
PERSPECTIVE
published: 13 March 2017

doi: 10.3389/fnins.2017.00111

Frontiers in Neuroscience | www.frontiersin.org 1 March 2017 | Volume 11 | Article 111

Edited by:

Mikhail Lebedev,

Duke University, USA

Reviewed by:

ShiNung Ching,

Washington University in St. Louis,

USA

Aysegul Gunduz,

University of Florida, USA

*Correspondence:

Robert Bauer

robert.bauer@cin.uni-tuebingen.de

Alireza Gharabaghi

alireza.gharabaghi@uni-tuebingen.de

Specialty section:

This article was submitted to

Neuroprosthetics,

a section of the journal

Frontiers in Neuroscience

Received: 05 June 2016

Accepted: 21 February 2017

Published: 13 March 2017

Citation:

Bauer R and Gharabaghi A (2017)

Constraints and Adaptation of

Closed-Loop Neuroprosthetics for

Functional Restoration.

Front. Neurosci. 11:111.

doi: 10.3389/fnins.2017.00111

Constraints and Adaptation of
Closed-Loop Neuroprosthetics for
Functional Restoration

Robert Bauer * and Alireza Gharabaghi *

Division of Functional and Restorative Neurosurgery, Centre for Integrative Neuroscience, Eberhard Karls University

Tuebingen, Tuebingen, Germany

Closed-loop neuroprosthetics aim to compensate for lost function, e.g., by controlling

external devices such as prostheses or wheelchairs. Such assistive approaches seek

to maximize speed and classification accuracy for high-dimensional control. More recent

approaches use similar technology, but aim to restore lost motor function in the long term.

To achieve this goal, restorative neuroprosthetics attempt to facilitate motor re-learning

and to strengthen damaged and/or alternative neural connections on the basis of

neurofeedback training within rehabilitative environments. Such a restorative approach

requires reinforcement learning of self-modulated brain activity which is considered

to be beneficial for functional rehabilitation, e.g., improvement of β-power modulation

over sensorimotor areas for post-stroke movement restoration. Patients with motor

impairments, however, may also have a compromised ability for motor task-related

regulation of the targeted brain activity. This would affect the estimation of feature weights

and hence the classification accuracy of the feedback device. This, in turn, can frustrate

the patients and compromise their motor learning. Furthermore, the feedback training

may even become erroneous when unconstrained classifier adaptation—which is often

used in assistive approaches—is also applied in this rehabilitation context. In conclusion,

the conceptual switch from assistance toward restoration necessitates a methodological

paradigm shift from classification accuracy toward instructional efficiency. Furthermore, a

constrained feature space, a priori regularized feature weights, and difficulty adaptation

present key elements of restorative brain interfaces. These factors need, therefore, to

be addressed within a therapeutic framework to facilitate reinforcement learning of brain

self-regulation for restorative purposes.

Keywords: assistive technology, neurorehabilitation, stroke, rehabilitation robotics, brain-computer interface,

brain-machine interface, brain-robot interface

RESTORATION INSTEAD OF ASSISTANCE

Brain self-regulation has recently been applied in the context of motor rehabilitation after stroke by
providing contingent feedback of motor imagery (Buch et al., 2012; Ang et al., 2014; Morone et al.,
2015; Pichiorri et al., 2015). In these approaches, specific brain states (i.e., rest vs. motor imagery)
are often separated using an online analysis of sensorimotor power in a cue-paced trial-structure.
When used in conjunction with robotic rehabilitation technology, these devices are also referred to
as brain-robot interfaces (BRI; Bauer et al., 2015; Naros and Gharabaghi, 2015; Kraus et al., 2016).
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While assistive BRIs aim to replace lost function by controlling
external devices (Hochberg et al., 2012; Collinger et al., 2013),
restorative BRIs aim to rehabilitate an impaired function
(Gharabaghi, 2016; Krucoff et al., 2016). In such a restorative
framework, BRIs adhere to an operant conditioning rationale
(Sherlin et al., 2011; Bauer and Gharabaghi, 2015b). They provide
contingent feedback to facilitate the self-regulation of specific
brain activity. This reinforcement learning-based approach is
considered to be beneficial for recovery and might ultimately
lead to functional gains on the basis of motor re-learning and
strengthening of damaged and/or alternative neural connections
(Daly andWolpaw, 2008). Restorative BRIs might be additionally
supported by brain state dependent stimulation to strengthen
cortico-spinal connectivity (Gharabaghi et al., 2014a; Royter and
Gharabaghi, 2016; Kraus et al., 2016).

