et al., 2012).

With the increasing use of automated preprocessing methods
in neuroimaging studies, the effect of inter-method variations
in neuroimaging findings merit an investigation. Although
automatic methods are more objective than manual methods,
they possess method-specific bias and variance (Eggert et al.,
2012; Nordenskjöld et al., 2013). The bias and variance across
methods arise mainly due to method specific assumptions made
on data, varying definition of brain structures, different image
processing algorithms, varying sensitivity to imaging artifacts
such as motion, and use of inconsistent a priori information such
as brain templates. A number of previous studies have reported
significant inter-method inconsistencies (Ren et al., 2005; Tsang
et al., 2008; Eggert et al., 2012; Fellhauer et al., 2015; Hansen
et al., 2015). Eggert et al. (2012) reported pronounced differences
(11%) in mean segmented gray matter (GM) volumes from
four standard segmentation algorithms: SPM8 New Segment,
SPM8VBM, FSL v.4.1.6 and FreeSurfer (FS) v.4.5. According to
Hansen et al. (2015), compared to manual segmentation, FS 4.5
underestimated total intracranial volume (TIV) by 7 %. Similarly,
differences in segmentation accuracies between FSL and SPM5
were reported by Tsang et al. (2008).

One important concern is that inconsistent results driven by
inter-method variations can change the end results of a study and
hence change the subsequent biological interpretation. Several
previous studies have shown that the magnitude and even the
direction of the effect size can be dependent on the method used.
Boekel et al. (2015) performed a replication study on 17 brain
structure-behavior correlations from five neuroimaging studies
and were not able to replicate any of the correlations. A response
paper by Muhlert and Ridgway (2015) pointed out that one
of the reason the correlations could not be replicated is the
methodological differences between SPM and FSL. Nordenskjöld
et al. (2013), compared SPM8 and FS v.5.1.0 TIV estimates to
reference TIV obtained from manual segmentation of proton
density weighted images. They report that both SPM8 and FS
overestimated TIV. In addition, SPM showed systematic bias
associated with gender (systematic overestimation of TIV in
females) and aging atrophy while FS showed bias for reference
TIV (systematic overestimation of TIV for larger skull size).
Notably, hippocampal volume showed different associations with
education depending on which TIV measure (SPM or FS) was
used for hippocampal volume normalization. When normalized

with SPM TIV, there was no association between hippocampal
volume and education, whereas when normalized with FS TIV,
the association was significant. Similarly, Callaert et al. (2014)
measured the effect of age on GM volume using four different
methods: SPM8 Unified Segmentation, SPM8 New Segment, FSL
v.4.1.5, and a method combining intensity based segmentation
and atlas-to-image non-rigid registration. They found that the
age specific effect changed with the differentmethods. Age related
differences according to the Unified Segmentation and New
Segment were significantly larger and smaller, respectively than
other methods. Similarly, according to Rajagopalan et al. (2014),
in ALS patients with frontotemporal dementia, FSL v.4.1.5
showed that the GM volume in motor region is significantly
reduced, whereas SPM8 did not show any significant changes in
GM. The above results suggest that inter-method discrepancies
are a source of inconsistent findings in neuroimaging and that
the choice of preprocessing method can affect end results. Thus,
the effect of inter-method variations in neuroimaging results
deserves a detailed investigation.

In this study we investigate inter-method discrepancies as a
source of inconsistent neuroimaging findings in autism spectrum
disorder (ASD). Brain anatomical findings in ASD compared to
that of typically developing controls (TDC) have been highly
inconsistent across studies (Amaral et al., 2008; Chen et al., 2011;
Jumah et al., 2016; Katuwal et al., 2016). Recently a number
of studies (Kucharsky Hiess et al., 2015; Valk et al., 2015; Haar
et al., 2016; Riddle et al., 2016) have used the large multi-site
(∼1000 subjects, age 6–65 years) Autism Brain Imaging Data
Exchange (ABIDE) (Di Martino et al., 2014) to investigate brain
anatomical differences in ASD. Haar et al. (2016) using ABIDE
did not replicate many of the previously reported anatomical
abnormalities in ASD except significantly larger ventricular
volumes, smaller corpus callosum volume (central segment only),
and several cortical areas with increased thickness in the ASD
group. One of themost replicated findings in ASD is that toddlers
with ASD (age 2–4 years) on average have a larger head size than
TDC (Courchesne et al., 2001, 2011; Carper et al., 2002; Campbell
et al., 2014). However, several recent large studies (Raznahan
et al., 2013; Zwaigenbaum et al., 2014) have shown that the there
is no overall difference in head circumference between ASD and
TDC over the first 3 years and the results of previous studies
reporting large head sizes in ASD may be due to the bias in
population norms. Campbell et al. (2014) have reported that
abnormally rapid rate of brain growth during the first years of
life seem to occur in a very small subgroup of ASD children.

Here we investigate if inter-method differences are a source of
inconsistent neuroanatomical findings in ASD. We address this
question by using global brain volume measures. We estimate
gray matter (GM), white matter (WM), cerebrospinal fluid (CSF)
volumes, and TIV of ASD and TDC subjects using the large
ABIDE (Di Martino et al., 2014) dataset applying three widely
used preprocessing methods: SPM, FSL, and FS. We answer the
following three questions in this study. (1) How large are inter-
method differences of brain volume estimates and how do they
influence ASD vs. TDC group differences? (2) Do inter-method
differences show differential bias toward diagnostic group (in
this case ASD) and how does it compare with ASD vs. TDC
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differences? (3) What are potential reasons behind inter-method
differences in brain volume estimation? We also compare TIV
estimates of the three methods with ground truth obtained
from manual segmentation on a small subset of subjects. We
conclude with a discussion on potential causes of inter-method
discrepancies and suggestions for alternative approaches.

METHODS

Structural MRI and Image Processing
A total of 1112 sMRI scans were downloaded from the ABIDE
consortium (http://fcon_1000.projects.nitrc.org/indi/abide/)
representing imaging data from 17 different sites. Local
Institutional Review Boards (IRB) approved the data acquisition
in all participating sites. Consent to participate was obtained
via IRB approval or explicit waiver. All ABIDE data are fully
anonymized according to HIPAA guidelines. Each sMRI was
visually inspected to detect significant motion and other artifacts.
In total, 172 images with poor image quality and motion artifacts
were discarded. An additional 64 subjects were discarded due
to failure during segmentation by FS or FSL; none of the images
failed during SPM segmentation. T1 weighted brain sMRIs from
a total of 876 subjects from 15 sites were retained for volumetric
analyses. Of the 876 subjects, 417 (367 males, 50 females) were
ASD and 459 (382 males, 77 females) were TDCs. Subject
demographics and behavioral measures of the 876 subjects used
in this study are presented in Table 1. Scanner parameters used
for each of the ABIDE sites are presented in Supplementary
Table 1.

All sMRIs were preprocessed with SPM8 (Ashburner and
Friston, 2005), FSL 5.0.4 (Jenkinson and Smith, 2001b), and FS
5.3.0 (Dale et al., 1999; Fischl et al., 1999). In order to minimize
manual intervention and to make the study more objective and
replicable, default parameters set by the respective toolboxes were
used. Final results of the automatic segmentations were manually
inspected and subjects with segmentation failures (64 in total)
were discarded from the study.

Tissue Segmentation

SPM

Tissue segmentation in SPM was performed using the New
Segment tool (Ashburner et al., 2013) of SPM. New Segment

TABLE 1 | Subject demographics and behavioral (DB) measures.

ASD TDC ASD vs. TDC

t-test P-value

N 417 459

M = 367, F = 50 M = 382, F = 77

Age(years) 17.8 ± 8.9 17.7 ± 8.0 0.88

(7–64) (6.47–56.2)

VIQ 104.6 ± 17.8 112.4 ± 12.9 3.1E-10*

PIQ 105.0 ± 16.7 108.1 ± 12.9 5.2E-3*

FIQ 105.4 ± 16.5 111.5 ± 12.1 4.3E-9*

ADOS 11.9 ± 3.7 NA NA

M, Male; F, Female; VIQ, Verbal IQ; PIQ, Performance IQ; FIQ, Full IQ; ADOS, Autism

Diagnostic Observation Schedule. *significant at 0.05.

utilizes a finite mixture model where mixture components are
modeled as Gaussians. A modified Gaussian mixture model
is updated by combining spatial information from a standard
tissue probability map (TPM) and the intensity information
of the input sMRI image (Ashburner and Friston, 2005). New
Segment uses ICBM-452 T1 brain atlas (Mazziotta et al., 2001b)
as the standard TPM. The posterior tissue probability after
the last iteration results in GM, WM, and CSF segmented
TPMs of the input sMRI. The value at a certain voxel of
a TPM represents the probability of a certain tissue (GM,
WM or CSF) belonging to that voxel. Further details on
SPM tissue segmentation can be found at Ashburner et al.
(2013).

FSL

Tissue classification in FSL was performed by FAST (Zhang
et al., 2001). FAST is based on a hidden Markov random
field (HMRF) model and uses the expectation maximization
(EM) algorithm to find the maximum likelihood estimate of
the model parameters. The HMRF model is a generalized
version of the finite mixture model. The hidden variables
specifying the identity of the mixture component (parametric
distribution) of each observation (voxel intensity) are related
by a Markov process in HMRF model unlike the finite
mixture model where they are independent to each other.
The HMRF model in FAST does not use standard TPM as
a priori; instead it uses K-means segmentation to estimate
the initial parameters of the tissue classes. Brain regions were
extracted using the brain extraction tool (BET) (Smith, 2002)
before tissue segmentation using FAST. Fractional intensity
threshold (f option in BET) was kept at the default value
of f = 0.5. Brain slices (from the slicedir directory)
produced by FSL script fslvbm_1_bet–b were used to visually
verify that brain regions were accurately extracted. Images
for which brain extraction did not work properly with
the default value of f = 0.5 were excluded from the
study.

