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Recording scalp electroencephalography (EEG) during human motion can introduce

motion artifacts. Repetitive head movements can generate artifact patterns across scalp

EEG sensors. There are many methods for identifying and rejecting bad channels and

independent components from EEG datasets, but there is a lack of methods dedicated to

evaluate specific intra-channel amplitude patterns for identifying motion-related artifacts.

In this study, we proposed a template correlation rejection (TCR) as a novel method

for identifying and rejecting EEG channels and independent components carrying

motion-related artifacts. We recorded EEG data from 10 subjects during treadmill

walking. The template correlation rejection method consists of creating templates of

amplitude patterns and determining the fraction of total epochs presenting relevant

correlation to the template. For EEG channels, the template correlation rejection

removed channels presenting the majority of epochs (>75%) correlated to the template,

and presenting pronounced amplitude in comparison to all recorded channels. For

independent components, the template correlation rejection removed components

presenting the majority of epochs correlated to the template. Evaluation of scalp maps

and power spectra confirmed low neural content for the rejected components. We

found that channels identified for rejection contained ∼60% higher delta power, and

had spectral properties locked to the gait phases. After rejecting the identified channels

and running independent component analysis on the EEG datasets, the proposed

method identified 4.3± 1.8 independent components (out of 198± 12) with substantive

motion-related artifacts. These results indicate that template correlation rejection is an

effective method for rejecting EEG channels contaminated with motion-related artifact

during human locomotion.

Keywords: EEG, artifacts, walking, locomotion, signal processing, mobile-brain imaging, ICA, EEG cleaning

INTRODUCTION

Electroencephalographic (EEG) recordings have traditionally been limited to highly controlled
conditions in order to avoid head motion and minimize artifacts that may be large in amplitude
compared to the desired signals. In the last decade, advances in hardware and software improved
the quality of the acquired signals and opened the venues for recordings in more dynamic

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
https://doi.org/10.3389/fnins.2017.00225
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2017.00225&domain=pdf&date_stamp=2017-04-26
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:oliveira_dkbr@hotmail.com
https://doi.org/10.3389/fnins.2017.00225
http://journal.frontiersin.org/article/10.3389/fnins.2017.00225/abstract
http://loop.frontiersin.org/people/121471/overview
http://loop.frontiersin.org/people/111708/overview
http://loop.frontiersin.org/people/187939/overview
http://loop.frontiersin.org/people/269/overview
http://loop.frontiersin.org/people/16862/overview


Oliveira et al. Attenuating Gait-Related EEG Artifacts

conditions including whole-body motion (Gramann et al., 2010;
Gwin et al., 2010; Reis et al., 2014; Seeber et al., 2015). A
commonmethod for analyzing EEG data is to apply independent
component analysis (ICA) and blind source localization in order
to define dipolar sources of electrocortical activity (Makeig et al.,
1996, 2002; Gwin et al., 2011; Delorme et al., 2012). Finally, event-
related spectral perturbation analysis (ERSPs) (Pfurtscheller
and Lopes da Silva, 1999; Delorme et al., 2012) identifies
synchronization and desynchronization of selected brain sources
and/or clusters of sources in relation to task phases. For the
motor system, neuronal synchronization and desynchronization
are responsible for the modulation of movement control, being
more relevant at the theta, alpha, beta and gamma bands (Gwin
et al., 2011; Wagner et al., 2012, 2016; Seeber et al., 2014, 2015).
The combination of these signal processing methods has been
widely used to describe the participation of different cortical areas
on the control of human walking (Gwin et al., 2011; Castermans
et al., 2014; Ehinger et al., 2014; Seeber et al., 2014; Wagner et al.,
2014; Bulea et al., 2015).

Recording EEG during natural human behavior poses
specific challenges. Locomotion induces vertical head
acceleration/deceleration in every step, and this periodic
oscillation may be reflected in the EEG recordings due to cable
sway and/or electrode movements on top of the head (Gwin
et al., 2010; Reis et al., 2014; Kline et al., 2015; Oliveira et al.,
2016b). Recent studies have shown some correlations between
head acceleration and the EEG amplitude for some channels
(Kline et al., 2015; Onikura et al., 2015). Moreover, changes
in head displacement can influence event-related spectral
perturbations in relevant frequency ranges up to 15Hz, and
gait-related artifacts might span up to high-gamma frequency
range (>60 Hz, Castermans et al., 2014; Costa et al., 2016).
There is an inherent problem with the analysis of brain dynamics
related to locomotion: gait-related motion artifacts are likely
to occur in a systematic pattern, locked to certain gait events,
considering forward locomotion at steady speed. In other words,
a specific amplitude pattern may be present in the majority of
the gait cycles during certain phases of the gait cycle, such as
initial heel strike. As a result, both relevant brain activity and
artifacts could be tightly coupled throughout the data collection,
regardless of the duration. Independent component analysis has
shown to be good at identifying motion artifacts in scalp EEG
data (Snyder et al., 2015; Oliveira et al., 2016a), but additional
methods that can attenuate motion artifacts in scalp EEG could
improve signal quality further, especially at faster walking speeds
(Nathan and Contreras-Vidal, 2016).