METHODOLOGICAL ADJUSTMENTS

We propose that, on account of their different goals, these
restorative techniques require a different methodological
approach than assistive BRIs, i.e., modifying brain physiology
vs. controlling extremal devices. We acknowledge that
different strategies may be adopted to achieve modified
neurophysiology and, ultimately, behavioral gains. However,
on the basis of empirical evidence acquired in our
lab, we propose the following adjustments: constrained
feature space, regularized feature weights, and difficulty
adaptation.

Instead of analyzing all acquired signals for optimal
classification, we propose that the feature space be intentionally
constrained to reinforce a specific oscillatory pattern in
accordance with the respective treatment rationale (constrained
feature space). In a next step, to differentiate between the
classes, assistive BRIs use classifier calibration to weight features
according to their relevance. However, learning brain self-
regulation may lead to non-stationarity of these classes in the
course of the training (Vidaurre et al., 2011a; Sugiyama et al.,
2013; Naros and Gharabaghi, 2015). Unsupervised adaptation of
the feature weights may therefore lead to a switch in the mental
strategy (Vidaurre et al., 2011b; Bryan et al., 2013). This approach
may even result in artefactual control (Gharabaghi et al., 2014b).
We, therefore, propose that feature weight regularization be
applied to address this issue. Furthermore, cognitive, sensory,
and motor impairments may limit the ability to modulate
brain activity, perceive, and/or process feedback. This may
cause frustration, which, in turn, may be exacerbated due to
the low classification accuracy caused by the constrained and
regularized feature space (Nijboer et al., 2008; Fels et al., 2015).
In this context, we propose that difficulty adaptation be applied
to overcome cognitive load issues (Bauer and Gharabaghi,
2015a; Bauer et al., 2016a,b). Such an approach may also
improve the instructional efficiency of feedback (Bauer and
Gharabaghi, 2015b) and maintain motivation (Bauer et al.,
2016a,b).

In the following paragraphs, we discuss these methodological
adjustments in greater detail.

CONSTRAINED FEATURE SPACE

In high-dimensional feature spaces, some regions may be
sparsely populated with data, thereby, impairing the classifier
setup (Theodoridis and Koutroumbas, 2009). Under these
circumstances, constraining the feature space provides a way
of dealing with this curse of dimensionality. However, if the
feature space is constrained a priori, some useful features for
classification may also be discarded. A classifier based on a
constrained feature set therefore usually performs less well than
a classifier based on a full feature set.

Restorative BRIs, which apply this approach, therefore appear
inferior in comparison to their assistive counterparts. The latter
use more flexible algorithms to select and weight all available
features and to maximize classification accuracy (Ang et al., 2009;
Theodoridis and Koutroumbas, 2009). An a priori constraint
should therefore be well considered. It is tempting to assume
that the brain will find the best combination of features by
itself. Such an approach is therefore implicitly followed during
standard or robotic neurorehabilitation, when the feedback
that is provided by the therapist or the training device is
independent of specific brain features. This strategy, however,
has not been successful until now, at least when considering
severely motor-impaired stroke patients with persistent deficits.
Moreover, the features (α-desynchronization) identified as most
useful for classification between different states in the post-stroke
brain, e.g., rest vs. motor imagery, are not necessarily those
that are most therapeutically relevant (β-desynchronization):
Synchronization/Desynchronization describe the (often task-
induced) increase/reduction in power in specific frequency
bands. The α-band usually ranges from 8–14Hz, while
the β-band ranges from 15–30Hz. Specifically, movement-
related β-desynchronization (β-ERD) is compromised in the
contralateral primary cortex in comparison to healthy controls;
the more severe the patient’s motor impairment, the less β-
ERD (Rossiter et al., 2014). And so β-ERD remains inferior
to other features for classification purposes in stroke patients,
e.g., in differentiating movement-related brain states for the
control of external devices (Gomez-Rodriguez et al., 2011). In
this context, we argue that the fact that β-oscillations are less
optimal for classification purposes does not compromise—but
rather qualifies—this physiological marker as a therapeutic target
(Naros and Gharabaghi, 2015). Here, we see an analogy to
the concept of constraint-induced movement therapy in stroke
patients, where the affected rather than the healthy side of the
body is trained to facilitate restoration instead of compensation
of motor function. Notably, such an approach does not exclude
the possibility that alternative cortico-spinal pathways which do
not originate from the contralateral primary motor cortex take
over lost function. These pathways would be facilitated on the
basis of cortical disinhibition and coherent interaction with the
muscles in the β-band as well (Mima et al., 2001; Kilavik et al.,
2012; Aumann and Prut, 2015; Brittain et al., 2014; Rossiter et al.,
2014; Kraus et al., 2016).

