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In this paper we present three studies focusing on the effect of different sound models

in interactive sonification of bodily movement. We hypothesized that a sound model

characterized by continuous smooth sounds would be associated with other movement

characteristics than a model characterized by abrupt variation in amplitude and that

these associations could be reflected in spontaneous movement characteristics. Three

subsequent studies were conducted to investigate the relationship between properties

of bodily movement and sound: (1) a motion capture experiment involving interactive

sonification of a group of children spontaneously moving in a room, (2) an experiment

involving perceptual ratings of sonified movement data and (3) an experiment involving

matching between sonified movements and their visualizations in the form of abstract

drawings. In (1) we used a system constituting of 17 IR cameras tracking passive

reflective markers. The head positions in the horizontal plane of 3–4 children were

simultaneously tracked and sonified, producing 3–4 sound sources spatially displayed

through an 8-channel loudspeaker system. We analyzed children’s spontaneous

movement in terms of energy-, smoothness- and directness-index. Despite large

inter-participant variability and group-specific effects caused by interaction among

children when engaging in the spontaneous movement task, we found a small but

significant effect of sound model. Results from (2) indicate that different sound models

can be rated differently on a set of motion-related perceptual scales (e.g., expressivity

and fluidity). Also, results imply that audio-only stimuli can evoke stronger perceived

properties of movement (e.g., energetic, impulsive) than stimuli involving both audio and

video representations. Findings in (3) suggest that sounds portraying bodily movement

can be represented using abstract drawings in a meaningful way. We argue that

the results from these studies support the existence of a cross-modal mapping of

body motion qualities from bodily movement to sounds. Sound can be translated
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and understood from bodily motion, conveyed through sound visualizations in the

shape of drawings and translated back from sound visualizations to audio. The work

underlines the potential of using interactive sonification to communicate high-level

features of human movement data.

Keywords: interactive sonification, movement analysis, movement sonification, mapping, motion capture,

perception

1. INTRODUCTION

Interactive sonification is the discipline of interactive
representation of data and data relationships by means of
sound. If properly designed, it serves as a powerful and effective
information display. In order to successfully design sonification
applications one has to consider how meaning is ascribed to
certain sounds. Closely linked to this topic is the notion of
mapping, i.e., how input parameters are mapped to auditory
output parameters in order to convey properties of the data
through perceptually relevant acoustic features. There is a large
set of possible mappings that could be used within the context
of sonification of human movement (see e.g., Dubus and Bresin,
2013 for an overview). However, only a small subset of these
mappings will produce perceptually relevant results (Roddy and
Furlong, 2014). Our work is motivated by the fact that if links
between sound properties and movement can be found, design
of auditory information displays and sonification applications
could be improved through use of more perceptually relevant
and intuitive mappings. The work presented in this paper
serves as first investigation in a series of attempts aimed at
finding perceptually relevant attributes of sound synthesis for
sonification of human movement. The aim is to investigate
if different sound models can evoke different associations to
motion and thereby induce different spontaneous movement
characteristics.

It is clear that musical sounds can induce human body
movement, but can certain properties of a sound influence, and
be associated to, specific properties of bodily movement? The
notion of embodied cognition assumes that the body is involved
in, and required for, cognitive processes (Lakoff and Johnson,
1980, 1999). Following an embodied cognition perspective, we
can approachmusic by linking perception to our bodymovement
(Leman, 2007). Bodily movements can thus be said to reflect,
imitate or support understanding of the content and structure of
music (Burger et al., 2013). In our study we aim to expand on
this notion of a link between music and motion to non-musical
sounds. Based on the notion that music carries the capacity to
activate the embodied domain of sounds by inducing movement
(see for example Zentner and Eerola, 2010), we assume that
spontaneous bodily movement to interactive sonification may
reflect and imitate aspects of sound produced by the sonification
system.

Following the ecological approach to auditory perception
(Gaver, 1993) and the notion that no sound is produced
without movement, we formulate the hypothesis that a
sonfication mode characterized by a sustained and continuous
amplitude envelope will be associated to properties related

to smooth, continuous movements. A non-continuous
sound characterized by acoustically abrupt events should
accordingly be associated to properties related to non-continuous
movements. We designed two sound models based on these
hypotheses: one continuous sound model and one sound model
characterized by a high level of amplitude modulation and
sudden amplitude irregularities. For comparative purposes, we
also designed a model that was considered to be perceptually
in between these two models in terms of irregularities in
amplitude.

The three sound models were used in three different
experiments in which we investigated the relationship between
above mentioned properties of a sound and bodily movements.
Study 1 focused on investigating if three sound models would
evoke different movement characteristics among children when
moving freely in a room. Assuming that spontaneous movement
in an interactive sonification task can be understood as a
means of exploring the presented sound, our hypothesis was
that movement at a specific point of measurement could be
influenced by the specific sound model used at that time point.
Study 2 focused on investigating if sound models used in 1 were
rated differently on a set of motion-related perceptual scales by
another group of participants. Our hypothesis was that different
sound models would be rated differently. Study 3 focused on
investigating if drawings depicting sounds recorded in Study 1
could be easily identified and matched to respective sound model
in a forced-choice experiment.We hypothesized that participants
would be able to correctly match recordings of one sound model
to an abstract visual representation, i.e., a sound visualization in
the form of a drawing, of the same sound model.

2. BACKGROUND

2.1. Sound and Movement
The link between sound and movement has been investigated in
numerous studies throughout the years. Following an ecological
perception point of view, interpretation of sounds is founded on
knowledge on gestural actions required to produced the sound
in question (Gaver, 1993). Keller and Rieger (2009) found that
simply listening to music can induce movement. Janata and
Grafton (2003) showed that passive music listening can involve
activation of brain regions concerned with movement. As stated
by Godøy and Jensenius (2009), it is not far-fetched to suggest
that listeners’ music-related movements often match overall
motion and emotional features of a musical sound: guidelines for
traditional gestures for musical conductors state that legato elicits
smooth, connected gestures, while accented and rhythmic music
elicits shorter and more jerky movements (Blatter, 2007).
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A couple of studies have focused on spontaneous movement
to musical sounds and how such movement trajectories can
be analyzed and classified (Casciato et al., 2005; Godøy et al.,
2005; Haga, 2008). Up to this point, few studies have focused
on motion analysis of children’s spontaneous movement patterns
to sound and music (see for example Zentner and Eerola, 2010),
especially in the context of interactive sonification (e.g., Källblad
et al., 2008). The topic of spontaneous movement to musical
sounds is related to research on music-induced movement, where
focus lies on how people react corporeally to music. Several
factors, such as musical features and individual factors, can
affect the characteristics of such music-induced movements
(Burger et al., 2013). Leman (2007) defined three components
that could influence corporeal articulations in music-induced
movement: synchronisation, embodied attuning and empathy.
Synchronisation is a fundamental component that deals with
synchronisation to a beat; Embodied attuning concerns the
linkage between body movements to musical features more
complex than a basic beat (such as e.g., harmony, melody,
rhythm, tonality and timbre); Empathy links musical features
to emotions and expressivity. According to Leman (2007),
spontaneous movements to music appear to be closely related
to predictions of local bursts of energy in the audio stream,
such as beat and rhythms. Although multiple studies have
focused on the effect of synchonisation/beat (Toiviainen et al.,
2009; Burger et al., 2014) and expressive features in music
(Buhmann et al., 2016) in this context, rather few projects have
focused on the effect of more complex musical features such
as e.g., timbral properties and their effect on music-induced
spontaneous movement (see for example Burger et al., 2013).