Because of this time and phase-locked coupling between
artifacts and neural motor control circuits, there are
controversies on the validity of event-related spectral
perturbation analysis reported by different research groups
concerning brain dynamics of the modulation of locomotion
(Gwin et al., 2011; Presacco et al., 2011; Petersen et al., 2012;
Castermans et al., 2014). Specifically, it is often questionable
whether changes in event-related spectral perturbation plots are
a true neural oscillation or motion artifact (Castermans et al.,
2014; Snyder et al., 2015) however, there is a lack of research
directly addressing this topic. The influence of motion-related

artifacts on EEG recordings acquired from freely moving humans
is a major limitation for future studies regarding brain activity
in real-world conditions (McDowell et al., 2013). Therefore,
alternative solutions to reduce the influence of motion on EEG
results are necessary.

The current methods for the selection of bad channels do not
account for any event-locked pattern (Figure 1A). As a result,
EEG channels carrying repetitive motion-related artifacts locked
to some motion event may persist for further processing if
the researcher cannot identify this channel by visual inspection
or any other alternative method (Figure 1B). The goal of this
study was to test a systematic method for identifying EEG
channels dominated by motion-related artifact during human
locomotion data collection. Specifically, we devised a template
correlation rejection (TCR) method using pattern templates
and the fraction of total epochs correlated to the template.
This method can identify EEG channels affected by motion-
related artifacts from cyclical motion, such as walking, as well as
independent components carrying motion-related artifacts.

METHODS

Participants
Ten healthy volunteers with no history of major lower limb injury
and no known neurological or locomotor deficits completed this
study (6 males and 4 female; age range, 21–36 years). All subjects
provided written informed consent before the experiment. All
procedures were approved by the University ofMichigan Internal
Review Board and complied with the standards defined in the
Declaration of Helsinki.

Experimental Protocol
Subjects performed a finger tapping task and two walking tasks
in randomized order. For the finger tapping task, subjects sat
comfortably in a chair and performed 5 sets of rhythmic finger
tapping for 60 s using their right thumb. The interval between
sets was ∼60 s. We included this finger tapping task in order to
compute the amplitude range (in µV) of EEG signals recorded in
a highly controlled seated condition and subsequently compare
it to the amplitude acquired during walking. Compared to the
foot region, that is placed in mirror symmetrically on the medial
surface of both cortical hemispheres, the hand related part of
motor cortex is positioned in both hemispheres closely below
the skull (Penfield and Boldfrey, 1937; Liao et al., 2014). Thus,
activity generated by finger movements should relay well to scalp
electrodes.

For the walking task, subjects walked on an instrumented
split belt treadmill (Bertec FIT, Bertec Inc. USA) at 1m/s
in two different conditions: (1) Eyes open, subjects walked
normally avoiding anterior-posterior or lateral head movements;
(2) Walking blindfolded, subjects closed their eyes while wearing
a blindfold and walked avoiding anterior-posterior and lateral
head movements. In addition, we turned off all lights in the
laboratory environment in order to minimize the possibility of
visual guidance. We chose to investigate subjects walking in
these two conditions in order to induce changes in the walking
pattern at a fixed speed. The lack of visual guidance induces a
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FIGURE 1 | Potential flaws in rejecting EEG channels containing motion-related artifacts using commonly accepted methods. Bad channels are usually

selected by using traditional methods such as range, standard deviation, kurtosis and correlation (A). These methods may not be sensitive to channels carrying

motion-related artifacts if the amplitude is not substantially high and/or if the correlation across channels is not sufficiently high. In such cases “clean” EEG datasets

may contain channels carrying artifacts locked to gait events while walking with eyes open and blindfolded in the majority of the time series (B).

more cautious walking pattern (Nakamura, 1997), which may
attenuate the influence of head acceleration/deceleration on our
EEG recordings and highlight the effectiveness of the proposed
method for identifying bad channels. For both conditions we
attached the subjects to a safety harness, and they alternated
five min walking with their eyes open and five min walking
blindfolded until completing five blocks of each condition
(total of 25min walking with eyes open and 25min walking
blindfolded). There was a 1–2 min interval between each block.