FS

Tissue segmentation in FS was performed by the recon-all
preprocessing workflow (https://surfer.nmr.mgh.harvard.edu/
fswiki/recon-all). Recon-all is a fully automated workflow that
performs all the FS cortical reconstruction processes. Recon-all
includes 31 processing stages beginning with motion correction,
followed by non-uniform intensity normalization, Talairach
transform computation, intensity normalization, skull stripping
and ending with cortical parcellation steps. FS utilizes atlas-
based segmentation whereby a new image is transformed to
the standard MNI 305 atlas space (Collins et al., 1994). Similar
to FSL, an HMRF model is utilized for segmentation in FS
(Fischl et al., 2002). This model incorporates spatial information
as well as intensity information and is updated in a Bayesian
framework. Maximum a posteriori (MAP) estimate of the model
parameters are used to compute the class labels of the voxels
in an image. Further details can be found at (https://surfer.
nmr.mgh.harvard.edu/fswiki/recon-all) and Bruce Fischl et al.
(2002).
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Brain Volume Calculation

SPM

Spm_get_volumes script was used to calculate the tissue volumes
using c1, c2, and c3 images corresponding to native space
tissue maps of GM, WM, and CSF, respectively. Native space
volumes were selected in order to minimize volume changes
due to spatial transformations. TIV was calculated as the sum
of the GM, WM, and CSF volumes in the native space of the
sMRI. This method of TIV calculation was performed according
to SPM’s recommendation (https://en.wikibooks.org/wiki/SPM/
VBM) and has been utilized in several previous studies (Ridgway
et al., 2011; Nordenskjöld et al., 2013).

FSL

Fslstats script was used to calculate the tissue volumes
using partial volume maps (pve_0, pve_1, pve_2 images)
produced by FAST (Zhang et al., 2001) as recommended by
FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST#Tissue_Volume_
Quantification). These partial volume maps are probablistic
images of tissues in the native space. TIV was calculated using
the SIENAX function of FSL as recommended by FSL (Smith
et al., 2002) and the ENIGMA protocol (http://enigma.ini.usc.
edu). SIENAX first strips out non-brain tissues using BET to
extract the regions corresponding to the brain and the skull.
After brain extraction, the skull image is affine registered to
the MNI52 template (Mazziotta et al., 2001a) with a scaling
factor between the subject’s image and the standard space as
the output. The above registration is carried out by the FSL’s
linear image registration tool—FLIRT (Jenkinson and Smith,
2001a). The scaling factor is computed as the determinant
of the affine transformation matrix that registers the subject’s
image to the MNI152 template. Finally, the TIV of the subject’s
image is calculated by dividing the TIV of MNI152 template
brain (1.847712 L) by the scaling factor (Mazziotta et al., 1995,
2001a,b).

FS

As recommended by FS, GM and WM volumes were extracted
from aseg.stats file which is an output of the recon-all
workflow (see https://surfer.nmr.mgh.harvard.edu/fswiki/
MorphometryStats). FS does not output total CSF volume.
In FS TIV is calculated by a technique similar to FSL (see
http://surfer.nmr.mgh.harvard.edu/fswiki/eTIV). However,
FSL uses both brain and skull whereas FS uses only the brain
to guide the registration of a subject’s image to a template.
Estimated TIV (eTIV) is calculated by dividing the atlas mask
volume from MNI305 template by the determinant of the affine
transformation matrix (T) that maps the native space image
into MNI space (Buckner et al., 2004). Talairach registration,
the third step of recon-all, computes the affine transform T that
transforms the original image to the MNI305 template (Evans
et al., 1992).

Statistical Analysis
Statistical software package R v3.2.0. (http://www.R-project.org/)
was used for all statistical analyses. Brain volume estimates from
the three preprocessing methods were compared with each other

to test inter-method differences and their biases for diagnostic
group (ASD). All p-values reported in this study were corrected
for multiple comparisons using false discovery rate (Benjamini
and Hochberg, 1995) unless otherwise explicitly mentioned.

Inter-Method Differences in Brain Volumes Estimation
Inter-method differences across all 876 subjects are summarized
by the following statistics: mean volume difference, percentage
difference, correlation coefficient, Cohen’s d, and paired t-test
p-value. Separate comparisons were performed for different
volume types. Cohen’s d (Cohen, 1988) was used as a measure of
effect size. Cohen’s d is the standardized difference between two
means and is defined as (mean1−mean2)/SDpooled where SDpooled

is the weighted average of the standard deviations of two groups.
Paired t-tests were performed to test the statistical significance of
the inter-method differences in brain volume estimates.

ASD vs. TDC Inter-Group Differences in Brain

Volumes
Autism Spectrum Disorder ASD vs. TDC brain volume
differences were tested using independent two sample t-tests for
each preprocessing method. In addition, ASD vs. TDC brain
volume differences were tested after adjusting for the effects of
age, sex, and site by fitting a linear mixed-model using lmer4
package in R (Bates et al., 2014). As fixed effects, we entered
diagnostic group (ASD/TDC), sex, age, and age2. As random
effects, we included random intercepts and slopes for the effect
of diagnostic group at each level of site. Fixed effect of diagnostic
group is reported as the ASD vs. TDC group difference. The
p-values were calculated using the Satterthwaite’s approximated
degrees of freedom (Satterthwaite, 1946) implemented in lmertest
(Kuznetsova et al., 2013). In another separate experiment, in
addition to age, sex, and site, the effect of full scale IQ (FIQ)
was adjusted, where subjects with missing FIQ (N = 63)
were excluded. For each method, separate models were built for
different brain volume types.

Method Bias for Diagnostic Group
The inter-method difference in brain volumes (△y = y2 − y1)
were modeled by a linear mixed-model. The fixed and random
effects of the model were the same as in the model described in
previous section. Here, y1 and y2 are brain volume estimates from
two different methods where y1 is considered as the reference
value. The fixed effect of diagnostic group on △y (βautism) can
be interpreted as the amount of brain volume by which method
y2 systematically over/under estimates ASD subjects compared
to TDC. Here our null hypothesis is that different methods do
not have systematic differential bias to the diagnostic group. Our
null hypothesis will be rejected when the fixed effect of diagnostic
group βautism is statistically significant. If βautism is statistically
significant, we will conclude that with reference to y1, method y2
has systematic biases for ASD or TDC subjects. Percentage bias of

y2 for ASD (with reference to y1) was calculated as βautism
y1

× 100,

where y1 is the mean volume across all subjects according to y1.
For each pair of methods, separate models were fitted for the
different brain volumes. Multiple comparisons correction across
different tissues was performed separately for each pair.

Frontiers in Neuroscience | www.frontiersin.org 4 September 2016 | Volume 10 | Article 439

https://en.wikibooks.org/wiki/SPM/VBM
https://en.wikibooks.org/wiki/SPM/VBM
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST#Tissue_Volume_Quantification
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FAST#Tissue_Volume_Quantification
http://enigma.ini.usc.edu
http://enigma.ini.usc.edu
https://surfer.nmr.mgh.harvard.edu/fswiki/MorphometryStats
https://surfer.nmr.mgh.harvard.edu/fswiki/MorphometryStats
http://surfer.nmr.mgh.harvard.edu/fswiki/eTIV
http://www.R-project.org/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Katuwal et al. Inter-Method Discrepancies in Brain Volume Estimation

Experiments Repeated with NYU Data
Data used for the above experiments were acquired frommultiple
scanning sites and the effects of scanning site were adjusted by
fitting a linear mixed-model with site as a random effect. This
model does not capture the non-linear site effects. In order to
completely eliminate the effects of site and to focus only on the
differences due to methods, we repeated the above experiments
using only the NYU site. NYU was selected because it had the
largest number of subjects (71 ASD and 58 TDC) and all of
its subjects had FIQ information. NYU results are presented as
supplementary materials.

Manual Segmentation for TIV
To determine which of the three methods examined were most
accurate, we performed manual segmentation on 25 subjects
from the NYU ABIDE site. Manual segmentation is a highly time
consuming process and in order to reduce the workload manual
segmentation was limited to only 25 subjects. These 25 subjects
were identified by computing the inter-method difference of TIV
between SPM, FSL, and FS, for each subject. These differences
were then squared for all three methods and summed. From
this calculation we identified the 25 subjects who exhibited the
greatest total combined inter-method differences and selected
them for manual segmentation. Manual segmentations were
performed on every axial slice using ITKSNAP (Yushkevich et al.,
2006).

For each slice, we segmented the intracranial region using
ITKSNAP’s polygon tool followed by fine corrections at the voxel
level using a brush tool. EachMRI image took about 30min by an
experienced operator to perform the segmentation. The protocol
detailed by Nordenskjöld et al. (2013) was followed to segment
the images manually. The cranial cavity in each slice was outlined
by tracing the dura, which includes all brain tissue and CSF inside
the skull. All dural sinuses were included. Where dura was not
visible, the cerebral contour was traced. The first slice where dura
is visible from the top was the first segmented slice and the last
slice containing cerebellum was the final segmented slice. The
bilateral cavernous sinus and trigeminal cave were excluded from
the segmentation. After manual segmentation, a quality check
was performed on the images by a second operator to insure
accuracy.