There are some examples of studies on the relationship
between sound and spontaneous movement in which
participants have been instructed to trace sounds that they
hear, i.e., to trace the perceptual features of a sound (see for e.g.,
Godøy et al., 2006, 2010; Nymoen et al., 2010). This is usually
referred to as “sound-tracing”, a concept first introduced by
Godøy et al. (2005) which is defined as the process of rendering
perceptual features of sound through body motion. In a study
by Caramiaux et al. (2014) in which participants were instructed
to synchronously perform a gesture to a sound, it was found
that if the cause of a sound could be identified, participants
would perform spontaneous gestures that attempted to mimic
the action producing the sound. However, if the sound contained
no perceivable causality, the spontaneous movement would trace
contours related to acoustic features. Moreover, abstract sounds
were found to result in less gesture variability.

In the study presented in this paper, we use drawings as a
means of describing perceived sounds. Drawings can, similar to
words and gestures, serve as a high-level approach to description.
Drawings have previously been used in contemporary music to
either compose or describe music (Thiebaut et al., 2008). The
association between sound and shapes has been investigated in
numerous studies throughout the years in research on what
is usually referred to as shape symbolism. Shape symbolism
is a family of multisensory phenomena in which shapes give
rise to experiences in different sensory modalities, the most
common example being the “Bouba-Kiki effect” (Kohler, 1929,

1947), in which the words “kiki/takete” and “bouba/maluma”
are associated with angular vs. rounded shapes. The hypothesis
in our study, as previously suggested by Merer et al. (2013), is
that drawings are a relevant means of describing motion in an
intuitive way, and that the use of abstract sounds, in which the
physical sources can not be easily identified, provide relevant and
unbiased keys for investigating the concepts of motion.

2.2. Movement Analysis
In order to analyze movements of the children participating
in the motion capture experiment described in Section 3, we
extracted motion features from motion capture recordings.
We followed the multi-layered conceptual framework for the
analysis of expressive gestures proposed by Camurri et al. (2016).
This framework consists of four layers allowing for both a
bottom-up (from Layer 1 to 4) and top-down (from Layer 4
to 1) analysis; Layer 1 - Physical signals (e.g., positional data
captured by IR cameras), Layer 2 - Low-level features (e.g.,
velocity), Layer 3 - Mid-level features (e.g., smoothness), Layer
4 - Expressive qualities (e.g., emotion). Following this layered
approach, we included low-level features (i.e., Energy Index, EI,
and Smoothness Index, SI, of head movements) and one mid-
level feature (i.e., Directness Index, DI). The above mentioned
features have previously been used in different contexts and
research purposes in order to describe the expression of human
gestures (Camurri et al., 2002), for investigating the emotional
mechanisms underlying expressiveness in music performances
(Castellano et al., 2008) and as potential descriptors to infer
the affective state of children with Autism Spectrum Condition
(Piana et al., 2013). We decided to include the Energy Index (EI)
in the investigation since we hypothesized that this feature could
be highly correlated with properties of the movements elicited
by different sound models. Moreover, we decided to include
Smoothness- and Directness-Index (SI and DI), since we were
interested in how continuous the movement trajectories of the
children would be for different sound models. A description of
each feature can be found below.

2.2.1. Energy Index
This feature concerns the overall energy spent by the user during
amovement and is computed as the total amount of displacement
in all of the tracked points. Given a two-dimensional tracking
information, we can define velocity of the i-th tracked point at
frame f as:

vi(f ) =
√

(ẋi(f )2 + ẏi(f )2) (1)

Where ẋi and ẏi are the first derivatives of the position
coordinates. The Energy Index EI can then be computed as:

EI(f ) =
1

2

J
∑

i=1

mi · v
2
i (f ), (2)

where J is the number of tracked points (or joints) of the subject’s
body. In the context of our experimental setup, we computed the
energy of each subject by tracking only their head movements,
using a single rigid body (a combination of markers in a unique

Frontiers in Neuroscience | www.frontiersin.org 3 November 2016 | Volume 10 | Article 521

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Frid et al. Interactive Sonification of Spontaneous Movement of Children

pattern that could be identified by the tracking system). EI(f )
is therefore an approximation of the head’s kinematic energy
estimated as one single point’s kinetic energy (max number of
points J = 1). To simplify the calculation, the weight m1 was
also set to 1.

2.2.2. Smoothness Index
The mathematical concept of smoothness is associated to the rate
of variation of a function waveform. A smooth function varies
“slowly” over time; smooth functions belong to the C∞ class, i.e.,
functions that can be derived an infinite number of times. The
third derivative of the movement position has often been used
as descriptor for the smoothness of a motion trajectory (Flash
and Hogan, 1985). Our algorithm for computing smoothness is
based on the studies made by Viviani and Terzuolo (1982) and
Todorov and Jordan (1998) that show an existing correlation
between trajectory curvature and velocity. The Smoothness Index
SI can be computed from the trajectory curvature and velocity.
The curvature kmeasures the rate at which a tangent vector to the
trajectory curve changes as the trajectory bends. As an example,
the trajectory of a rigid body following the contour of a geometric
shape, such as a square, will bend sharply in some points. This
trajectory will thus be characterized by high curvature and low
smoothness. In contrast, a straight line trajectory will have zero
curvature and infinite smoothness (Glowinski et al., 2011).

We can define a bi-dimensional trajectory consisting of
collection of consecutive coordinates xi(f ) and yi(f ) of the i-th
tracked joint at frame f (in our case max i corresponds to one
tracked point) and its velocity vi(f ). The trajectory curvature k
can be computed as:

k(xi(f ), yi(f )) =
ẋi(f ) · ÿi(f )− ẏi(f ) · ẍi(f )
(

√

ẋi
2(f )+ ẏi

2(f )

)

3/2

, (3)

where ẋi(f ), ẏi(f ), ẍi(f ) and ÿi(f ) are the first- and second-order
derivatives of the coordinates x and y. In our work we define
the Smoothness Index SI as the Pearson correlation coefficient
ρ computed on the quantities log(k) and log(v). This index gives
a measure of the relationship between velocity and curvature and
it is calculated as:

ρ(k, v) =
cov[log(k), log(v)]

σlog(k) · σlog(v)
(4)

In the calculus of the Smoothness Index SI, k and v are
evaluated over short time windows (30 ms). Therefore, we could
approximate the covariance cov[log(k), log(v)] by 1, as the k and
v variate (or not) approximately at the same rate. We can then
simplify the definition of the Smoothness Index SI to:

SI = ρ(k, v) =
1

σlog(k) · σlog(v)
(5)

2.2.3. Directness Index
The Directness Index DI is a measure of how much a given
trajectory, generated by a tracked joint (in our case, point), is

direct or flexible.DI has been detected as one of the main motion
features in the process of recognizing emotions (De Meijer,
1989). A direct movement is characterized by almost rectilinear
trajectories. TheDI is computed as the ratio between the length of
the straight line connecting the first and last point of a trajectory
and the sum of the lengths of each segment constituting the
trajectory itself. Therefore, the more the DI value is near to value
1, the more direct is the trajectory. In the case where we have
a two-dimensional trajectory, the Directness Index DI can be
computed as:

DI =

√

(xend − xstart)2 + (yend − ystart)2
∑N

i=k

√

(xk+1 − xk)2 + (yk+1 − yk)2
, (6)

where xstart , ystart and xstart , ystart are the coordinates of the
trajectory’s start- and end-points in the 2D space and N
represents the length of the trajectory.