EEG Recordings
EEG was recorded using a compact ActiveTwo amplifier and
256-channel active electrode array (BioSemi, Amsterdam, The
Netherlands). During the experimental setup, we used electrode
gel to ensure proper conductivity. EEG signals were sampled at
512Hz.

EEG Processing
We performed all processing and analysis in Matlab (The
Mathworks, Natick, MA) using scripts based on EEGLAB 13.0.1b
(http://www.sccn.ucsd.edu/eeglab), an open source environment
for processing electrophysiological data (Delorme and Makeig,
2004). We created one EEG dataset for the finger tapping task,
and another merged dataset containing EEG data from both
walking with eyes open and blindfolded. We high-pass filtered
(1 Hz, 8,251 point window, bandwidth 0.2 Hz, passband edge
0.2 Hz) and removed line noise using Cleanline (https://www.
nitrc.org/projects/cleanline/) from both datasets. For the walking
dataset, we identified the right and left heel strike, and right
and left toe-off events for both walking with eyes open and
blindfolded conditions from the treadmill ground reaction force
using standard methods previously described (Gwin et al., 2011;
Kline et al., 2015; Snyder et al., 2015). Briefly, we defined initial
foot contacts when the ground reaction force exceeds 15 N and

the toe-offs when the force drops below 15 N. Subsequently,
we removed channels exhibiting substantial artifacts using the
following methods, which combined will be called channel
rejection method 1: 1) channels with magnitude < 30 or >

3,000 µV; 2) channels with kurtosis > 5 standard deviations
from the mean; (3) channels uncorrelated with the surrounding
channels (r < 0.4) for more than 1% of the total time; (4)
channels with standard deviation qualitatively higher than the
other measured channels, verified by visual inspection of the
increasingly sorted standard deviation across channels. This
method led to a rejection of 23 ± 6.4 channels from the finger
tapping datasets, and 37± 6.5 channels from the walking datasets
using channel rejection method 1.

Template Correlation Rejection (TCR)
The TCR method should be applied in EEG datasets free
of bad channels selected using standard methods (range,
standard deviation, kurtosis, correlation). We illustrated the
TCR method for identifying channels influenced by motion
artifacts in Figure 2. The basic assumption for TCR is that, for
cyclical motions occurring at a steady pace, the head dynamics
are repetitive, and EEG motion-related artifacts are repeated
throughout the recording. Thus, an EEG channel carrying
motion-related artifacts must present a similar amplitude pattern
across the majority of individual motion cycles (or epochs).
Consequently, these epochs may be correlated to a general EEG
amplitude template, created by averaging the EEG data across
epochs.

TCR Part 1—Defining Correlations
To compute the TCR parameters, we used a copy of the
original dataset and applied the following steps for each channel
separately: (1) smoothed continuous EEG data using moving
average (100 ms windows, 50 ms overlap); (2) data segmentation
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FIGURE 2 | Step-by-step calculation of the template correlation rejection (TCR) method. In order to underpin EEG channels carrying motion-related artifacts,

the TCR method quantifies the amount of EEG epochs minimally correlated to a channel template, and defines among these channels those exhibiting amplitude

ranges (ARNG) unexpectedly higher in comparison to the pool of EEG channels (C).

(from right heel strike to next right heel strike) and time warping
of each full gait cycle to a common length. The average gait
cycle duration was 1.21 ± 0.4 s, and we resampled all gait cycle
epochs to 1,000 points; (3) computation of an averaged template
across all time-normalized epochs (AVGAIT); (4) computation of
Pearson correlation between AVGAIT and each individual EEG
epoch representing a gait cycle. Ultimately, this process will
return a matrix of correlation coefficients with dimensions equal
to the number of gait cycles times the number of EEG channels,
for walking with eyes open and blindfolded separately, for each
subject.

TCR Part 2—Applying Correlation Threshold
The next step is to define the number of epochs presenting a
relevant correlation to the AVGAIT for each channel. Initially
we assumed that, in order to consider a channel as potentially
affected by motion artifacts, it should present at least 75% of all
epochs (3 out of every 4) minimally correlated to the AVGAIT.
Preliminary analyses have shown that we could identify the most
relevant channels to be rejected by using the threshold set at least
at 75% of all cycles.

In order to define relevant correlations, we ran an analysis
using the same EEG data during walking with eyes open while
substituting the gait events by randomly generated events in time.
Our assumption was that motion-related artifacts are locked
to some gait events and occur systematically across the EEG
recording. Thus, EEG data epoched from random events in time
cannot present as many epochs correlated to the AVGAIT. For
each subject, we generated 10 different EEG datasets, for both the
walking with eyes open and blindfolded conditions, containing
random epochs for testing the robustness of the analysis. We

generated random epochs accounting for 50% of the total number
of cycles, in order to reduce the likelihood of overlapping the
EEG patterns. We generated a total 520 ± 34 epochs across all
subjects. In order to generate epochs fairly across the duration of
our recordings, we generated the random timing in 5 different
sectors accounting for 20% of the dataset each.