To determine which method corresponded most closely to
our manual segmentation results, we computed the following
statistics between each method’s TIV estimate and manual
segmentation TIV estimate: overall mean difference and standard
deviation, Pearson’s correlation and root mean squared (RMS)
error.

RESULTS

Estimated Brain Volumes and Inter-Method
Differences
Brain volumes estimated by SPM, FSL, and FS are presented
in Table 2. Statistics of the inter-method differences (mean
difference, correlation coefficient, Cohen’s d, and paired t-test
p-value) for all 876 subjects are presented in the shaded
cells. The distributions of the estimated brain volumes are

visualized as boxplots in Figure 1A. To visualize the inter-
method distribution, the estimates from SPM, FSL, and FS are
plotted against the estimates from SPM in Figure 1B.

The brain volume estimates from different methods
moderately agreed except for CSF (see Figure 1B). SPM vs.
FSL correlation coefficients were 0.85, 0.64, 0.82, and 0.50 for
TIV, GM, WM, and CSF volumes, respectively (see Table 2).
Similarly, SPM vs. FS correlation coefficients were 0.83, 0.77, and
0.93 for TIV, GM, and WM volumes, respectively. FSL vs. FS
correlation coefficients were 0.83, 0.75, and 0.81 for TIV, GM,
and WM volumes, respectively. In summary, the inter-method
correlation coefficients were high for TIV and WM, followed by
GM and were the lowest for CSF.

Except WM, the average estimates of all the brain volumes by
SPM were higher than that of FSL and FS; see purple boxplot
in Figure 1A. FSL estimates of TIV were the lowest while FSL
estimates of WM were the highest. Similarly, FS estimates of
WM were the lowest. In summary, the following inter-method
differences were observed: TIVSPM (1.57 L) > TIVFS (1.56 L) >

TIVFSL (1.38 L), GMSPM (0.75 L) > GMFS (0.71 L) > GMFSL

(0.64 L), WMFSL (0.53 L) > WMSPM (0.52 L) > WMFS (0.49 L)
and CSFSPM (0.30 L) > CSFFSL (0.22 L). Except TIVSPM vs.
TIVFS, all inter-method differences were statistically significant
(p < 0.001; Cohen’s d > 0.5 in 7 and d > 1 in 4 out of 10
comparisons).

The inter-method correlation coefficients within NYU
subjects were slightly higher than that from using all subjects (see
Supplementary Table 2). Inter-method differences were mostly
similar to that of the experiment using all subjects.

ASD vs. TDC Inter-Group Differences is
Dependent on the Method Used
Neuroimaging studies generally focus on investigating the
average difference between two groups of subjects and hence
it is important to probe how group differences are method
dependent. Here we show how the inter-method differences in
brain volume estimates can influence ASD vs. TDC inter-group
differences. In other words, here we ask: “is inter-group difference
dependent on the processing method used?” The mean ASD vs.
TDC (ASD–TDC) group difference for TIV, GM, WM, and CSF
according to SPM, FSL, and FS are presented inTable 3. The ASD
vs. TDC distribution of the brain volume estimates are presented
as boxplots in Figure 2A. The mean inter-group differences in
percentage are presented as bar plots in Figure 2B.

Results show that ASD vs. TDC differences are highly
dependent upon the method used. According to SPM, ASD
had 1.53% (p = 0.019) more TIV than TDC; see Table 3 and
purple bar in Figure 2B. Whereas according to FS and FSL,
ASD had only 0.36% (p = 0.65) and 0.86% (p = 0.26)
more TIV than TDC, respectively (see yellow bar in Figure 2B).
Similarly, according to SPM, ASD had 1.49% (p = 0.016) more
GM than TDC. In contrast, FSL estimates show that ASD has
0.24% (p = 0.77) less GM than TDC. Whereas, according
to FS, there was small difference in GM of ASD and TDC.
Similar method dependent ASD vs. TDC differences in WM
and CSF volume estimates were noted. Method dependence of
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TABLE 2 | Estimated brain volumes and inter-method differences.

TIV GM WM CSF

SPM (L) 1.566 ± 0.15 0.748 ± 0.07 0.519 ± 0.06 0.299 ± 0.04

SPM vs. FSL SPM–FSL mean diff. (ml) 183.4 106.0 −14.4 77.9

Correlation Coefficient 0.851 0.639 0.821 0.494

Cohen’s d 1.20 1.41 −0.21 1.62

Paired t-test p-value <1E-100** <1E-100** 7E-18** <1E-100**

FSL (L) 1.383 ± 0.15 0.642 ± 0.08 0.533 ± 0.08 0.221 ± 0.05

FSL vs. FS FSL–FS mean diff. (ml) −177.4 −70.0 40.3 204.9

Correlation Coefficient 0.829 0.745 0.808 NA

Cohen’s d −1.05 −0.82 0.53 NA

Paired t-test p-value <1E-100** <1E-100** <1E-100** NA

FS (L) 1.560 ± 0.18 0.708 ± 0.08 0.493 ± 0.07 NA

SPM vs. FS SPM–FS mean diff. (ml) 6.1 40.1 25.9

Correlation Coefficient 0.830 0.767 0.934 NA

Cohen’s d 0.04 0.54 0.42 NA

Paired t-test p-value 0.07 <1E-90** <1E-100** NA

Mean and standard deviation of the brain volumes estimated by SPM, FSL and FS are presented. Cells corresponding to CSFFS are filled as “NA” since FS does not output total CSF

volume. Inter-method differences and corresponding statistics are presented in shaded cells. SPM vs. FSL % difference was calculated as 100*(SPM− FSL)/FSL and other comparisons

were performed similarly. Correlation coefficient is used to measure the association between the brain volumes estimated by two different methods. Cohen’s d is used to measure the

effect size of the inter-method difference and paired t-test was used to check the statistical significance. Correlation coefficients show that methods agree on volume estimates but the

Cohen’s d and paired t-test p-values indicate significant inter-method differences. **significant at E-10.

FIGURE 1 | Distribution of estimated brain volumes and inter-method differences. (A) The distribution of brain volumes estimated by SPM (purple), FSL (blue)

and FS (orange) are presented by boxplots and indicate significant inter-method differences. CSFFS is not presented since FS does not output total CSF volume. (B)

Volumes estimated by FSL and FS are plotted against the volumes estimated by SPM. The brain volume estimates from different methods had moderate agreement

except for CSF.
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TABLE 3 | ASD vs. TDC brain volume differences.

TIV GM WM CSF

diff (ml) diff % p-value diff (ml) diff % p-value diff (ml) diff % p-value diff (ml) diff % p-value

RAW VOLUMES

SPM 24.0 1.53 0.019* 11.1 1.49 0.016* 3.7 0.71 0.33 9.2 3.08 0.001*

FSL 11.8 0.86 0.26 −1.6 −0.24 0.77 −1.4 −0.26 0.80 3.8 1.70 0.30

FS 5.6 0.36 0.65 0.3 0.04 0.96 −4.5 −0.92 0.33 NA NA NA

ADJUSTED FOR AGE, SEX, AND SITE

SPM 20.8 1.34 0.04* 13.7 1.84 0.02* 3.7 0.71 0.34 5.9 1.99 0.011*

FSL 12.7 0.92 0.32 1.37 0.21 0.85 −0.1 −0.02 0.99 −1.6 −0.73 0.47

FS 8.3 0.53 0.60 3.11 0.44 0.64 −2.9 −0.59 0.57 NA NA NA

ADJUSTED FOR AGE, SEX, SITE, AND FIQ§

SPM 28.1 1.81 0.001* 17.5 2.35 0.006* 6.2 1.22 0.13 6.5 2.22 0.006*

FSL 19.1 1.44 0.16 3.5 0.55 0.67 2.2 0.42 0.70 −1.4 0.62 0.55

FS 16.1 1.03 0.33 7.9 1.11 0.26 0.3 0.07 0.95 NA NA NA

§63 subjects with missing FIQ were excluded from the particular analysis. diff=Mean(ASD–TDC) difference. diff %=Mean (ASD–TDC) difference as a percentage of mean TDC volume.

Cells corresponding to CSFFS are filled as “NA” since FS does not output total CSF volume. Statistically significant differences are denoted by * for p < 0.05. ASD vs. TDC differences

are dependent upon the method used and only in SPM, TIV, GM and CSF volumes in ASD were significantly larger than TDC.

FIGURE 2 | ASD–TDC brain volume differences are preprocessing method dependent. (A) The distribution of brain volumes estimated by SPM, FSL, and FS

for ASD and TDC. (B) ASD vs. TDC brain volume difference as a percentage of mean TDC is presented as a bar plot for each method. ASD vs. TDC brain volume

difference varied with methods which suggests that subsequent interpretations are highly dependent on the method of choice. *Significant at 0.05.

ASD vs. TDC differences persisted even after the effects of age,
sex, and site were removed (see Table 3). Similar results were
observed even after removing the effects of FIQ where 63 subjects

with missing FIQ were excluded from the analysis. We verified
our results by removing the effects of site by using subjects
from only one scanning site (NYU). Here again, ASD vs. TDC
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TABLE 4 | Differential bias for diagnostic group (ASD).