3. STUDY 1: MOTION CAPTURE
EXPERIMENT

3.1. Method
The first study focused on investigating if three sound models
would evoke different movement characteristics among children
when moving freely in a room. Our hypothesis was that the
specific sound model used at a particular time point could
influence spontaneous movement of the children at a specific
point of measurement. To investigate this hypothesis, we carried
out a repeated measures experiment in which longitudinal
data of participants’ movements was collected in a motion
capture room fitted with an 8-channel loudspeaker system. For
each participant, x- and y-position and velocity of rigid body
markers (placed on the head) were tracked. The data was fed
to a sonification software providing real-time feedback of the
performed movements.

3.1.1. Participants
Two pre-school classes (4–5 vs. 5–6 years) from a kindergarten
in Stockholm participated in the experiment. However,
children in the age group 4–5 years failed to follow
instructions in the experiment and were therefore excluded
from the analysis, giving a total of n = 11 participants
(2 boys and 9 girls, age 5–6 years, mean= 5.36, SD= 0.5). The
participants were divided into groups of 3–4 participants, with
a total of 3 groups. Each group participated in two sessions of
the experiment: one recording session in the morning and one
in the afternoon. A teacher from the kindergarten was always
present during each session. We decided to work with children
based on the assumption that younger participants would act
more spontaneous than adults in a task involving free movement
(since spontaneous movement is an integral aspect of active
play). Moreover, it has been found in a study by Temmerman
(2000) that children tend to have positive attitudes toward
activities that provide opportunity to move freely to music.

There was no need for ethics approval since neither of
the experiments presented in this paper involved deception or

Frontiers in Neuroscience | www.frontiersin.org 4 November 2016 | Volume 10 | Article 521

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Frid et al. Interactive Sonification of Spontaneous Movement of Children

stressful procedures1. The research presented no risk to harm
participants. Parents were required to return signed consent
forms in which they agreed to their child’s participation in the
study. The informed consent included information about the
study and the task; the form was distributed to make an effort
to enable children to understand, to the degree they are capable,
what their participation in the research would involve. All parents
consented to both participation and possible future publishing of
photos taken during the experimental session.

3.1.2. Equipment
The experiment was run at the Multimodal Interaction and
Performance Laboratory (PMIL), dedicated to experiments
involving motion capture and spatial audio, at KTH Royal
Institute of Technology, Stockholm, Sweden. The experimental
setup consisted of several different software and hardware
systems that together formed a chain, starting with the motion
capture system and ending with the generation and spatialization
of the sound. The motion capture system used was an Optitrack
Prime 412 setup using 17 IR cameras tracking passive reflective
markers. The frequency of acquisition was 180 frames per
seconds (resolution 4.1 MP, latency 5.5 ms). The cameras
were placed on a circle, at a height of 2.44 m, following the
perimeter of the room (the room measured 5.30 × 6.20 m). The
trackable area in which the children were instructed to move
was a rectangular area measuring 4.66 × 5.40 m, marked using
tape on the floor. The system was controlled by the Optitrack
Motive3 software. While tracking and recording, the Motive
software also streamed data over a local network to a second
computer, using the NatNet4 streaming protocol. A custom
piece of software, written in C++, was running on the second
computer that received the incoming NatNet data stream. Data
was visualized and some additional calculations were performed
on this second computer, whereafter original data was packaged
with the calculated secondary data and send forward using the
Open Sound Control (OSC) format5.

The final part of the chain was a third computer that took
care of logging, sound generation and spatialization. The logging
application, also a custom C++ solution, took every incoming
OSC-message, added a local time stamp and wrote it to disk. The
rationale for the double logging was to ensure that any issues
caused by network transmission problems could be identified
by comparing the recorded motion capture data in the head of
the processing chain with the resulting data that actually arrived
at the sound-producing computer. For the audio, a Max/MSP6

patch was used to both generate and spatialize the audio, as well
as automatically run through the set of sound models for each
session in the experiment. The Max/MSP patch also reported
every change of state in the experiment with an OSC message
to the logging application, meaning that the switching between

1For the management of participants’ personal data, we followed rules according
the KTH Royal Institute of Technologys Ethics Officer (Personuppgiftsombud).
2Optitrack Prime 41: https://www.optitrack.com/products/prime-41/
3Optitrack Motive: https://www.optitrack.com/products/motive/
4NatNet SDK: https://www.optitrack.com/products/natnet-sdk/
5Open Sound Control: http://opensoundcontrol.org
6Max/MSP: https://cycling74.com/products/max/

sound models was recorded together with the movement data. A
regular digital video camera was used to record all experiment
sessions. The camera was mounted on a tripod in a corner of the
lab and was kept recording for the entire duration of the sessions.

After the experiment, motion capture data was pre-
processed and segmented whereafter each segmented file was
streamed via OSC to EyesWeb for feature extraction. The
EyesWeb XMI platform7 is a development and prototyping
software environment for both research purposes and interactive
applications which provides a set of software modules for
analysis of human movements and behavior (Camurri et al.,
2003). In the present study we used EyesWeb libraries for
analysis of 2Dmovement trajectories to extract expressivemotion
feature describing human movements both at a local temporal
granularity (Energy Index), and at the level of entire movement
unit (Smoothness- and Directness Index). A movement unit can
be for example a single movement or a whole phrase. In this
particular study, a movement unit is defined as a time window
with a specific duration.

3.1.3. Stimuli
Each participant group was presented with five different auditory
conditions. These conditions consisted of the three different
soundmodels S1–S3 (sonificationmodels) and excerpts from two
pieces of music M1 and M2 (M1: “Piano Trio No. 1 in D Minor,
Op. 49: II. Andante con moto tranquillo” by Felix Mendelssohn,
and M2: “Le Carneval des Animaux: Final” by Camille Saint-
Saëns). The conditions S1, S2, and S3 were interactive in the sense
that the children’s movement affected the generated sound. The
musical conditions M1 and M2 were not interactive; children’s
movement was not mapped to the sound.