We performed the same steps previously explained for
defining the correlations between random epochs (surrogate
dataset) to the AVGAIT for each channel. The distribution of the
correlations from the experimental EEG (i.e., gait cycles) was
not normally distributed, whereas the surrogate data presents
null distribution (Figures 3A,B). By comparing the distribution
of the experimental correlations and the surrogate correlations,
it is possible to define an intersection point (see right figure
above). This point describes when the experimental correlation
distribution still rises, whereas the surrogate data distribution is
falling (Figure 3C). Therefore, this intersection point indicates
the level in which the experimental correlations are happening
above the level of chance from the null distribution. The Pearson
correlation values at the intersection point were r = 0.33 ± 0.09,
and we determined a correlation threshold by rounding up this
average number to r > 0.4.

In order to evaluate whether this proposed correlation
threshold would be appropriate, we computed the fraction
of epochs distributed in correlations ranging from 0.2 to 0.6
(illustrated in Figure 3D). The proposed correlation analysis
using random epochs showed that the fraction of epochs reaching
correlations above 0.2 is ∼33%, and the fraction is reduced
as a function of higher correlation thresholds. In addition, we
found that by using random epochs there are only <20% of
the total epochs with correlation coefficient r > 0.4. Therefore,
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FIGURE 3 | Distribution of the correlation coefficient between single gait cycle epochs (A , experimental EEG) and randomly generated epochs (B, surrogate

EEG) in relation to an average template for one illustrative subject. In (C), the distribution between these two conditions present an intersection point, in which the

correlations in the experimental EEG occur above the level of chance. In (D), mean (SD) fraction of total randomly generated epochs (gait cycles), from 10 different

datasets per subject, above the correlation thresholds from r > 0.2 to r > 0.6 while walking with eyes open (gray bars) and blindfolded (black bars). In (E), mean (SD)

amplitude range for EEG channels recorded during finger tapping task (Tap) walking with eyes open using randomly generated epochs (Wlk-rand) and using the

original gait events (Wlk-event). In (F), mean (SD) fraction of epochs above the threshold of 10 µV the finger tapping amplitude range for the same conditions

displayed in the (B). Denotes significant difference in relation to the other conditions (p < 0.05).

EEG channels presenting >75% of all epochs with correlation r
> 0.4 to the AVGAIT cannot be caused by chance; rather, it is
a consistent temporal pattern across the recording that can be
evidenced by segmenting epochs using motion events.

TCR Part 3—Defining Relevant EEG Amplitude
The degree of correlation to a template is essential for defining
the influence of cyclical motion in specific channels. However,
the modulation of motor actions may be occurring at strictly
repetitive instants throughout the motion cycle. This means that
the exclusion of channels based only on the template correlation
may exclude meaningful, artifact-free channels. Therefore, it
is vital to further evaluate the content of such channels. We
hypothesized that differences in EEG amplitude between highly
controlled recordings in the seated and walking conditions could
contribute to define an amplitude threshold in addition to the
correlation threshold, as higher amplitudes during walking could
be caused by artifacts rather than brain signals.

We compared the EEG amplitude of channels recorded
during walking in comparison to the finger tapping task. The

assumption was that the amplitude from channels recorded
during finger tapping would be substantially lower in comparison
to the noisy channels recorded during walking. We created
epochs of 1 s around the finger tapping for calculating the
amplitude ranges. For both the finger tapping and walking with
eyes open and blindfolded tasks, we computed the amplitude
range across windows of 10% epochs, averaged the values
to represent the epochs for each channel, and subsequently
averaged all the channels for representing each subject. By
subdividing the gait epoch in smaller windows we reduce the
influence of large fluctuations caused by short spikes on the
EEG data throughout the total number of epochs. In this way,
epochs presenting high amplitude range are those containing
large fluctuations throughout the epoch length. We used a 1-
way ANOVA for assessing the differences in amplitude range
between finger tapping and walking using random events x
walking using motion events (Figure 3E). Additionally, we used
a Tukey HSD post-hoc test for defining differences between
pairs of conditions, and the significance level was set at
p < 0.05.
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We observed∼33% increase in EEG amplitude range between
both walking conditions in relation to the finger tapping task
(p < 0.001). No differences were found between the walking
conditions. The upper bound of the 95% confidence interval
for the finger tapping amplitude range was ∼10 µV. We
found that ∼17% of the channels from the finger tapping EEG
showed average amplitude range higher than 10 µV (Figure 3F).
On the other hand, ∼59% of the channels from EEG during
walking showed amplitude range higher than 10 µV, regardless
of the events used for epoching. This result indicates that EEG
channels exhibiting amplitude range ∼10 µV or lower cannot
be immediately associated with motion artifact, since EEG data
recorded in seated conditions can reach similar amplitudes.
Therefore, it is not suitable to use a fixed threshold for defining
EEG channels affected by motion-related artifacts.