TIV GM WM CSF

bias (ml) bias % beta p-value bias (ml) bias % beta p-value bias (ml) bias % beta p-value bias (ml) bias % beta p-value

SPM vs. FSL# 11 0.8 0.039* 12 1.9 0.003* 5 1.0 0.038* 7 3.0 0.006*

FSL vs. FS# 5 0.3 0.75 −1 −0.2 0.75 2 0.37 0.75 NA NA NA

SPM vs. FS# 13 0.8 0.180 10 1.4 0.004* 8 1.5 0.004* NA NA NA

#reference method bias (ml): brain volume (in ml) by which a method systematically overestimates in ASD subjects than in TDCs. % bias: the percentage of brain volume by which a

method systematically overestimates in ASD subjects than in TDCs. *significant at 0.05.

volume differences were dependent on the method used (see
Supplementary Table 3).

Differential Bias of Methods to the
Diagnostic Group
Biases were pairwise calculated between methods using estimates
from one method as the reference and are presented in Table 4.
Compared to FSL, SPM showed statistically significant bias
for ASD subjects in TIV (0.8%, p = 0.039), GM (1.9%, p =

0.007), WM (1%, p = 0.038), and CSF (3%, p = 0.006)
volumes. Similarly, compared to FS, SPM showed statistically
significant bias for ASD subjects in GM (1.4%, p = 0.004)
and WM (1.5%, p = 0.004) volume estimates. We also
noted that several method biases were larger than ASD vs.
TDC differences according to the same methods. For example,
with reference to FSL, SPM bias for ASD subjects in WM
estimation was 7ml, whereas, the inter-group difference in
WM volumes according to SPM was 3.7ml (see Table 3). In
summary, with reference to FSL and FS, SPM showed positive
bias for ASD subjects in multiple brain volumes. In other
words, with reference to SPM, FSL, and FS showed negative
bias in brain volume estimation of ASD subjects. Many of the
biases were larger than ASD vs. TDC inter-group differences
according to the respective methods. When we repeated
these experiments using subjects from only one scanning site
(NYU) we got similar results; see Supplementary Table 4 for
details.

Manual Segmentation
Results of this analysis are depicted in Table 5, Figure 3. The
mean percentage difference between the methods and manual
segmentation were as follows: SPM 2.16%, FS −2.31%, and
FSL −16.4%. RMS error for these methods followed the same
trend: SPM = 0.06, FS = 0.12, and FSL = 0.26. Pearson’s
correlation indicates that SPM exhibited the highest correlation
with manual segmentation (r = 0.94) followed by FSL
(r = 0.92) and FS (r = 0.84). The mean difference
between manual segmentation and automated methods was
greatest for FSL (mean difference = −251.89ml) and SPM
had the lowest mean difference (31.88ml). In Figure 3 the
percentage differences between estimated TIV and manual
segmentation are presented for each of the 25 subjects. For
all 25 subjects FSL under estimated the TIV with percentage
differences in the range of −10 to −25%. Although SPM
generally over estimated TIV and FSL generally underestimated

TIV, percentage differences for these methods were in both
positive and negative directions. SPM and FS percentage
differences were in the range of −4 to 8% and −22 to 8%,
respectively. The above statistics indicate that compared to
FS and FSL, TIV estimates of SPM are closer to manual
segmentation.

DISCUSSION

In this work we investigated discrepancies in brain volumes (TIV,
GM, WM, and CSF) estimated by three different preprocessing
methods (SPM, FSL, and FS). Brain volume estimates between
the methods had significant correlation, but the absolute values
of brain volume estimates were significantly different between
methods. In other words, there was significant method specific
biases while estimating brain volumes. When the methods
were compared pair-wise, significant differential biases for the
diagnostic group (ASD) were revealed, and most biases were
larger than ASD vs. TDC differences according to the respective
methods. These biases had an influence on ASD vs. TDC
brain volume differences and our results indicate that ASD vs.
TDC brain volume differences were dependent on the method
used to estimate the brain volumes. Below we compare our
results with previous findings and discuss potential causes of
brain tissue volume discrepancies by investigating segmentation
disagreements at anatomical locations. We further provide
discussions on inter-method discrepancies at a conceptual
level. Finally, we discuss methods for minimizing inter-method
discrepancies.

ASD vs. TDC Inter-Group Differences
Dependent on the Method Used
In this study we found that ASD vs. TDC inter-group differences
in brain volumes are dependent upon the method used. This
dependency was evident in all brain volume types. For example,
SPM showed 1.53% more TIV in ASD compared to TDC with
statistical significance. Whereas FS showed that ASD had only
0.36% more TIV compared to TDC and the difference was not
statistically significant. In other words, a research study using
SPM to estimate TIV will report statistically significant TIVASD

> TIVTDC but a different study using FS on the same data
will not report statistically significant difference. Similarly, ASD
had 1.49% more GM than TDC according to SPM, and the
difference was statistically significant. Whereas according to FSL,
ASD had 0.24 % less GM than TDC. This means— a study
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TABLE 5 | Comparison of Manual Segmentation TIV with Automated Methods.

TIVMean ± SD Method–Manual difference

(ml) Mean ± SD

Method–Manual %

difference Mean ± SD

Pearson’s correlation

r (p-value)

RMS Error

Manual 1.60 ± 0.16 NA NA NA

SPM 1.64 ± 0.14 31.88 ± 55.67 2.16 ± 3.59 0.94 (3E-12) 0.06

FSL 1.35 ± 0.15 −251.89± 60.97 −15.73± 3.64 0.92 (4E-11) 0.26

FS 1.57 ± 0.22 −34.47± 119.34 −2.31± 7.77 0.84 (1.6E-7) 0.12

Method–Manual % differences were calculated as a percentage of Manual TIV. Multiple statistical measures indicate that SPM estimates are closest to manual segmentation, followed

by FS and FSL.

FIGURE 3 | TIV estimation difference compared to manual segmentation. Depicts TIV estimation difference for each subject as a percentage of manual

segmentation TIV. SPM overestimates for the majority of subjects while FS generally underestimates. FSL exhibited the greatest amount of difference and

underestimated TIV for all subjects.

using SPM would report larger GM volumes in ASD whereas
a study using FSL would report smaller GM volumes in ASD.
These results show that the magnitude and even the direction
of the effect under investigation is dependent on the method
used, and previous studies have reported similar findings. For
example, Callaert et al. (2014) reported that the age effect on GM
volume was significantly dependent upon the method used to
estimate the GM volume. Similarly, Nordenskjöld et al. (2013)
reported that hippocampal volume showed different associations
with education depending on which TIV measure (SPM or FS)
was used for hippocampal volume normalization. Rajagopalan
et al. (2014) found significant GM reduction in the motor region
of the brain of ALS patients using SPM but could not replicate the
finding using FSL. These results demonstrate that the choice of a
preprocessing method used to estimate brain volumes can have a
significant effect on the end results of a study.

Comparison of TIV Estimates with Manual
Segmentation
According to the results of manual segmentation on a subset
of subjects, SPM most closely approximates TIV estimates
obtained via manual segmentation, followed by FS, and then FSL.
Although the overall mean difference in FS was not very high,
compared to SPM there was greater variability in TIV estimates
of FS. These results suggest that of the three automated methods

evaluated SPM estimates are closest to manual segmentation.
It is important to note that default parameters were utilized
for all toolboxes and therefore we cannot extrapolate these
results to situations in which user selected parameters are
chosen. The TIV estimates for SPM generally overestimated
for each subject compared to manual segmentation while FS
generally underestimated. FSL by contrast underestimated for
all 25 subjects examined (see Figure 3). For all three methods
the mean TIV estimate as well as standard deviation of the
manual segmentation closely matched those of the full sample
(see Table 2).

Discrepancies between TIV calculated via automatedmethods
and manual methods can be partly attributed to differing
definitions of TIV for each toolbox. For example, in SPM, TIV
was calculated as the summation of the tissue volumes: GM,WM,
and CSF (https://en.wikibooks.org/wiki/SPM/VBM). Whereas in
FSL and FS, TIV was estimated using the atlas scaling factor
technique (Buckner et al., 2004). Even though FSL and FS use
similar techniques there are some methodological differences.
For example, FSL uses MNI152 brain template whereas FS uses
MNI305 brain template. Moreover, FSL uses both brain and skull
whereas FS uses only the brain to guide the registration of a
subject’s image to the brain template. The differing definitions
coupled with methodological differences can explain the errors
in TIV.

Frontiers in Neuroscience | www.frontiersin.org 9 September 2016 | Volume 10 | Article 439

https://en.wikibooks.org/wiki/SPM/VBM
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Katuwal et al. Inter-Method Discrepancies in Brain Volume Estimation

With this comparison we provide evidence that compared
to manual segmentation, TIV estimates of automated methods
are different. In addition, with this validation we also provide
evidence that TIV estimates of SPM are closer to manual
segmentation than FS and FSL. This result further indicates
that the significantly higher TIV in ASD as estimated by SPM
is more accurate than the ASD vs. TDC comparisons of FS
and FSL (see Table 2). We limited our manual segmentation
validation just to TIV as TIV is the measure that can be easily
estimated with visual inspection. Manual segmentation of GM,
WM, and CSF regions is much harder and we did not perform
validation of those regions. But from our TIV analysis we expect
that automated estimates of those regions will be different from
manual estimates.