Furthermore, an approach based on a constrained feature
space allows making a direct, hypothesis-driven comparison of
different interventions based on specific oscillatory patterns. By
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way of example, an increase in the β-modulation range will
improve cortico-spinal connectivity (Kraus et al., 2015, 2016)
and motor function (Naros et al., 2016). This will enable us to
empirically detect functionally relevant markers andmechanisms
of restoration and to determine physiology-based strategies for
further improvement. Such knowledge will also enable us to
develop approaches for treatment matching, e.g., defining feature
sets on the basis of specific functional impairments and/or
lesion locations (Shelton and Reding, 2001; Stinear et al., 2012).
By contrast, an approach based on an unconstrained feature
space would be based on the assumption that the most accurate
detection of motor intention/imagery and provision of feedback
is in itself sufficient to restore function.

REGULARIZED FEATURE WEIGHTS

Regularization can be considered a penalty term to prevent
feature weights from reaching implausibly high values
(Theodoridis and Koutroumbas, 2009; Bishop, 2013) caused
by the empirical estimation of class parameters (e.g., mean
and covariance). Such estimates can be biased, especially
when the sample size is low. Due to the large variety of
classification approaches (Theodoridis and Koutroumbas,
2009), several regularization approaches have been suggested,
e.g., pooled covariance estimation (Friedman, 1989), rejection
of eigenvectors (Blankertz et al., 2008), shrinkage estimators
(Beltrachini et al., 2010), or feature subset selection (Friedman,
1989).

Even when recognizing that a constrained feature space can
already be considered a form of regularization, the empirical
determination of feature weights during the calibration period
may pose a particular challenge for restorative brain-interface
approaches, e.g., when estimating mean and covariance of two
classes (rest vs. motor imagery). When patients are able to
desynchronize sensorimotor oscillations (Pfurtscheller et al.,
2005; Neuper et al., 2006; Kaiser et al., 2011), the estimation of
feature weights is usually straightforward. In such a case, several
approaches for regularization have been discussed (Yuan and
Bentler, 1998; Beltrachini et al., 2010). If, however, the volitional
modulation of sensorimotor oscillations has not been learned
(Brauchle et al., 2015; Bauer and Gharabaghi, 2015b; Naros and
Gharabaghi, 2015), or when it is impaired due to the underlying
pathology (Buch et al., 2012; Bundy et al., 2012; Rossiter et al.,
2014), the estimation might become noisy or even false. More
formally, if one class (i.e. motor imagery) is not sufficiently
expressed, its parameters (e.g., mean and covariance) cannot be
measured. If, however, the mean during motor imagery is not
sufficiently different from the mean during rest, a noisy estimate
can result in the classifier being calibrated toward the wrong
direction of modulation. Subsequently, the patient might receive
feedback for synchronizing instead of desynchronizing.

Novelty detection has been suggested as a solution, if
no information about a second class is available (Pimentel
et al., 2014). Such a one-class approach might base mean and
covariance estimation on the rest class only. However, without

a priori information about the targeted direction of modulation,
data-driven regularization approaches cannot be sufficient.

Furthermore, when a patient alters the mental strategy in
the course of the intervention, a classifier trained on the initial
strategy can become misaligned. In classical brain-interface
approaches, the adaptation of feature weights has been proposed
for such cases (Vidaurre et al., 2011b; Bryan et al., 2013; Sugiyama
et al., 2013). But such data-driven approaches can be problematic
for restorative approaches; classifier adaptation might condition
the patients to explore alternative, i.e., therapeutically non-
desired strategies (Bauer and Gharabaghi, 2015a,b). When the
patient becomes frustrated with motor imagery, he/she may use
artifacts for control, e.g., muscle contractions (Gharabaghi et al.,
2014b).

Bearing these points in mind, we suggest employing informed
regularization determined by a priori selected feature weights,
thereby, ensuring the targeted direction of modulation. In our
lab, we currently employ a variant of novelty classification by
using a linear discriminant analysis with a fixed direction. In that
regard, we base the mean and covariance estimation on the rest
class only, with the parameter estimation pooled across several
electrodes. Thereby, we provide feedback for the reduction of the
mean, i.e., desynchronization, only.