Defining Amplitude Breaking Point for EEG Channels
Instead of using a fixed amplitude threshold, we opted for
computing a “breaking point” on the EEG amplitude range
across channels. We used a Matlab function freely available
online to define the knee point distribution: (http://www.
mathworks.com/matlabcentral/fileexchange/35094-knee-point/
content/knee_pt.m).

This method has the advantage of being specific to the
distribution of EEG amplitudes from each recording. For the
calculation, we ordered the EEG channels from the lowest to
the highest amplitude range and computed the point in which
the amplitude range starts to increase steadily (Figure 4). The
breaking points for all subjects were at 16.3± 5.1 µV for walking
with eyes open and 12.6± 2.5 µV for walking blindfolded, which
were higher than the average amplitude range found for finger
tapping (∼10 µV in this study).

Ultimately, the TCR considered channels containing motion-
related artifacts as those presenting >75% of all EEG epochs
correlated at r > 0.4 and located above the amplitude breaking
point from both walking with eyes open and blindfolded
conditions. In case of channels being selected only for the
walking EO condition, we also removed this channel from the
walking blindfolded condition and vice-versa. This concludes
the second step of the TCR method. In the following sections,
we demonstrate features of the TCR method in comparison to
standard rejectionmethods and the efficacy of TCR in identifying
motion-related independent components.

RESULTS

In this section, we describe statistical analysis and show results
on the differences between rejected channels and clean channels
in section Absolute Power of Removed Channels, as well as
the effectiveness of TCR in identifying independent components
carrying motion-related artifacts.

Profile of EEG Channels Marked Using TCR
The TCR method marked 22 ± 9 channels for rejection; these
showed no robust location pattern across subjects (Figure 5).
Most subjects had marked channels at the center of the head,
whereas the locations on the sides, front and back of the

head were subject-specific. This is a first indication that TCR
labeled channels do not represent neuronal activity but might be
representing motion-related artifacts.

Absolute Power of Removed Channels
We performed all further data analysis using the original EEG
datasets prior to computing TCR, therefore all processing related
to the TCR method (moving window, time-warping) does not
influence our results. We used the channels selected from
TCR to generate EEG datasets from walking with eyes open
and blindfolded in order to investigate the properties of the
rejected channels.We computed the absolute power using 512ms
window size, 1,024 ms zero-pad from channels or independent
components in the delta (1–4Hz), theta (5–8Hz), alpha (9–
13Hz), beta (14–30Hz), and gamma bands (31–80Hz). For each
subject, we determined the median absolute power across all
channels/independent components in each frequency band. In
order to perform statistical analysis, we used 1-way ANOVA
and subsequent Tukey HSD post-hoc test for assessing the
differences in absolute power between different stages of the
channel rejections (channel rejection method 1 vs. TCR vs. the
remaining good channels after using both these methods) in each
frequency band. The significance level was set at p < 0.05.

There was a significant effect of frequency band on the
absolute power computed from the EEG channels in the
different stages of channel rejection [p < 0.001, F(4, 135)]. More
importantly, there was a significant effect of the different stages
of the channel rejections (channel rejection method 1 vs. TCR
vs. good channels) on the absolute power [p < 0.05, F(2, 135),
Figure 6]. The absolute power from the channels rejected using
channel rejection method 1 was higher than the absolute power
from the good channels for all frequency bands. In addition,
the power from TCR at the delta band was ∼60% higher in
comparison to the power of good channels (p< 0.01). There were
no further differences between TCR and good channels.

Independent Components from Channels
Rejected Using TCR
We assumed that EEG channels carrying motion-related
artifacts contribute to the generation of artifactual independent
components. The spectral properties of these independent
components carrying time-locked motion artifacts can be
interpreted as neural modulation or contribute to build event-
related spectral perturbation plots representing misleading
results. In order to provide evidences on the influences of
channels selected using TCR when reporting EEG results using
event-related spectral perturbation analysis, we isolated these
noisy channels as EEG datasets (merging walking with eyes
open and blindfolded conditions) and performed traditional
EEG processing using ICA. The rejected channels generated
60 independent components with residual variance below 15%
located in brain. The power spectrum of these independent
components usually presented jagged pattern for frequencies
below 20 Hz for both eyes open and blindfolded conditions
(Figure 7). In addition, the independent component activation
signals showed temporal patterns coupled to the gait cycle. We
found a median value of 60% of all gait cycles with correlation
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FIGURE 4 | EEG amplitude range for all channels ordered from the lowest to the highest amplitude for two representative subjects while walking with

the eyes open (green lines) and blindfolded (blue lines). We established that channels potentially considerable for rejection were those located at the right side of

the point at which the EEG amplitude of channels start to increase substantially (breaking point).