Comparison of ASD vs. TDC Brain Volume
Differences with Previous Studies
Due to various heterogeneous neuroimaging findings in ASD
our comparisons here are limited only to meta analytic studies
(Redcay and Courchesne, 2005; Stanfield et al., 2008; Radua
et al., 2011; Via et al., 2011) and studies that used the
ABIDE dataset (Kucharsky Hiess et al., 2015; Haar et al.,
2016; Riddle et al., 2016). It should be noted that the
exclusion criteria and the number of subjects included in
the studies that used ABIDE data were not consistent across
studies. In our study, TIV in ASD was larger than TDC
according to all methods, however, the difference was statistically
significant only according to SPM. Riddle et al. (2016) using
SPM8VBM also report greater TIV in ASD (1.58%) with
statistical significance. Kucharsky Hiess et al. (2015) used a
different toolbox (ART Brainwash, www.nitrc.org/projects/art)
and reported higher TIV in ASD (1.73%) with statistical
significance. Haar et al. (2016) using FS found TIV to be
higher only in two of the 18 sites they used and when these
two sites were removed (26 subjects) overall ASD vs. TDC
difference was not statistically significant and this result is
similar to our FS results. Further, Redcay and Courchesne (2005)
and Stanfield et al. (2008) have also reported similar results.
Interestingly, 1.53% more TIV in ASD reported by SPM in
our study is very close to an estimate (1.534%) predicted by
a model proposed by Redcay and Courchesne (2005). This
model prediction was for ASD and TDC subjects at age 17.75
years which is the mean age of the subjects used in our
study. Kucharsky Hiess et al. (2015) have also reported similar
prediction.

In our study GM volume in ASD was greater than TDC
(1.5%) with statistical significance according to SPM. An ABIDE
study by Riddle et al. (2016) using SPM8VBM also report a
similar result (1.58% more in ASD). However, in our study GM
volume in ASD was slightly smaller according to FSL (0.2%)
without statistical significance and there was little difference in
GM volume according to FS. Haar et al. (2016) report slightly
larger GM volume in ASD but without statistical significance,
using both FS (d = 0.01 in cortical GM; d = 0.13 in cerebellar
GM) and FSL (d = 0.18). A large meta-analytic study by Via et al.
(2011) report no GM volume differences (d = 0.006) between

ASD and TDC. In summary, studies using SPM tend to report
slightly larger GM volume in ASD but results of studies using FSL
and FS are inconsistent.

In our study WM volume in ASD was slightly greater than
in TDC (0.7%) without statistical significance according to SPM.
Riddle et al. (2016) also using SPM report similar results (0.67%
more in ASD). Similarly, Haar et al. (2016) report slightly larger
WM volume in ASD but without statistical significance, using
both FSL (d = 0.03) and FS (d = 0.13 in cortical WM; d = 0.04
in cerebellar WM). However, in our study, WM volume in ASD
was slightly smaller according to both FSL (0.3%) and FS (0.9%)
without statistical significance. A large meta-analytic study by
Radua et al. (2011) report slightly smaller WM volume (d =

0.006) in ASD. In summary, studies using SPM tend to report
slightly larger WM volume in ASD but results are inconsistent in
studies that used FSL or FS.

In our study CSF volume was larger in ASD according to
SPM (3.1%) with statistical significance. Similarly Lin et al. (2015)
using SPM8 New Segment also found greater CSF volume in
ASD (4.75%) with statistical significance. Riddle et al. (2016)
using SPM8VBM also report 1.54% more CSF in ASD but with
no statistical significance. Haar et al. (2016) using FSL also
report slightly larger CSF volume in ASD (d = 0.15) without
statistical significance and this is similar to our FSL finding;
1.7% greater in ASD without statistical significance. In summary,
our result agrees with previous finding of greater CSF volume
in ASD and that the magnitude of the difference is method
dependent.

Methods Have Different Biases for
Diagnostic Group, and Many of Them Are
Larger than Inter-Group Differences
We found that methods have systematic differential biases for
diagnostic group (ASD) and several biases were larger than ASD
vs. TDC differences according to the respective methods. In other
words, inherent systematic bias of a method to a variable of
interest (ASD) is larger than the actual effect of the variable (brain
volume difference due to ASD). The differential biases shown by
the methods for ASD explains the method dependent ASD vs.
TDC group difference in brain volumes presented in ASD vs.
TDC inter-group differences in brain volumes. With reference
to FSL and FS, SPM showed positive bias for ASD subjects
in multiple brain volumes. From a different perspective or
considering SPM as the reference method, it can be said that FSL
and FS showed negative bias for ASD subjects. In other words,
with reference to SPM, FSL and FS systematically underestimated
brain volumes in ASD subjects compared to TDC. This might
be one reason why SPM shows greater brain volumes in ASD
compared to TDC while FSL and FS do not. To conclude
which method captures the true ASD vs. TDC difference further
investigation using ground truth data is necessary.

Similar results have been reported in previous studies
(Nordenskjöld et al., 2013), where it was reported that SPM
showed bias associated with gender and atrophy while FS showed
bias dependent on skull size. In summary, the above results
indicate that systematic differential biases of a preprocessing
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method can be assigned as brain volume differences due to autism
thus leading to incorrect findings.

Locations of the Inter-Method
Segmentation Discrepancies
To identify the locations of inter-method segmentation
discrepancies, 20 subjects were randomly chosen and their
tissue probability maps (TPM) were individually inspected
using MRIcron (http://people.cas.sc.edu/rorden/mricron/index.

html). For each tissue type, a subject with the most common
segmentation discrepancy was chosen and these discrepancies
are presented in Figure 4 where TPMs of different methods are
overlaid using MRIcron.

Overestimation of GM by SPM Compared to FSL

and FS
In Figure 4Ai, red represents the regions where voxel
probabilities in SPM TPM for GM are higher than that of

FIGURE 4 | Inter-method segmentation comparison. Tissue Probability Maps (TPMs) from different methods are overlaid on one another. Red/green represents

the voxels where only one TPM has non-zero probability value. Yellowish green or orange represents overlapping regions. (A) SPM vs. FSL GM segmentation, (B)

SPM vs. FSL CSF segmentation, (C) SPM vs. FS WM segmentation and (D) SPM vs. FSL full brain map (GM+WM+CSF). (Aii,Bii) are histograms of voxel probability

values in GM and CSF TPMs, respectively. Although TPMs of different methods predominantly overlap, there are mismatching regions/voxel values of segmentation

that contribute to inter-method differences in brain volumes estimates.
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FSL TPM; green, vice-versa and yellowish-green represents
regions where voxel probabilities from both methods are similar.
Figure 4Aii compares the histograms of the voxel probabilities
in GM TPMs produced by SPM and FSL.

Our results showed that SPM overestimated GM volume
compared to FSL in the following four main brain regions. (1)
Cerebellum: FSL under segments GM (less GM volume or less
GM voxel probability) in the cerebellum–see red regions in box 1
of Figure 4Ai. (2) Subcortical Structures: The proportion of GM
(compared to WM) according to SPM is greater in subcortical
structures–see red regions in box 2 in Figure 4Ai. Probability
values in subcortical voxels are generally greater than 0.8 in GM
TPM for SPM. This accounts for the higher red curve for voxel
probabilities greater than 0.8 in the histogram of voxel probability
presented in Figure 4Aii. In FSL, however, subcortical voxel
probability values are in the 0.3–0.6 range, which accounts for
the higher green curve in the 0.3–0.6 range. (3) Boundaries of
GM and other Structures: SPM assigns regions close to the GM
boundaries of different brain structures as GM indicated by red
lines in box 3 and box 5 of Figure 4Ai. (4) Inter-sulcal CSF: SPM
segments some inter-sulcal CSF as GM–indicated by red regions
in box 4. The overestimation of GM in these brain regions by
SPM explains the higher GM estimates by SPM.

Low Correlation in CSF Volume Estimates by SPM

and FSL
SPM and FSL produced similar ventricular CSF segmentations;
overlap or agreement is presented in orange, box 2 in Figure 4Bi.
However, the probability values in ventricular voxels are in the
0.95–0.99 range in CSF TPM of SPM, while probability values are
exactly 1 in CSF TPM of FSL. This accounts for the shift of the
FSL (green) curve to the right in the 0.9–1 range in Figure 4Bii.
Discrepancies in non-ventricular CSF estimates were mainly
from following three brain regions. (1) Brain Boundary: The
estimation of CSF surrounding the brain, indicated by the red
regions in box 3 and in other brain slices of Figure 4Bi was
higher for SPM. This accounts for the higher SPM (red) curve
in the 0.7–0.99 range in the histogram of CSF. This may be due
to the fact that the a priori CSF TPM used by SPM (in New
Segment) during segmentation has a thick layer of CSF at the
boundary of the brain. (2) Inter-sulcal CSF: FSL segments greater
CSF compared to SPM in inter-sulcal regions (see green regions
in Box1 of Figure 4Bi), where CSF TPMs of SPM and FSL have
probability values in the ranges of 0–0.3 and 0.3–0.7, respectively.
This introduces higher SPM (red) curve in the 0–0.3 range in
Figure 4Bii.

Our results indicate that the segmentation discrepancy in non-
ventricular CSF segmentation is the primary cause of the low
inter-method correlation in CSF volumes. Misclassification of
bone/air as CSF or vice-versa can be another major source of
discrepancy. T1-weighted images provide a reasonable amount
of contrast between GM (dark gray), WM (lighter gray) and CSF
(black). However, dense bone and air also appear dark like CSF.
This makes the segmentation of CSF challenging, especially at
the sulcal regions since it is difficult to distinguish between the
inner skull and sulcal CSF. Accuracy in CSF segmentation can
be improved by augmenting information from the T2-weighted

image as it provides additional contrast between CSF (bright) and
brain tissue (dark).