DIFFICULTY OF ADAPTATION

Lotte and colleagues have pointed out that most neurofeedback
protocols are limited with regard to their instructional design.
They suggested adaptive training approaches, i.e., the use of
difficulty levels which are challenging, but still achievable (Lotte
et al., 2013). A similar idea was postulated by the cognitive
load theory (Schnotz and Kürschner, 2007). On the basis of
these concepts, both under- and over-challenge must be avoided
to facilitate learning (Schnotz and Kürschner, 2007; Bauer
and Gharabaghi, 2015a). In classifiers, which are constrained,
regularized and linear, item response theory enables us to directly
relate the threshold used for classification to the difficulty level
(Bauer and Gharabaghi, 2015a). By using a linear discriminant
analysis with a fixed direction, thresholding allows us to provide
reward for desynchronization only when it is sufficiently strong.
Within this framework, the shape of classification accuracy
CA across different threshold can be interpreted as the zone
of proximal development (ZPD). This argument, with detailed
examples, has been clarified elsewhere (Bauer and Gharabaghi,
2015a). The ZPD is an indirect measure of a subject’s cognitive
resources (Schnotz and Kürschner, 2007). It also constitutes the
range of threshold, where learning may occur because subjects
are able to compensate for the extraneous load caused by the
mismatch of ability and difficulty (Bauer and Gharabaghi, 2015a).
Along these lines, two recent studies with healthy subjects
provided empirical evidence that dynamic threshold adaptation
is instrumental in facilitating learning (Bauer et al., 2016b; Naros
et al., 2016).

Unconstrained and unregularized classifiers do not offer
an accessible, one-dimensional parameter to fine-tune the
difficulty of the task. It might therefore be problematic to adapt
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the difficulty within these approaches. In particular, a multi-
dimensional or even non-linear theory of difficulty adaptation
appears to be challenging. We instead explored the difficulty
threshold of a linear, a priori constrained and regularized
classifier and found evidence of a direct correlation between
the subjects’ perceived mental effort and the task difficulty
(Bauer et al., 2016b). Further empirical evidence suggests that
there is a link between classification accuracy and cognitive
load; classification performance has been linked to mood and
mastery confidence (Nijboer et al., 2008), as well as to the
degree of concentration on the task and the ability to ignore
distracting stimuli (Hammer et al., 2012). The sensation of
challenge might therefore be linked to the ratio of true to
false positives returned by the classifier. This hypothesis is
supported by a Bayesian simulation study of reinforcement
learning under adaptive changes of true and false positive
rates (Bauer and Gharabaghi, 2015b). A generalized concept of
difficulty adaptation might, therefore, be based on controlling
the relationship between true and false positive rates by asking
the patients to self-rate the perceived effort and/or applying
non-cued training.

Nonetheless, further factors may affect the difficulty of the
training: the challenge of achieving a sense of cognitive and
internal control (Burde and Blankertz, 2006; Wood et al., 2014),
the appropriate processing of cues to reduce impairments in
mental chronometry (Liepert et al., 2012), and to increase the
quality of motor imagery (Heremans et al., 2009, 2012), the
specific sensory impairments of patients and their interaction
with the feedback modality (e.g., visual, haptic, auditory)
(Nijboer et al., 2008; Gomez-Rodriguez et al., 2011; Parker et al.,
2011; Sollfrank et al., 2015), or the repetitive and fatiguing nature
of training (Lee et al., 1991; Page et al., 2011). Dealing with
these aspects by proper instructional design is more important
for restorative than for assistive approaches (Lotte et al., 2013).

CONCLUSION

We propose that restorative approaches should apply
prior information about beneficial features (e.g., β-power
desynchronization over sensorimotor areas) to constrain the

feature space and regularize their direction. Such an approach
may reduce the classification accuracy in comparison to
unconstrained or unregularized approaches, particularly in
patients who are only partially able to self-regulate the targeted
brain state. At the same time, this method would increase the
likelihood that feedback is provided for the therapeutically
targeted modulation of brain activity only. The threshold
selection in restorative approaches should therefore not be
misled by the goal of maximum classification accuracy. Instead,
it should follow instructional demands to maximize learning.

Accordingly, several methods have been proposed for locating
the threshold for maximum learning (Ivanova et al., 2005;
Cegarra and Chevalier, 2008; Naros et al., 2016; Bauer et al.,
2016a,b). Moreover, physiological parameters, e.g., distributed
cortical patterns in the α-range (Vukelić et al., 2014; Vukelić and
Gharabaghi, 2015a,b) and the θ-range (Fels et al., 2015) which

were linked to β-band self-regulationmay also be used in the long
term for this purpose.

The conceptual switch from assistive to restorative
neuroprosthetics necessitates methodological adjustments
(constrained feature space, a priori regularized feature
weights, difficulty adaptation) which ultimately represent
a paradigm switch from classification accuracy toward
instructional efficiency to facilitate reinforcement learning
of brain self-regulation.
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