FIGURE 5 | Spatial representation for each subject of the location of channels marked for rejection from EEG datasets using the template correlation

rejection method.

above the threshold r > 0.4 for the eyes open condition
(Figure 8), whereas for the blindfolded condition this percentage
was reduced to 50%.

Cluster Analysis from Channels Rejected
Using TCR
We used the independent components extracted from channels
rejected using TCR to generate clusters, and subsequently
represent the data using event-related spectral perturbation plots.
We clustered the independent components from all subjects
using a k-means clustering algorithm available in EEGLAB
for the walking with eyes open and blindfolded separately.
We prioritized the clustering by similar power spectrum and
scalp maps and computed event-related spectral perturbations
based on the clustering. The methods for time-warping EEG

epochs, subtracting baseline for each condition and computing
significant differences in relation to baseline frequency are
described in previous work from our research group (Gwin
et al., 2011; Kline et al., 2015). Note that for the ERSP spectrum
visualizations, data were significance masked, meaning all non-
significant regions were set to zero.

An illustrative cluster of independent components generated
from channels rejected using TCR is shown in Figure 9, where 16
components from eight subjects are represented. This cluster has
dipolar properties approximately at the center of the scalp map
(Figure 9A). The power spectrum of the clustered independent
components presented jagged pattern for frequencies below
15Hz, and overall similar curve patterns between walking with
eyes open and blindfolded (Figure 9B). The use of ERSP plots
revealed strong event-related synchronizations immediately after
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FIGURE 6 | Mean (SD) absolute power in different EEG frequency bands from channels rejected using traditional methods (CR1), using the proposed

template correlation rejection (TCR) method and the remaining good channels after rejecting all other marked channels (Good). *Denotes significant

difference in relation to CR1 (p < 0.05); †Denotes significant difference in relation to TCR (p < 0.05).

right and left heel strikes at delta, theta, alpha and beta bands, and
event-related desynchronization during single-support phases
of walking (Figure 9C). Moreover, we found reduced power
changes for the blindfolded condition especially in the second
half of the gait cycle. These results combined suggest that TCR
may be effective in identifying channels carrying motion-related
artifacts that are common to the majority of subjects and that can
introduce undesired power in frequencies below 25Hz.

TCR for Removing Independent
Components Carrying Motion-Related
Artifacts
After rejecting channels marked using TCR from the merged
walking with eyes open and blindfolded EEG datasets, we applied
infomax ICA on these datasets in order to parse EEG signals
into maximally IC processes. The use of TCR for rejecting
channels may not remove all motion-related artifacts, and the
use of this method for identifying components carrying motion-
related artifacts can reduce the influence of these artifacts on
the interpretation of EEG analysis. Our assumption was that
TCR could identify independent components carrying motion-
related amplitude patterns just as performed at the channel level.
Subsequently, these independent components may be classified
as artifacts if their characteristics of power spectrum and scalp
maps do not suggest neural content.

The method consists of applying TCR parts 1 and 2—
explained in sections TCR Part 1—Defining Correlations
and TCR Part 2—Applying Correlation Threshold—on
the independent component activation vectors instead of

EEG channels. For rejecting independent components, we
disregarded the TCR part 3 explained in the section TCR Part
3—Defining Relevant EEG Amplitude, which is related to
computing changes in EEG amplitude. We skipped this step
because the unit for independent components are normalized
and may not be comparable across components. After
identifying potential independent components for rejection,
we evaluated their spectral power and scalp maps following
recent recommendations reported by Chaumon et al. (2015) for
identifying features of neural independent components. These
features were: (1) power peak(s) at physiologically relevant
frequency bands such as alpha, beta or gamma bands and (2)
scalp maps presenting smooth/dipolar topography. In this way,
we aimed at defining if the selected components were neural
rather than trying to evaluate if they were not neural. In the
case of components being evaluated as neural, we did not reject
this component from the EEG dataset. On the other hand, all
other independent components were marked for rejection as
they contained gait-related amplitude patterns and there was no
evidence that they carried neural content.