Underestimation of WM by FS Compared to SPM
TheWMvolumes estimated by FS were the lowest in general. The
final results of surface reconstruction and parcellation produced
by recon-all were used to report WM segmentation by FS. Our
study indicates that FS produces a considerable number of areas
where WM is misclassified as non-WM (red dots in box 1 of
Figure 4C). The misclassified areas were primarily due to WM
hypo-intensitiesmisclassified as GMor partial voluming in which
WM + GM voxels look like non-WM and are segmented as
non-WM.WMhypo-intensities have values much lower than the
averageWM intensity. Although recon-all automatically adds the
volume of WM hypo-intensities to the total WM volume, our
results indicate that it cannot still identify all the hypo intensities
and the WM segmentations of FS require significant manual
editing.

Brain Mask (SPM vs. FSL)
Brain masks in SPM and FSL presented in Figure 4Di were
created by the summation of GM, WM, and CSF TPMs. The
brain mask of SPM (red) is larger than that of FSL (green).
This is mainly due to the overestimation of CSF surrounding the
brain by SPM compared to FSL. In the FSL brain mask, voxel
probabilities have only two values, zero or one, while the voxel
probabilities in SPM brain masks are continuous in the 0–1 range
(see Figure 4Dii). In FAST of FSL, the HMRF model used for
classification has only three components (GM, WM, and CSF);
hence, the summation of these TPMs add up to one in the brain
regions. In SPM, however, the Gaussian mixture model uses a
mixture of six Gaussian components for GM, WM, CSF, bone,
soft tissue, and air/background; but the brain mask was created
by summing only three mixture components: GM,WM and CSF.
Therefore, the voxel probabilities in the brain mask of SPM are in
the 0–1 range.

Sources of the Inter-Method Discrepancies
in Tissue Segmentation
Inter-method segmentation discrepancies in different locations
of the brain were shown in the previous section. This
section discusses the possible reasons behind the inter-method
segmentation discrepancies at a conceptual level. Inter-method
differences in tissue segmentation can be mainly attributed to
differences in two factors: (1) method dependent differences in
the brain template and method dependent differences in the
spatial normalization process.

Brain Templates
A brain template or atlas is an anatomical representation of
a brain. It is a pre-segmented standard brain image generated
from a single subject or a cohort of subjects. A brain template
is generally used as an a priori to guide tissue classification. The
different preprocessing methods used for tissue segmentation
in this study utilize different standard brain templates for prior
spatial information of the brain structures. For example, New
Segment of SPM uses ICBM-452 T1 brain atlas (Mazziotta et al.,
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2001b) and FS uses MNI 305 (Collins et al., 1994) brain atlas.
Whereas FAST of FSL does not use brain atlas but utilizes
HMRF model to encode spatial information through contextual
constraints of neighboring pixels in an image (Zhang et al.,
2001). The differences among brain templates can arise primarily
from two sources. First, the definition of brain structures can
vary among the brain templates. Second, the brain templates
are created from different cohorts of subjects scanned under
different scanners and hence have different biases for subject
demographics, image quality, and scanner settings. The inter-
method discrepancies in brain structures segmentation can be
minimized with the use population specific brain templates (Tang
et al., 2010; Mandal et al., 2012).

Spatial Normalization
Spatial normalization is the process whereby individual
sMRIs are registered to the common anatomical space
defined by the standard brain template. Spatial normalization
conceptually consists of two elements: image representation and
transformation. The differences due to spatial normalization
starts from the choice in the mathematical representation of
an image, i.e., how an image is mathematically represented
to be used in subsequent mathematical operations. For image
representation, several assumptions are made about the
properties of the images, and these assumptions vary with
the preprocessing methods. The effect of the differences in
these assumptions propagate further and are finally evident
with the discrepant segmentation results. Similarly, differences
arise also from the choice of the transformation applied to the
individual images to register it to a space defined by a standard
template. In addition, different spatial normalization techniques
behave differently with different image acquisition parameters,
motion artifacts, and imaging artifacts such as bias field and
intensity inhomogeneity. This adds further discrepancy to the
segmentations.

Implications for Future Neuroimaging
Studies
Our findings have important implications for the ongoing search
for neuroimaging biomarkers in ASD and other brain disorders.
Inconsistencies across previous studies and lack of evidence for
brain biomarkers in ASD may in part be a result of failure
to account for the issues we have raised in this study. Inter-
method differences can also impact brain connectome studies
(both structural and functional) where total brain volume is
often used as a covariate. To reduce the impact of inter-method
differences, we suggest the following directions that need further
investigation.

Cross-Validation of Findings
Results of our study and of many previous studies (Eggert et al.,
2012; Nordenskjöld et al., 2013; Callaert et al., 2014; Rajagopalan
et al., 2014) have demonstrated the method dependence of
neuroimaging results. Each method has its own strengths and
weakness, and there is no general agreement on which method
is optimal. Therefore, we suggest using multiple methods to
segment brain images to cross validate results across methods. In

addition, a multi-variate classifier can be trained on the outputs
of several methods to improve the overall segmentation results.
A simple classifier would be a majority voting system where the
final decision is made based on the majority votes. For example,
when SPM, FSL, and FS are used for binary tissue segmentation
and if SPM and FSL labels a voxel as CSF whereas FS labels it as
GM, then the multivariate system would label the voxel as CSF.

Development of Better Methods
The present preprocessing schemes apply spatial transformations
that may introduce errors in tissue segmentations and are
one of the major causes of inter-method differences. Machine
learning based methods can be a way to perform segmentation
with minimal preprocessing, and among them, deep-learning
methods have proven to be more promising. Recently, a
few studies have successfully performed the segmentation of
brain structures from MRI using deep learning. De Brébisson
and Montana (2015) have reported competitive accuracy for
segmentation of cortical and sub-cortical structures from MRIs
without performing any non-linear registration. Similarly, (Kim
et al., 2013; Lai, 2015) have reported successful segmentation of
hippocampus using deep learning.

Focus on Combining Image Types in Addition to

Methods
Accurate segmentations may not be possible using a single type
of sMRI since it may not have sufficient contrast to discriminate
the boundaries of brain structures. For example, T1-weighted
sMRIs do not have enough information to distinguish between
brain structures. It is difficult to segment CSF surrounding the
brain region using T1-weighted MRIs since skull bone as well as
CSF appear dark in the T1-weighted images. A very low inter-
method correlation of 0.5 in CSF volume estimates obtained
in this study demonstrates the difficulty. Whereas CSF appears
bright and skull bone appears dark in T2-weighted MRI and
this is very helpful for the CSF segmentation. Segmentation
accuracy of CSF as well as other brain structures can be improved
if information from multiple types of MRIs are used together.
Numerous segmentation algorithms that use multiple types (MR
sequences) ofMRI are currently available and a collection of these
algorithms with their segmentation accuracies can be found at
http://mrbrains13.isi.uu.nl/.

Limitations of Our Study
This study has several limitations. First, a multi-site data was used
andmany studies have shown image acquisition settings affect the
quantification of brain morphometry fromMRI using automated
processing tools (Styner et al., 2002; Auzias et al., 2014). We
removed the site effects by using a linear mixed-effect model with
site as a random effect. In addition, we repeated our experiments
in subjects scanned in only one site. Second, motion artifacts have
considerable effect on automatically extracted MRI measures
(Blumenthal et al., 2002; Brown et al., 2010). We performed
strict quality check and removed 236 (out of 1112) images
with motion and other artifacts. However, the image quality
assessment itself is a subjective process and we acknowledge that
little motion and other artifacts present in the deemed good
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quality images might have an effect in the results. Further, motion
and other artifacts may have influenced the estimated brain
volumes differently across the three methods, if this is true this
again shows inconsistency across methods. Third, the definitions
of GM, WM, CSF, and TIV differ among the methods. For
example, when we are comparing CSF from SPM and CSF from
FSL, we are not comparing exact same voxels. This limitation
itself is one of the messages we are trying to convey in this paper.
Here we are demonstrating that the results aremethod dependent
because even the definition of brain structures are different across
methods.

CONCLUSIONS

We demonstrate that ASD vs. TDC group differences in brain
volumes are method dependent. According to SPM, ASD brain
volumes were higher than TDC with statistical significance but
according to FSL and FS the differences were not significant.
Further, validation via manual segmentation indicates that SPM
provides TIV estimates closest to manual segmentation followed
by FS and then FSL. Inter-method brain volume differences
can be attributed to varying definitions of brain structures,
use of different templates, differences in image processing
algorithms, and the varying effects of imaging artifacts and
acquisition settings. We suggest that research studies should
cross-validate findings across multiple methods before providing
biological interpretations. To our knowledge current studies do
not account for the method dependency of results. Accounting

for methodological differences will be an important step in
increasing the reliability and consistency of future neuroimaging
findings of autism and other brain disorders, leading to a
greater likelihood of establishing valid and reliable neuroimaging
biomarkers. We also emphasize that future work is needed to
investigate the reasons behind inter-method discrepancies and
the need to develop better methods.

AUTHOR CONTRIBUTIONS

Contributions to this work are as follows: AM is the PI of the
project. AM, GK, SB, and NC designed the study. GM, DE, CD,
and EE contributed to the design of the study. EE downloaded the
data and manually checked the quality of each MR image. GK,
EE, and CD preprocessed MRI data and GK and AM performed
the analyses. SB, NC, GM, DE, EE, and CD contributed to the
analyses of the study. GK, AM, and SB drafted themanuscript. All
authors contributed to the editing of the manuscript. All authors
read and approved the manuscript.