The musical pieces for conditions M1 and M2 were chosen
since they in previous studies had been found to elicit certain
emotions (Västfjäll, 2002; Camurri et al., 2006). M1 has been
found to communicate tenderness and we therefore decided that
this piece would be appropriate for the introductory part of the
experiment. The purpose of including the M1 condition was to
let the children get acquainted with the task and start moving
to sound. M1 could however also have been used as a control
condition, for comparative purposes. M2 has been found to elicit
happiness and was therefore included in order to reward the
children after successfully completing the experimental task.

For the sonification conditions S1–S3, we opted for sound
models based on filtered noise. This decision was based on
previous studies indicating that sounds with rich spectral content
have been found to bemore appealing to children with disabilities
than other sounds (Hansen et al., 2012) and that the sound
of speed and acceleration can be ecologically represented using
simplified sound models reminding of the sound of wind, as
for example in the sonification of rowing actions (Dubus and
Bresin, 2015). Three sound models based on filtered white noise
were defined: one producing smooth, wind-like sounds (S1); one
model producing somewhat less smooth sounds characterized
by more abruptly interrupted amplitude envelopes (S2); and one

7EyesWeb XMI platform http://www.infomus.org/eyesweb_ita.php
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producing very choppy and clicking sounds due to a high-level of
interruptions in the amplitude envelope (S3).

For each soundmodel S1–S3, low-level movement parameters
(velocity, and x- and y-position of the participant in the
horizontal plane) weremapped to acoustic parameters. Mappings
were chosen among the most frequently used ones in previous
research; for example location to spatialization, velocity to pitch
and energy to loudness (see Dubus and Bresin, 2013, for a
complete review ofmappings). During the experiment, each child
represented a sound source. Spatialization was done in such a
manner that each child could hear the sound source follow his
or her movement in the room. Therefore, there were up to four
sounds generated simultaneously, representing the movements
of four children. This was achieved through the use of a VBap
1.0.3 object (Pulkki, 1997) by mapping distance from the
center point in the room to spread of the virtual sound source
and by mapping the participant’s angle from the center point to
the azimuth angle.

Sound model 1 (S1) was achieved by filtering white noise
using the MaxMSP resonance filter biquad∼ object with mode
“resonant”. Velocity magnitude of participant’s movement in the
2D-plane was mapped to center frequency of the filter (50 to 1100
Hz) and to Q-factor (1.8 to 4.0). Amplitude modulation of the
filtered signal was carried out using the rand∼ object, with input
parameter 3 Hz. Finally, velocity magnitude was logarithmically
scaled to amplitude of the signal, so that no sound was heard
when the participant did not move. Sound model 2 (S2) was
implemented in a similar manner as S1, with the difference that
the resonance filter’s center frequency was set to 100–900 Hz and
Q-factor range was set to 0.1–0.3. Amplitudemodulation was also
increased to 18 Hz. The final sound model (S3) was also based
on filtering white noise, but was implemented using a band-
pass filter (object biquad∼). Just like for the other two sound
models, velocity magnitude was mapped to the center frequency
(100–3000 Hz) and Q-factor (0.01–0.6). Amplitude modulation
was achieved by triggering peaks using the curve∼ object8

which produced a non-linear ramp of length 250 ms, triggered
every 50 to 800 ms, depending on velocity. See Figure 1 for the
spectral content of 2 min of sound models S1, S2, and S3.

3.1.4. Experimental Procedure
Groups of 3–4 children were studied in each recording session.
The participants were wearing hats with attached rigid body
markers; trajectories could thus be defined as collections of
consecutive points corresponding to the positions of the tracked
head while performing a locomotor movement. We assume
that head movements carry enough information about the
children’s expressiveness based on previous findings by Dahl and
Friberg (2007) suggesting that expressive movements produced
by musicians’ head movements are as informative as whole body
movements. Each experiment began with a brief introduction
by the test leader, explaining to the participants that they were
allowed to move freely in the motion capture area of the
room (something that the younger participant group failed to
do, thereby causing irregular data and problems with loss of

8connected to the following message box: “0.85, 0.0 50 0.5 0.0 200−0.5”

FIGURE 1 | Spectral content of 20 s of sound models (A) S1, (B) S2, and

(C) S3.

tracking), and that their movements would produce sounds.
Instructions were read from a pre-written manuscript. The
instructions were followed by the music condition M1, in which
the participants were allowed to move freely to music, but did
not trigger any sounds themselves. After M1, a counterbalanced
order of the sound models S1–S3 was presented to the
participants. For these sound model conditions, participant’s
rigid body markers were mapped so that movement triggered
sounds. Each sound model was presented six times. The entire
experiment ended with another music model, namely M2,
which was not either mapped to movement of the participants.
The music conditions were 60 s long; the sound model
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conditions S1–S3 were 36 s long. Each experimental session lasted
approximately 13.5 min. Since each group participated in two
sessions of the experiment, each sound model was presented 12
times in total, resulting in 12 observations per sound model and
participant, respectively.

3.1.5. Analysis of Movement Features
The longitudinal data collected for the three level repeated
measures experiment resulted in a data set in which repeated
measurements (level 1) were nested within in our unit of analysis,
i.e., participants (level 2), which were in turn nested within
experiment groups (level 3). We used R (R Core Team, 2014) and
the lme4 package (Bates et al., 2015) to perform a linear mixed
model (LMM) analysis of the relationship between movement
features and sound model. Linear mixed-effects models are an
extension of linear regression models for data that is collected
in groups. Numerous studies have demonstrated the advantages
of mixed effect models over traditional random-effects ANOVAs
(e.g., Baayen et al., 2008; Quené and van den Bergh, 2008). A
mixed-effect model consists of fixed (FE) and random effects
(RE), where FE are the predictors and RE are associated with
experimental units on an individual level, drawn at random from
a population.

The standard form of a linear mixed-effect model is defined
in Equation (7), where y is the known response variable,
X is a fixed-effects design matrix, β is an unknown fixed-
effect vector containing the regression coefficients, Z is a
random-effects design matrix, b is an unknown random-
effects vector and ǫ is the unknown observation error
vector.

y = Xβ + Zb+ ǫ (7)

Our main goal was to determine which predictors that were
statistically significant and how changes in the predictors relate to
changes in the response variable, not to build a model that could
exactly emulate the effect of sonification on participant behavior.
Since our research interest is centered around understanding why
mean values of the dependent variable vary, we focused mainly
on defining random intercept models. We defined a random
intercept model for each feature index (FI) according to Equation
(9) in which feature magnitude was as function of the fixed
effect of sound model. A time variable (observation number 1–
12) and session factor (recording before or after lunch) was also
added as fixed effects when these were found to be significant,
see Equation (9). The model resolved for non-independence
by assuming different random intercepts for each participant
and group, respectively. More complicated designs were also
investigated, however, no random slope models converged. We
described model fit by using the marginal and conditional R2

for mixed-effects models, obtained using the r.squaredGLMM
function in version 1.10.0 of the MuMIn package in R (Nakagawa
and Schielzeth, 2013; Johnson, 2014; Barto, 2016). The marginal
R2 describes the proportion of variation explained by fixed effects
and the conditional R2 describes the proportion of variation in
the data explained by both fixed and random effects (Nakagawa

and Schielzeth, 2013).