After applying the TCR method for rejecting channels (part
1) and components presenting gait-related motion artifacts (part
2), we found 4.3 ± 1.8 independent components per subject
for potential rejection. In Figure 10 (upper row), we show the
segmented IC activation traces of a sample subject from the
independent components classified as containing motion-related
amplitude fluctuation (r > 0.4). The scalp maps for all these
components (Figure 10, middle row) did not exhibit the dipolar
pattern expected for neural independent components. On the
other hand, the power spectrum curve (Figure 10, bottom row)
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FIGURE 7 | Scalp maps, power spectrum and independent component activation signals from eight representative independent components

extracted from the channels marked for rejection using the template correlation rejection method (TCR) for both eyes open (blue) and blindfolded

condition (red).

for component 15 showed relevant power increase at the beta
band (20–35 Hz, shaded area), suggesting that this component
carried neural information, and therefore we declined to reject
this component from the EEG dataset. All other components did
not show relevant spectral properties and presented the jagged
pattern below 10Hz, which was also found in the cluster of bad
channels in Figure 9B.

After rejecting bad components, we generated ERP images
shown in Figure 11. These ERP images contain the segmented
walking EEG data from the channel Cz before (Figure 11A)
and after cleaning (Figure 11B) by removing the independent
components identified using the TCR method for an illustrative
subject. A qualitative comparison between the plots suggests
slightly reduced overall EEG amplitude after cleaning. In
addition, there were abrupt EEG amplitude reductions at

approximately 40 and 600 ms before EEG cleaning by
rejecting independent components. Both instances represent
the immediate changes related to right and left initial foot
contact to the treadmill belts, respectively. After rejecting
independent components containing motion-related artifacts,
the same channel Cz showed slightly lower amplitude in the
color map on the right. Moreover, the rejection of the selected
independent components was able to attenuate/remove the
abrupt changes in EEG amplitude immediately after initial foot
contact to the treadmill belts. Despite the success in attenuating
motion-related artifact content, other source of artifacts such as
electromyographic activity and electro-ocular activity may still be
present in our datasets (Gwin et al., 2010).

In order to describe the effect of rejecting independent
components identified using the TCR method in all remaining
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FIGURE 8 | Boxplots of the percentage of gait cycles with correlation r

> 0.4 with respect to the average template gait cycle for the activation

signals of independent components extracted from the channels

marked for rejection using the template correlation rejection method

(TCR). The central red mark is the median, the edges of the box the 25th and

75th percentiles. The whiskers cover approx. 99% of the data.

channels, we analyzed the changes in absolute power from
before- to after-cleaning (Figure 12) using the same methods
described in section Absolute Power of Removed Channels.
We used a 2-way ANOVA for assessing the effects of walking
condition (eyes open vs. blindfolded) and cleaning (before vs.
after cleaning). The significance level was set at p < 0.05. For
presenting the results, we normalized the power as a percentage
of change in relation to the power before rejecting independent
components.

The delta and theta bands showed 4–8% reductions in absolute
power after cleaning. However there was no statistical effect of
cleaning on the absolute power for all frequency bands (p> 0.05).
On the other hand, there was a significant reduction in the delta
absolute power for the blindfolded condition when compared to
the eyes open condition [p < 0.05, F(1, 36)], as well as significant
reduction in the alpha absolute power for the walking with eyes
open condition when compared to the blindfolded condition.

Comparing Neural ICs Extracted with and
without TCR
In order to validate the method, it is important to assure that
the neural content of the EEG dataset is not compromised. We
have selected two homologous independent components from
the dataset analyzed without TCR (e.g., only rejecting channels
by using the traditional channel rejection methods) and the
dataset with TCR processing for each subject. Subsequently,
we compared the changes in power spectrum related to the
processing method. Figure 13 shows illustration of five pairs of
independent components, in which it is possible to observe nearly
identical scalp maps and power spectrum curves between the two
processing methods.

We computed the absolute power from the independent
components using the same methods described in section

Absolute Power of Removed Channels. There was no difference
between the absolute power of components extracted without
applying TCR and when applying TCR for all frequency bands
(Student t-test, Figure 14A p> 0.05). Moreover, for all frequency
bands, the median percent change between the two methods
was below 6% across all investigated independent components
(Figure 14B). These results suggest that the TCR method
does not compromise the identification of relevant/neural
independent components, both in terms of scalp maps and
spectral power.