FUNDING

This project was internally funded by Geisinger Health System.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnins.
2016.00439

REFERENCES

Amaral, D. G., Schumann, C. M., and Nordahl, C. W. (2008). Neuroanatomy of

autism. Trends Neurosci. 31, 137–145. doi: 10.1016/j.tins.2007.12.005

Ashburner, J., Chen, C., Moran, R., Henson, R., Glauche, V., and Phillips, C. (2013).

SPM8 Manual. Available online at: http://www.fil.ion.ucl.ac.uk/spm/

Ashburner, J., and Friston, K. J. (2005). Unified segmentation. Neuroimage 26,

839–851. doi: 10.1016/j.neuroimage.2005.02.018

Auzias, G., Breuil, C., Takerkart, S., and Deruelle, C. (2014). Detectability of brain

structure abnormalities related to autism through MRI-derived measures from

multiple scanners. IEEE-EMBS Int. Conf. Biomed. Heal. Inform. 2014, 314–317.

doi: 10.1109/bhi.2014.6864366

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2014). Fitting Linear Mixed-

Effects Models using lme4. arXiv 67, arXiv:1406.5823. doi:10.18637/jss.v067.i01

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a

practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300.

Blumenthal, J. D., Zijdenbos, A., Molloy, E., and Giedd, J. N. (2002). Motion

artifact in magnetic resonance imaging: implications for automated analysis.

Neuroimage 16, 89–92. doi: 10.1006/nimg.2002.1076

Boekel, W., Wagenmakers, E. J., Belay, L., Verhagen, J., Brown, S., and Forstmann,

B. U. (2015). A purely confirmatory replication study of structural brain-

behavior correlations. Cortex 66, 115–133. doi: 10.1016/j.cortex.2014.11.019

Brown, T. T., Kuperman, J. M., Erhart, M., White, N. S., Roddey, J. C.,

Shankaranarayanan, A., et al. (2010). Prospective motion correction of high-

resolution magnetic resonance imaging data in children. Neuroimage 53,

139–145. doi: 10.1016/j.neuroimage.2010.06.017

Buckner, R. L., Head, D., Parker, J., Fotenos, A. F., Marcus, D., Morris, J.

C., et al. (2004). A unified approach for morphometric and functional

data analysis in young, old, and demented adults using automated atlas-

based head size normalization: reliability and validation against manual

measurement of total intracranial volume. Neuroimage 23, 724–738. doi:

10.1016/j.neuroimage.2004.06.018

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson,

E. S. J., et al. (2013). Power failure: why small sample size undermines the

reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376. doi: 10.1038/

nrn3475

Callaert, D. V., Ribbens, A., Maes, F., Swinnen, S. P., and Wenderoth, N. (2014).

Assessing age-related gray matter decline with voxel-based morphometry

depends significantly on segmentation and normalization procedures. Front.

Aging Neurosci. 6:124. doi: 10.3389/fnagi.2014.00124

Campbell, D. J., Chang, J., and Chawarska, K. (2014). Early generalized

overgrowth in autism spectrum disorder: prevalence rates, gender effects, and

clinical outcomes. J. Am. Acad. Child Adolesc. Psychiatry 53, 1063–1073. doi:

10.1016/j.jaac.2014.07.008

Carper, R. A., Moses, P., Tigue, Z. D., and Courchesne, E. (2002). Cerebral lobes in

autism: early hyperplasia and abnormal age effects. Neuroimage 16, 1038–1051.

doi: 10.1006/nimg.2002.1099

Chen, R., Jiao, Y., and Herskovits, E. H. (2011). Structural MRI in autism spectrum

disorder. Pediatr. Res. 69, 63R–8R. doi: 10.1203/pdr.0b013e318212c2b3

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Vol. 567,

2nd Edn.Hillsdale, NJ: Lawrence Erlbaum Associates.

Collins, D. L., Neelin, P., Peters, T. M., and Evans, A. C. (1994). Automatic 3D

intersubject registration ofMR volumetric data in standardized Talairach space.

J. Comput. Assist. Tomogr. 18, 192–205. doi: 10.1097/00004728-199403000-

00005

Courchesne, E., Campbell, K., and Solso, S. (2011). Brain growth across the life

span in autism: age-specific changes in anatomical pathology. Brain Res. 1380,

138–145. doi: 10.1016/j.brainres.2010.09.101

Courchesne, E., Karns, C. M., Davis, H. R., Ziccardi, R., Carper, R. A., Tigue, Z. D.,

et al. (2001). Unusual brain growth patterns in early life in patients with autistic

disorder: an MRI study. Neurology 57, 245–254. doi: 10.1212/WNL.57.2.245

Dale, A. M., Fischl, B., and Sereno, M. I. (1999). Cortical surface-based analysis.

I. Segmentation and surface reconstruction. Neuroimage 9, 179–194. doi:

10.1006/nimg.1998.0395

Frontiers in Neuroscience | www.frontiersin.org 14 September 2016 | Volume 10 | Article 439

http://journal.frontiersin.org/article/10.3389/fnins.2016.00439
http://www.fil.ion.ucl.ac.uk/spm/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Katuwal et al. Inter-Method Discrepancies in Brain Volume Estimation

De Brébisson, A., and Montana, G. (2015). Deep neural networks for

anatomical brain segmentation. IEEE Comput. Soc. arXiv:1502.02445. doi:

10.1109/CVPRW.2015.7301312

Di Martino, A., Yan, C.-G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K.,

et al. (2014). The autism brain imaging data exchange: towards a large-scale

evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19,

659–667. doi: 10.1038/mp.2013.78

Eggert, L. D., Sommer, J., Jansen, A., Kircher, T., and Konrad, C. (2012). Accuracy

and reliability of automated gray matter segmentation pathways on real and

simulated structural magnetic resonance images of the human brain. PLoS ONE

7:e45081. doi: 10.1371/journal.pone.0045081

Evans, A. C., Marrett, S., Neelin, P., Collins, L., Worsley, K., Dai, W., et al. (1992).

Anatomical mapping of functional activation in stereotactic coordinate space.

Neuroimage 1, 43–53. doi: 10.1016/1053-8119(92)90006-9

Fellhauer, I., Zöllner, F. G., Schröder, J., Degen, C., Kong, L., Essig, M.,

et al. (2015). Comparison of automated brain segmentation using a

brain phantom and patients with early Alzheimer’s dementia or mild

cognitive impairment. Psychiatry Res. Neuroimaging 233, 299–305. doi:

10.1016/j.pscychresns.2015.07.011

Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al.

(2002). Whole brain segmentation: automated labeling of neuroanatomical

structures in the human brain. Neuron 33, 341–55. doi: 10.1016/S0896-

6273(02)00569-X

Fischl, B., Sereno, M. I., Tootell, R. B., and Dale, A. M. (1999). High-resolution

intersubject averaging and a coordinate system for the cortical surface. Hum.

Brain Mapp. 8, 272–284.

Gronenschild, E. H. B. M., Habets, P., Jacobs, H. I. L., Mengelers, R.,

Rozendaal, N., van Os, J., et al. (2012). The effects of FreeSurfer version,

workstation type, and Macintosh operating system version on anatomical

volume and cortical thickness measurements. PLoS ONE 7:e38234. doi:

10.1371/journal.pone.0038234

Haar, S., Berman, S., Behrmann, M., and Dinstein, I. (2016). Anatomical

abnormalities in autism? Cereb. Cortex 26, 1440–1452. doi:

10.1093/cercor/bhu242

Hansen, T. I., Brezova, V., Eikenes, L., Håberg, A., and Vangberg, X. T. R. (2015).

How does the accuracy of intracranial volume measurements affect normalized

brain volumes? sample size estimates based on 966 subjects from the HUNT

MRI cohort. Am. J. Neuroradiol. 36, 1450–1456. doi: 10.3174/ajnr.A4299

Jenkinson, M., and Smith, S. (2001a). A global optimisation method for robust

affine registration of brain images. Med. Image Anal. 5, 143–156. doi:

10.1016/S1361-8415(01)00036-6

Jenkinson, M., and Smith, S. (2001b). A global optimisation method for robust

affine registration of brain images. Med. Image Anal. 5, 143–156. doi:

10.1016/S1361-8415(01)00036-6

Jumah, F., Ghannam, M., Jaber, M., Adeeb, N., and Tubbs, R. S. (2016).

Neuroanatomical variation in autism spectrum disorder: a comprehensive

review. Clin. Anat. 29, 454–465. doi: 10.1002/ca.22717

Katuwal, G. J., Baum, S. A., Cahill, N. D., and Michael, A. M. (2016). Divide

and conquer: sub-grouping of ASD improves ASD detection based on brain

morphometry. PLoS ONE 11:e0153331. doi: 10.1371/journal.pone.0153331

Kim, M., Wu, G., and Shen, D. (2013). “Unsupervised deep learning for

hippocampus segmentation in 7.0 Tesla MR images,” in Machine Learning in

Medical Imaging: 4th InternationalWorkshop,MLMI 2013, Held in Conjunction

with MICCAI 2013, Nagoya, Japan, September 22, 2013, Proceedings, eds G.

Wu, D. Zhang, D. Shen, P. Yan, K. Suzuki, and F. Wang (Cham: Springer

International Publishing), 1–8. doi: 10.1007/978-3-319-02267-3_1

Kucharsky Hiess, R., Alter, R., Sojoudi, S., Ardekani, B. A., Kuzniecky, R., and

Pardoe, H. R. (2015). Corpus callosum area and brain volume in autism

spectrum disorder: quantitative analysis of structural MRI from the ABIDE

database. J. Autism Dev. Disord. 45, 3107–3114. doi: 10.1007/s10803-015-

2468-8

Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B. (2013). lmerTest: Tests

for random and fixed effects for linear mixed effect models (lmer objects of lme4

package). R Packag. version 2.