FI ∼ sound model+ (1|group)+ (1|participant)+ ǫ (8)

FI ∼ sound model+ session+ observation

+(1|group)+ (1|participant)+ ǫ (9)

3.2. Results
Examples of trajectories performed by a group of children for the
three sound models are seen in Figure 2. Initial inspection of the
data indicated considerable inter-participant variability. Issues
with crossover effects (i.e., that one marker was accidentally
mistaken for another marker number so that a swap of
trajectories occurred for specific participants) and occlusion
effects (resulting in gaps in the data) were identified in the initial
stage of the data analysis. Since our analysis approach was based
on computing higher order derivatives, we decided to remove all
observations where crossover effects occurred, so as to reduce the
risk of undesired peaks in the computed features. Observations in
which tracking was insufficient due to occlusion or contained too
few data points (due to the fact that participants moved outside
of the trackable area) were also removed.

The recorded movement data was trimmed to 25 s long
excerpts per observation, removing the first and last 6 s (original
observations were 36 s long + 1 s fade between sound models).
Trimming was done in order to include only the middle part of
each observation. This was done to ensure that the transitions
that contained fading between sound models were not included
in the analysis. Moreover, trimming was done to ensure that
children had stabilized their movement pattern for the sound
model that was currently presented and had been active for at
least a time interval of 6 s. One observation was thus defined
as a recording segment of 25 s, for one specific participant
and sound model. Two-dimensional tracked movement data
was thereafter used to calculate the following features for all
25-s excerpts: Energy Index (EI), Smoothness Index (SI) and
Directness Index (DI).

Mean values were computed for all recording segments,
resulting in 12 observations per participant and sound model
(six observations from the experimental session taking place
before lunch and six observations from the experimental
session after lunch). Data was then normalized to the range
of 0 to 1. After removal of observations with erroneous
tracking, we obtained a total of 302 observations (total
number before removal was 396). A summary of the computed
metrics per sound model and participant can be seen in
Figure 3.

3.2.1. Energy Index
Descriptive statistics per sound model is seen in Table 1 (results
obtained when collapsing all observations). A LMM analysis of
the relationship between sound model and Energy Index EI was
carried out according to the formula specified in Equation (9).
Visual inspection of residual plots did not reveal any obvious
deviations from normality. P-values were obtained by likelihood
ratio tests of the full model with the effect in question against
the null model without the effect in question. Sound model
significantly affected energy, χ2

(1) = 7.593, p = 0.022. Recording
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FIGURE 2 | Heat maps. Example of the trajectories performed by the four children in a group, for the three different sound models S1–S3. Each color represents one

child, brighter colors corresponds to higher velocity. (A) Sound model S1. (B) Sound model S2. (C) Sound model S3.

FIGURE 3 | Mean metrics per participant for the three sound models (n = 12 observations for each model). P1–P4 belong to group 1, P5–P8 belong to

group 2, and P9–P11 belong to group 3.
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session and observation number also significantly affected EI;
χ2
(2) = 3.855, p = 0.050, lowering EI by 0.043 ± 0.023

by session, and χ2
(3) = 22.989, p = 1.630e − 06, lowering

EI by 0.009 ± 0.002 by observation number. Afternoon
sessions had generally lower EI values. EI also decreased for
an increasing number of observations. This could possibly be
explained by fatigue. Tukey’s method for multiple comparisons
of means indicated a significant difference between S2 and S3
(p = 0.033). Estimate for difference between S2 and S3 was
−0.059 ± 0.024. Although not significant (p = 0.163), estimate
for difference between S1 and S3 were −0.043 ± 0.023. Standard
deviation described by random effects for participants, groups
and residuals were 0.052, 0.054, and 0.168, respectively. The
high value for residual standard deviation could well indicate
that there might be effects that the model does not account
for. Using a simple intercept model as the one defined in
Equation (7) and computing pseudo-R-square including only

TABLE 1 | Descriptive statistics for Energy Index EI, Smoothness Index SI

and Directness Index DI.

Mean Median SD N SEM

Energy index

S1 0.279 0.235 0.191 99 0.019

S2 0.291 0.249 0.199 97 0.020

S3 0.231 0.189 0.188 106 0.018

Mean Median SD N SEM

Smoothness index

S1 0.426 0.402 0.171 99 0.017

S2 0.434 0.422 0.175 97 0.018

S3 0.374 0.368 0.185 106 0.018

Mean Median SD N SEM

Directness index

S1 0.711 0.717 0.161 99 0.0162

S2 0.724 0.759 0.184 97 0.0187

S3 0.662 0.696 0.201 106 0.0196

sound model as fixed factor, sonification could be said to
explain about 2.069% of the variabililty in EI. The entire model
defined in Equation (9) accounted for a total of 24.284% in
EI variability. A summary of predicted energy values, involving
both fixed and random effects for sound model, is seen in
Figure 4A.

3.2.2. Smoothness Index
Analysis of the relationship between sound model and
Smoothness Index SI was carried out according to the method
described for Energy Index EI. Sound model significantly
affected smoothness SI, χ2

(1) = 10.714, p = 0.005. There was also

a significant effect of recording session, χ2
(2) = 4.424, p = 0.035,

and for observation number, χ2
(3) = 16.819, p = 4.113e − 05.

Afternoon session had generally lower SI values; SI was predicted
to be lowered by 0.037 ± 0.017 between recording session 1 and
2. An increase in observation number decreased smoothness
by 0.007 ± 0.002. Tukey’s method for multiple comparisons
of means indicated a significant difference between S2 and S3
(p = 0.008). Estimate for difference between S2 and S3 was
−0.063 ± 0.021, i.e., lower smoothness for sound model S3.
Although not significant p = 0.050, estimate for difference
between S1 and S3 was −0.049 ± 0.021. Standard deviations
for the random effect of participant, group and residuals were
0.054, 0.068, and 0.149, respectively. Results obtained from
computation of pseudo-R-square indicated that 2.699% of the
total variability in smoothness could be described by the fixed
factor. If including both session and observation number as fixed
factors, as in Equation (9), the model accounts for 29.050% of the
total variability. A plot of the predicted values for each participant
and group, i.e., the sum of random and fixed effects coefficients
for the main explanatory variable “(sound model),” can be seen
in Figure 4B. Attempts to model higher level models involving
random slopes converged but were not significantly different
from the random intercept model defined in Equation (7).

3.2.3. Directness Index
Analysis of the relationship between soundmodel and Directness
Index DI was carried out according to the method described

FIGURE 4 | Fitted (points, boxplots) vs. predicted values (lines) for movement features. (A) Energy Index EI. (B) Smoothness Index SI. (C) Directness Index DI.
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for the other two indexes. Sound model significantly affected
directness, χ2

(1) = 7.418, p = 0.025. No significant effect of
observation number or session could be found, so these variables
were not included in the model. Tukey’s method for multiple
comparisons of means indicated a significant difference between
S2 and S3 (p = 0.026). Estimate for difference between S2 and
S3 was−0.0628± 0.024. Although not significant (p = 0.1061),
estimate for difference between S1 and S3 was−0.0489 ± 0.024.
Standard deviation described by random effects for participants,
groups and residuals were 0.0583, 0.026, and 0.172, respectively.
Sonification could be said to explain about 2.153% of the
variabililty in DI. The model in Equation (9) accounted for a
total of 13.983% in directness variability. A summarizing figure
of predicted directness values involving both fixed and random
effects for sound model can be seen in Figure 4C.

3.3. Discussion
Analysis of movement features indicate some significant
differences between sound models. However, due to large
inter-participant variability, the effect of sound model appears
to be rather small. Nevertheless, we can see tendencies toward
greater mean and median values for Smoothness Index SI for
model S1 and S2 than for model S3. The same tendency can be
found for both Energy Index EI and the Directness Index DI;
mean and median values are greater for S1 and S2, compared
to mean and median values for S3. Assuming that participants
were moving in a more continuous manner for S1 and S2, the
relatively low mean and median values for S3 might be explained
by many sudden interruptions in the trajectory path. As seen
in Figure 3, participants appear to show similar behavior within
groups (P1–P4 belong to group 1, P5–P8 belong to group 2,
P9–P11 belong to group 3).

Previous studies have proven evidence that interacting
individuals can coordinate their movements through detection
of visual movement information (Schmidt et al., 1990) and that
visually mediated interpersonal coordination is governed by an
entrainment process (Richardson et al., 2007). It is reasonable
to expect the movement behaviors of the children to spread
within the group, this being a result of either entrainment or
conscious and unconscious social interaction. Furthermore, non-
spontaneous movements were also introduced via rule-based
games or free play, especially during musical condition M2
that was a piece known by the children. None of the above
mentioned effects were explicitly measured in this experiment;
laying bare the layered subtleties of the children’s group play and
interpersonal coordination patterns was well beyond the scope of
this study.

4. STUDY 2: PERCEPTUAL RATING OF
AUDIO AND VIDEO

4.1. Method
The second study focused on investigating if sound models used
in Study 1 could communicate certain hypothesized movement
qualities. We therefore ran a perceptual test in which sound
generated by children in the previous experiment were rated by

listeners along six different perceptual scales. The test was run
during the Festival della Scienza in Genova, (October, 27th 2015).

4.1.1. Participants
Eight participants took part in the experiment, but only seven of
them (5 women) completed the experiment and could therefore
be included in the final analysis. The average age of these seven
participants was 27.6 years (SD 11.8).

The research presented no risk to harm subjects and involved
no procedures for which written consent is normally required
outside of the research context. Each subject voluntarily decided
to participate in the experiment and the collected data could
not be coupled to the specific participant; there was no risk for
potential harm resulting from a breach of confidentiality.

4.1.2. Stimuli
Recorded movements and sounds from Study 1 were used to
produce the stimuli. Stimuli were presented in random order to
the participants and were of three conditions: videos with audio
(audio-video), videos without audio (video-only), and audio
only (audio-only). The sounds used corresponded to excerpts
of sounds generated using S1, S2, S3, and M2. The audio-video
stimuli9 presented movements in the horizontal plane generated
by children when moving to a specific sound model and the
corresponding generated sound; each participant produced a
trajectory corresponding to the changing position of the head
as seen in a two-dimensional plane, parallel to the floor. Videos
showed dots of different colors moving on a black background,
each dot representing the movements of the head of each child
in a group. For the video-only stimuli the audio track was muted,
and for the audio-only stimuli the video was removed. In order to
provide an idea of the movements showed by the dots, heat maps
of the trajectories for each of the three different sound models
S1–S3 as performed by the four children in a group are presented
in Figure 2.

For each of the three conditions (audio-video, video-only,
audio-only) there were 12 stimuli, corresponding to 4 sound
models × 3 variations. Participants were thus presented with a
total of 36 stimuli. Each stimulus was 20 s long. All excerpts
were taken from the first group of participants (4 children) from
the morning session in Study 1, in which each sound model
was presented six times. We chose to include the recordings
corresponding to the first three of these variations in the
current Study.

4.1.3. Equipment
Stimuli were presented using an online platform10 and evaluated
using portable tablets. All participants wore headphones11.

4.1.4. Experimental Procedure
The participants were presented with the following instructions
on the screen of the tablet:

9Examples of stimuli can be found here: https://kth.box.com/s/
818vbkb6m6nlkgk4vb4wvt0zt52y5uqy
10SurveyGizmo: http://surveygizmo.com
11The test can be found at: http://www.surveygizmo.com/s3/2396910/Evaluation-
of-sound-and-video-qualities
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In this test you will watch videos and listen to sounds. You will be

asked to rate different properties of each of them by using sliders on

the screen. Take all the necessary time, but try to answer as quickly

as possible and to use the entire scale of the sliders. There is not right

or wrong answer. You can repeat the playback of videos and sounds

as many times as you need.

Participants were asked to rate the stimuli along six continuous
semantic differential scales describing movement quality (Fluid,
Energetic, Impulsive, Fast, Expressive, and Rigid) ranging from
Not at all to Very much as minimum and maximum values,
respectively (e.g., not at all fast, very fast)12. The slider’s
start position was always placed in the middle of the scale,
corresponding to value 50. Numerical values of the sliders were
not visible to participants.

The six semantic scales were identified in previous research
in which they were used in body motion analysis (for Fluid,
Energetic, Impulsive, Fast, and Rigid; see Camurri et al., 2016)
and for rating expressiveness in music performance resembling
biological motion (for Expressive; see Juslin et al., 2002).

4.2. Results
The duration of the experiment was 44 min, on average
(SD = 10). The participants’ mean ratings were analyzed
using a three-way repeated measures ANOVA, with the factors
sound model (4 levels), sound model variation (3 levels), and
condition (3 levels). The analysis was done separately for
each of the six semantic differential scales. Before running the
three-way ANOVA, a Mauchly test was run to verify if the
assumption of sphericity had been met for the factors sound
model, sound model variation, and condition. When needed, we
report corrected degrees of freedom (using Greenhousee-Geisser
estimates of sphericity). The analysis for the sound model factor
is summarized below and in Table 2:

12Depending if the stimulus was a video or a sound only, the question to
experiment participants was “The sound reminds of a movement that is:” or “The
movements of the dots are:”, respectively. Each scale was varying between 1 and 100.

Energetic: There was a significant main effect of condition,
F(2, 12) = 13.609, p = 0.001. Stimuli presented in the audio-
only condition were in general rated as more energetic than
stimuli with video, i.e., stimuli in both audio-video and video-
only conditions. A Bonferroni post hoc comparison showed that
the mean Energetic rating for the audio-only condition was
significantly different (higher) from that of the two other stimuli
categories (p < 0.037). It can also be observed that stimuli with
sounds S1 and M2 were rated as more energetic than the other
stimuli.