Lai, M. (2015). Deep learning for medical image segmentation. arXiv Prepr.

arXiv1505.02000. Available at: http://arxiv.org/abs/1505.02000

Lin, H.-Y., Ni, H.-C., Lai, M.-C., Tseng, W.-Y. I., and Gau, S. S.-F. (2015). Regional

brain volume differences between males with and without autism spectrum

disorder are highly age-dependent.Mol. Autism 6:29. doi: 10.1186/s13229-015-

0022-3

Mandal, P. K., Mahajan, R., and Dinov, I. D. (2012). Structural brain atlases: design,

rationale, and applications in normal and pathological cohorts. J. Alzheimer’s

Dis. 31 S169–S188. doi: 10.3233/JAD-2012-120412

Mazziotta, J. C., Toga, A. W., Evans, A., Fox, P., and Lancaster, J. (1995). A

probabilistic atlas of the human brain: theory and rationale for its development.

The International Consortium for Brain Mapping (ICBM). Neuroimage 2,

89–101.

Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., et al. (2001a).

A probabilistic atlas and reference system for the human brain: International

Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. Lond. B. Biol.

Sci. 356, 1293–1322. doi: 10.1098/rstb.2001.0915

Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., et al.

(2001b). A Four-Dimensional probabilistic atlas of the human brain.

J. Am. Med. Informatics Assoc. 8, 401–430. doi: 10.1136/jamia.2001.00

80401

Muhlert, N., and Ridgway, G. R. (2015). Failed replications, contributing

factors and careful interpretations: Commentary on “A purely confirmatory

replication study of structural brain-behaviour correlations” by Boekel et al.,

2015. Cortex 4, 4–8. doi: 10.1016/j.cortex.2015.02.019

Nordenskjöld, R., Malmberg, F., Larsson, E.-M., Simmons, A., Brooks, S.

J., Lind, L., et al. (2013). Intracranial volume estimated with commonly

used methods could introduce bias in studies including brain volume

measurements. Neuroimage 83, 355–360. doi: 10.1016/j.neuroimage.2013.

06.068

Radua, J., Via, E., Catani, M., and Mataix-Cols, D. (2011). Voxel-based

meta-analysis of regional white-matter volume differences in autism

spectrum disorder versus healthy controls. Psychol. Med. 41, 1539–1550.

doi: 10.1017/S0033291710002187

Rajagopalan, V., Yue, G. H., and Pioro, E. P. (2014). Do preprocessing

algorithms and statistical models influence voxel-based morphometry (VBM)

results in amyotrophic lateral sclerosis patients? A systematic comparison of

popular VBM analytical methods. J. Magn. Reson. Imaging 40, 662–667. doi:

10.1002/jmri.24415

Raznahan, A., Wallace, G. L., Antezana, L., Greenstein, D., Lenroot, R., Thurm,

A., et al. (2013). Compared to what? Early brain overgrowth in autism

and the perils of population norms. Biol. Psychiatry 74, 563–575. doi:

10.1016/j.biopsych.2013.03.022

Redcay, E., and Courchesne, E. (2005). When is the brain enlarged in autism?

A meta-analysis of all brain size reports. Biol. Psychiatry 58, 1–9. doi:

10.1016/j.biopsych.2005.03.026

Ren, J., Sneller, B., Rueckert, D., Hajnal, J., Heckemann, R., Smith, S., et al. (2005).

A comparison of the tissue classification and the segmentation propagation

techniques in MRI brain image segmentation. Proc. SPIE 5747, 1682–1691.

doi:10.1117/12.595146

Riddle, K., Cascio, C. J., and Woodward, N. D. (2016). Brain structure in autism:

a voxel-based morphometry analysis of the Autism Brain Imaging Database

Exchange (ABIDE). Brain Imaging Behav. doi: 10.1007/s11682-016-9534-5.

[Epub ahead of print].

Ridgway, G., Barnes, J., Pepple, T., and Fox, N. (2011). Estimation of total

intracranial volume; a comparison of methods.Alzheimer’s Dement. 7, S62–S63.

doi: 10.1016/j.jalz.2011.05.099

Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance

components. Biometrics 2, 110–114. doi: 10.2307/3002019

Smith, S. M. (2002). Fast robust automated brain extraction.Hum. BrainMapp. 17,

143–155. doi: 10.1002/hbm.10062

Smith, S. M., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P. M., Federico,

A., et al. (2002). Accurate, robust, and automated longitudinal and cross-

sectional brain change analysis. Neuroimage 17, 479–489. doi: 10.1006/nimg.2

002.1040

Stanfield, A. C., McIntosh, A. M., Spencer, M. D., Philip, R., Gaur, S., and Lawrie, S.

M. (2008). Towards a neuroanatomy of autism: a systematic review and meta-

analysis of structural magnetic resonance imaging studies. Eur. Psychiatry 23,

289–299. doi: 10.1016/j.eurpsy.2007.05.006

Styner, M. A., Charles, H. C., Park, J., and Gerig, G. (2002). “Multi-site validation

of image analysis methods - Assessing intra and inter-site variability,” in SPIE

(San Diego, CA), 1–9.

Tang, Y., Hojatkashani, C., Dinov, I. D., Sun, B., Fan, L., Lin, X., et al. (2010).

The construction of a Chinese MRI brain atlas: A morphometric comparison

study between Chinese and Caucasian cohorts. Neuroimage 51, 33–41. doi:

10.1016/j.neuroimage.2010.01.111

Frontiers in Neuroscience | www.frontiersin.org 15 September 2016 | Volume 10 | Article 439

http://arxiv.org/abs/1505.02000
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Katuwal et al. Inter-Method Discrepancies in Brain Volume Estimation

Tsang, O., Gholipour, A., Kehtarnavaz, N., Gopinath, K., Briggs, R., and Panahi, I.

(2008). Comparison of tissue segmentation algorithms in neuroimage analysis

software tools. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008, 3924–3928. doi:

10.1109/iembs.2008.4650068

Valk, S. L., Di Martino, A., Milham,M. P., and Bernhardt, B. C. (2015). Multicenter

mapping of structural network alterations in autism. Hum. Brain Mapp. 36,

2364–2373. doi: 10.1002/hbm.22776

Via, E., Radua, J., Cardoner, N., Happé, F., and Mataix-Cols, D. (2011).

Meta-analysis of gray matter abnormalities in autism spectrum disorder:

should Asperger disorder be subsumed under a broader umbrella of

autistic spectrum disorder? Arch. Gen. Psychiatry 68, 409–418. doi:

10.1001/archgenpsychiatry.2011.27

Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., et al.

(2006). User-guided 3D active contour segmentation of anatomical structures:

significantly improved efficiency and reliability. Neuroimage 31, 1116–1128.

doi: 10.1016/j.neuroimage.2006.01.015

Zhang, Y., Brady, M., and Smith, S. (2001). Segmentation of brain MR

images through a hidden Markov random field model and the expectation-

maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57. doi:

10.1109/42.906424

Zwaigenbaum, L., Young, G. S., Stone, W. L., Dobkins, K., Ozonoff, S., Brian,

J., et al. (2014). Early head growth in infants at risk of autism: a baby

siblings research consortium study. J. Am. Acad. Child Adolesc. Psychiatry 53,

1053–1062. doi: 10.1016/j.jaac.2014.07.007

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Katuwal, Baum, Cahill, Dougherty, Evans, Evans, Moore and

Michael. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) or licensor are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 16 September 2016 | Volume 10 | Article 439

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Inter-Method Discrepancies in Brain Volume Estimation May Drive Inconsistent Findings in Autism
	Introduction
	Methods
	Structural MRI and Image Processing
	Tissue Segmentation
	SPM
	FSL
	FS

	Brain Volume Calculation
	SPM
	FSL
	FS


	Statistical Analysis
	Inter-Method Differences in Brain Volumes Estimation
	ASD vs. TDC Inter-Group Differences in Brain Volumes
	Method Bias for Diagnostic Group
	Experiments Repeated with NYU Data
	Manual Segmentation for TIV


	Results
	Estimated Brain Volumes and Inter-Method Differences
	ASD vs. TDC Inter-Group Differences is Dependent on the Method Used
	Differential Bias of Methods to the Diagnostic Group
	Manual Segmentation

	Discussion
	ASD vs. TDC Inter-Group Differences Dependent on the Method Used
	Comparison of TIV Estimates with Manual Segmentation
	Comparison of ASD vs. TDC Brain Volume Differences with Previous Studies
	Methods Have Different Biases for Diagnostic Group, and Many of Them Are Larger than Inter-Group Differences
	Locations of the Inter-Method Segmentation Discrepancies
	Overestimation of GM by SPM Compared to FSL and FS
	Low Correlation in CSF Volume Estimates by SPM and FSL
	Underestimation of WM by FS Compared to SPM
	Brain Mask (SPM vs. FSL)

	Sources of the Inter-Method Discrepancies in Tissue Segmentation
	Brain Templates
	Spatial Normalization

	Implications for Future Neuroimaging Studies
	Cross-Validation of Findings
	Development of Better Methods
	Focus on Combining Image Types in Addition to Methods

	Limitations of Our Study

	Conclusions
	Author Contributions
	Funding
	Supplementary Material
	References