Expressive: A significant main effect of sound model was
observed [F(3, 18) = 11.913, p < 0.0001]; stimuli produced
using sound model S1 and M2 were rated as the most expressive
ones. M2 was rated as more expressive than S1. Sound models
S2 and S3 received a mean rating below 50. Sound S3 was
rated significantly different from sounds S1 and M2 (Bonferroni
post hoc comparison, p < 0.025). A significant interaction
between condition and sound was also observed [F(6,36) =

5.941, p < 0.0001]; stimuli using sound model S1 were rated
as more expressive than stimuli produced with S2 and S3 for
all conditions; stimuli produced using S3 were rated as the least
expressive ones for all conditions. Stimuli generated using M2
were rated as the most expressive ones for the audio-only and
audio-video condition.

Fast: No statistically significant effects were found.
Nevertheless, stimuli in the condition audio-only were on
average rated as more than 60% faster than stimuli in other
conditions. Stimuli corresponding to sound S1 were perceived as
the slowest, while those corresponding to sound model S2 were
rated as the fastest ones (about 20% faster than the other sounds).

Fluid: For this scale a significant effect of factor sound model
was found [F(1.606,9.638) = 9.277, p = 0.007, with corrected
degrees of freedom and p-value]. Stimuli corresponding to S1
and M2 were rated as about 30% more fluid than stimuli from
S2 and S3. Stimuli from all conditions corresponding to sound
model S3 were rated as significantly less fluid than other stimuli.
Pairwise comparisons between all sounds showed that there was
a significant mean difference between ratings for sound model
S1 compared to sound models S2 and S3, as well as between

TABLE 2 | Mean ratings and effect of sound model for the six different semantical scales used in Study 2.

S1 S2 S3 M2

Mean SE Mean SE Mean SE Mean SE

Energetic 55.063 6.177 46.810 6.599 36.841 5.873 63.952 3.630

Expressive 55.063a** 6.717 46.810 6.599 36.841a**,b* 5.873 63.952b* 3.630

Fast 46.905 4.209 59.952 5.325 52.175 6.258 48.921 4.836

Fluid 56.302c*,d* 6.197 47.937c* 4.262 31.222d*,e** 3.981 55.222e** 2.217

Impulsive 56.683 3.210 52.254 3.095 56.508 5.791 44.905 4.879

Rigid 33.048 3.435 35.413 4.851 55.952 7.438 33.905 4.028

Significance levels: *p ≤ 0.05, **p ≤ 0.01.
asignificant difference in means between S1 and S3.
bsignificant difference in means between S3 and M2.
csignificant difference in means between S1 and S2.
dsignificant difference in means between S1 and S3.
esignificant difference in means between S3 and M2.
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sound models S3 and M2 (Bonferroni post hoc comparison,
p < 0.05). A significant interaction between factors condition
and sound model was also found [F(1.606,9.638) = 9.277, p =

0.007, with corrected degrees of freedom and p-value]. Audio-
only stimuli corresponding to S2 and M2 were rated about 3
times more fluid than the other stimuli; for the video condition
this difference was not present for model S2, while stimuli
corresponding to sound S3 were rated as the least fluid ones in all
conditions.

Impulsive: A significant effect of condition was found
[F(2, 12) = 6.152, p = 0.014]. Stimuli in the audio-only condition
were in general rated as more impulsive than stimuli in the
audio-video condition (Bonferroni post hoc comparison, p <

0.028). A significant interaction between factors sound and sound
variation was also found [F(3,36) = 3.805, p = 0.005]. Sounds
S2 and S3 were rated as the more impulsive ones in the audio-
only condition. Stimuli of sound M2 were rated as the least
impulsive ones.

Rigid: No statistically significant effect of main factors was
found. However, it was observed that sound S3 was rated as the
most rigid one, about 60% more rigid than the other sounds.
A significant interaction between condition and sound model
was also observed [F(6,36) = 10.42, p < 0.0001]. S3 was
rated as the most rigid in all categories. Stimuli presented with
sound S2 were rated as more rigid when presented without
video, and less rigid when presented in other conditions.
Stimuli including S1 and M2 received low mean ratings for all
conditions and could thereby be considered to be perceived as
non-rigid.

4.3. Discussion
To summarize, a significant main effect of sound model was
observed for the scales Expressive and Fluid, in which sound
models S1 and M2 were rated as more expressive and fluid
than the other sound models. Sound model S3 was rated as
more rigid and fast than other sound models, although this
difference was not significant. A significant effect of condition
was observed for scales Energetic and Impulsive. The interaction
effect between condition and sound model was also observed
to be significant for scales Expressive, Fluid and Rigid. These
results confirm our initial hypothesis that sound model S1 would
communicate the sensation of being more fluid, smoother (and
possibly also slower and less rigid) while sound model S3 would
be perceived as less fluid (and possibly also faster and more
rigid).

5. STUDY 3: PERCEPTUAL RATING OF
SOUND VISUALIZATIONS

5.1. Method
We hypothesize that the properties of the body motion used by
the children for generating sounds S1–S3 can be found also in
abstract representations of sound, i.e., sound visualizations in the
form of drawings.More specifically, our hypothesis is that there is
a consistent mapping of bodymotion qualities from onemodality
(sound) to another one (sound visualizations). To investigate
this, we ran a three alternative forced-choice experiment (3AFC)

designed to see if participants could correctly match recordings
of one sound model to an abstract visual representation (i.e., a
drawing) of the same sound model.

5.1.1. Participants
146 students (68 women) from the Media Technology
programme at KTH took part in the experiment. Their
average age was 22.4 years (SD = 2.7).

As for the previous online experiment (Study 2), the research
presented no risk to harm subjects and involved no procedures
for which written consent is normally required outside of the
research context. Each subject voluntarily decided to participate
in the online study and there was no risk for potential harm
resulting from a breach of confidentiality.

5.1.2. Stimuli
The 11 children who had participated in Study 1 (see Section
3 and 3.1.1 for ethics considerations) took part in a follow-
up study that was set up as a drawing exercise. The children
listened to excerpts of the two classical music stimuli (M1–M2)
and the sonification sounds (S1–S3) that they had produced
in the motion capture experiment. The excerpts were 2 min
long. The children were asked to freely draw whatever they
wanted while listening to each of the 2-min long five audio
stimuli (S1–S3 and M1–M2). We consider these drawings to be
abstract representations of the presented sounds. The idea of
using drawings to depict sounds was inspired by previous work
by Merer and colleagues (2008; 2013).

A selection of sound visualizations in the form of drawings
from the drawing exercise described above was used as
stimuli in the 3AFC experiment. We selected drawings
that included abstract representations of the sounds from 4
children. This selection was done in order to avoid symbolic
representations of the sounds (such as e.g., plants, birds or
people), which could bias the perceptual ratings. Three drawings
per child were used as stimuli in the 3AFC experiment:
each drawing corresponded to each of sound models S1,
S2, and S313. Each drawing was presented with the same
recorded sounds that had been presented in the drawing
exercise. The drawings were processed to be black and white
to enable the participants to focus simply on the patterns
and trajectories in the drawings, not on color properties (see
Figure 5).

5.1.3. Equipment
Stimuli were presented using the same online platform as in
Study 214. A link to the experiment 15 was sent via email to the
participants, who could use their preferred device (computer or
portable device) to participate in the experiment.

13Drawings of the classical sounds were not included as stimuli in the experiment,
since the research hypothesis of Study 3 only addressed aspects of the sonification
models, and not music stimuli in general.
14SurveyGizmo: http://surveygizmo.com
15The test can be found and performed at the following link: http://www.
surveygizmo.com/s3/2607938/e9087ebd3a82
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FIGURE 5 | Drawings by one 6-year girl (child A, top row) and by a 6-year boy (child B, bottom row) used in the experiment in Study 3; left to right

drawings made while listening to sounds produced using model S1, S2, and S3, respectively.

5.2. Experimental Procedure
The following instructions were given to the participants:

In this test you will be asked to connect sounds to drawings.
Take all the necessary time, but try to answer as quickly as possible.
There is not right or wrong answer. You can repeat the playback of
sounds as many times as you need. You are allowed to answer to
the questions while the sound is still playing.

The total number of stimuli consisted 4 sets of drawings (from
4 different participants) × 3 sound models, giving a total of 12
stimuli. Stimuli were presented in a randomized order per set
of drawings. Participants were asked to make a three-alternative
forced choice (3AFC) between three drawings and the presented
sound.

5.3. Results
Based on findings from Study 1 in which it was concluded that
results from the youngest children should be excluded from
the analysis since these participants did not follow instructions
correctly and also not fully understood the experimental task (see
Section 3.1.1), drawings produced by the youngest children were
excluded from the analysis. This decision was done in order to
follow the samemethodology as the one used in Study 1. Analysis
of the obtained results were thus done on the answers obtained
for the 2 drawings that had been produced by the oldest children

(one girl and one boy; referred to as child A and child B in
Figure 5).

We ran a chi-square test to analyze the association
between the two variables sound model (S1–S3) and drawing
[χ2

(df=10,N=876) = 436.514, p = 0.000]. The results indicated

a significant association between the two variables (expected
counts were greater than 5), thus implying that certain sound
models were associated to certain drawings. In particular, sound
model S1 was clearly associated to drawings of S1, while S2 and
S3 were mostly associated to drawings of either one of these two
sound models (see Figure 5 for more details).

Analysis of response frequency when collapsing all results per
drawing class (i.e., which sound model the drawing was actually
depicting) showed that 64% of the participants associated sound
model S1 to the corresponding visual representation of sound
model S1. Only 8% of the participants associated sound model
S1 to drawings depicting sound model S2 or S3 (see Figure 6).

5.4. Discussion
As mentioned by Glette et al. (2010), participants associations to
sounds are very subjective and tracings of sound can therefore
vary a lot between participants. Nevertheless, results from the
sound visualization experiment indicated that participants rather
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FIGURE 6 | Association between sounds produced using S1, S2 and

S3, and drawings (see Figure 5).

easily identified drawings portraying sound model S1. Drawings
of sound model S2 and S3 did also match to the correct sound
model for child A. For child B we can see an opposite behavior in
which drawing of sound model S2 was matched to sound model
S3, and vice versa. These results confirmed our hypothesis that
qualities of movement present in the sound recordings could be
transferred into sound visualizations produced by children and
that listeners could subsequently recognize these qualities.

6. GENERAL DISCUSSION

Analysis of movement features in Study 1 indicated significant
effect of sound model. However, due to large inter-participant
variability, the effect of sound model appeared to be rather small.
In general, the effect of group belonging appears to also be
important in this context, as well as aspects of fatigue (observed
in terms of significant effect of observation number and session
number). The children showed different behavior throughout the
experimental sessions and moved in a manner that was not very
consistent; their movement patterns appeared to be more guided
by the social interaction with other children than the overall
features of the sounds. Nevertheless, we can see some tendencies
toward greater mean and median values of smoothness and
directness for the sound models S1 and S2 than for sound
model S3. This might indicate that there are aspects related to
sound model which would be interesting to explore further in
the context of spontaneous movement induced by interactive
sonification. Considering the open structure of the experiment
(the children were allowed to move freely and interact with each
other in groups), it is likely that a more controlled experiment
would provide clearer results with higher statistical power. The
fact that the children were very young and behaved accordingly
was of course an aspect that affected the results (as previously
mentioned, some of the data had to be excluded from the
analysis). We propose follow-up studies in which the same
sonification models are evaluated in a more controlled setting
to fully be able to evaluate the effects of sonification model on
induced movement.

Findings from the perceptual rating experiment (Study 2)
indicate a significant effect of sound model on the perception
of expressiveness and fluidity. More precisely, sound model S1
was found to communicate the sensation of being more fluid
when compared to sound model S3. Although not significant, S3

was rated as 60% more rigid and fast than other sound models.
One could suggest that certain properties of sound model S1
results in the fact that sounds produced using this model are
perceived as more fluid and slow than sounds produced using
sound model S3. Interestingly, we could also detect significant
interactions between sound model and condition (audio-only,
video-only or audio-video) for the expressiveness-, fluidity- and
rigidity scales. These results support the hypothesis that different
sound models can, by themselves, be perceived differently,
but also that perception of movement qualities is indeed a
multimodal phenomenon. Interestingly, the effect of condition
was significant for energy- and impulsivity scales: when stimuli
were only auditory it was perceived as more energetic and more
impulsive than when stimuli also included a video visualization
counterpart. This confirms the ability of sound to communicate
high-level qualities of movement.

Although the experimental methodology of Study 3 could
have been simplified, for example by using simple sound
visualizations containing caricatures similar to the ones in
the Bouba-Kiki experiments by Kohler (1929, 1947) instead
of drawings, the ability to communicate high-level qualitative
features of movement using only sound as a medium could be
confirmed in the study. The qualities of a movement present
in audio recordings were recognized in sound visualizations
produced by children. Drawings portraying soundmodel S1 were
rather easily identified as being a portrayal of the actual sound
model S1. This supports our hypothesis that certain qualities of
movement present in sound recordings can actually be translated
into sound visualizations (and that these sound visualizations
subsequently can be recognized by another independent group
of listeners). Similarly to what Merer et al. (2013) suggested, i.e.,
that drawings are a relevant means of describing motion in an
intuitive way, we can conclude that drawings can be successfully
used as a tool for describing movement features which are
present in a sound throughmeaningful sonification of movement
properties.

To conclude, the three studies presented in this paper suggest
that sound models can be designed and controlled so that: (1)
sound might have an effect on bodily movement characteristics;
(2) different sounds can be associated with different levels of
motion qualities (e.g., fluid and expressive); (3) sound-only
stimuli can evoke stronger perceived properties of movement
(e.g., energetic, impulsive) compared to video stimuli; (4) sounds
generated by bodymotion can be represented and associated with
sound visualizations (drawings) in a meaningful way. The results
obtained support the existence of a cross-modal mapping of
body motion qualities from bodily movement to sounds and the
potential of using interactive sonification to communicate high-
level features of human movement data. Sound can be translated
and understood from bodily motion, conveyed through sound
visualizations in the form of drawings, and translated back from
sound visualizations to sound.
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