DISCUSSION

Our results indicated that the template correlation rejection
method was able to identify EEG channels and independent
components that had substantive motion-related artifacts.
Channels marked for rejection this method presented higher
absolute power at the delta band in comparison to good channels.
In addition, independent components generated from these noisy
channels presented oscillations in the spectral power below 20
Hz and activation coupled to the gait cycle. These components
formed a cluster presenting consistent power changes time-
locked to the gait events at frequencies below 25Hz, both
while subjects walked normally or blindfolded. Maintaining
these noisy EEG patterns through the final analysis could
introduce undesired time-locked changes in spectral properties
of event related spectral perturbations when combined with
good channels. The proposed cleaning method would slightly
reduce the EEG power spectrum (1–8%) in relation to EEG
data processed using only traditional channel rejection methods.
The effect was more pronounced in conditions with greater
head displacement when walking normally in comparison to
walking blindfolded. Nonetheless, the content of components
classified as carrying relevant neural information would not
be compromised, as we found no significant changes in the
absolute power of neural components extracted with and without
using the template correlation rejection method. While it is
possible that rejecting the noisy independent components from
the dataset could eliminate true electrocortical sources from the
analysis, it would be the conservative approach to attenuate
motion artifacts in EEG studies. In data from our study, we found
the main influence of motion artifact during human locomotion
came during the abrupt amplitude changes related to initial
heel strike. When analyzing data from other repetitive human
movements, such as cycling, rowing, or hopping, our method
would also serve to reduce the influence of motion dynamics on
scalp EEG artifacts.

Motion-related artifacts in EEG recordings during whole-
body motion may be primarily identified by a higher amplitude
range of noisy channels. Gwin et al. (2010) has shown that
slower walking speed reduce the occurrence of artifacts on low
EEG frequencies (i.e., theta band). However, there is a lack of
normative data with respect to differences in EEG amplitude
between clean stationary EEG data and EEG acquired during
walking. In this study, we addressed this issue by recording
EEG during a rhythmic finger tapping task that evoked motor
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FIGURE 9 | Clustering of channels marked for rejection using the TCR method. In (A), scalp maps of a representative cluster of in-brain independent

components (ICs) presenting dipolar activity at the center of the head across eight subjects. The power spectrum of these clustered independent components (B)

show jagged pattern at frequencies below 10 Hz for both eyes open (green line) and blindfolded conditions (blue line). Analysis of event-related spectral perturbation

(ERSP, C) show broadband spectral modulation of the contained artifacts. There is a consistent and significant event related synchronization and desynchronization

locked to the gait phases from theta to beta bands for both walking conditions.

FIGURE 10 | Properties of independent components (ICs) marked for rejection using the proposed TCR method. The upper row shows the

time-normalized amplitude pattern of the independent components while walking with the eyes open (dark gray and blue lines), and walking blindfolded (light gray and

read lines). The scalp maps (middle row) do not show smooth dipolar topography and the independent components power spectrum (bottom row) do not show clear

power peak at physiologically relevant frequencies. There is an exception for Comp 15 (first column), which show relevant power peak at approximately 25 Hz (orange

shaded area). The presence of the relevant power peak indicated that the component should not be rejected from the EEG dataset.

potentials and comparing it to the EEG recordings during
walking. After rejecting channels using channel rejection method
1 in both conditions, we found that EEG amplitudes during

walking are ∼33% higher than those from stationary recordings.
Approximately 17% of all EEG channels from finger tapping
were above a pre-established threshold of 10 µV, whereas ∼40%
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FIGURE 11 | Color maps illustrating the EEG amplitude (in RMS µV) from approximately 1,300 gait cycles of a representative subject before (A) and

after independent component analysis (ICA) cleaning using independent components selected using the proposed template correlation rejection (TCR) method.

Before cleaning, the averaged EEG amplitude (bottom row, red lines) presented localized EEG reduction immediately after right heel strike. After rejecting components,

the average amplitude pattern (B at the bottom, blue line) presented reduction in amplitude fluctuation related to initial foot contact to the ground.

FIGURE 12 | Mean (SD) percentage of change (% change) in absolute

power calculated at the delta, theta, alpha, beta, and gamma bands

while subjects walked with the eyes open (gray bars) and blindfolded

(blue bars). *Denotes significant differences in relation to walking with eyes

open (p < 0.05).

of all EEG channels during walking were below this threshold.
Therefore, defining a fixed threshold based on the stationary
recording may not be ideal because it may erroneously mark
good channels for rejection. Notably, using a fixed-threshold
criterion can be problematic because replication of results can be
influenced by many factors related to motion (walking/running
speed) as well as differences in the EEG equipment used for
recordings (for instance, differences in reference sites or electrode

impedance can affect overall amplitude values). Nonetheless, we
were able to use a repeatable, objective measurement technique
to successfully determine a breaking point for EEG amplitude
across channels for both walking with eyes open and blindfolded
at the same speed, which can be applied in different motion
patterns. The determination of the breaking point allows to
apply this method in different EEG setups (e.g., different EEG
equipment, number of channels, repeated experiments), while
still maintaining an objective criterion for defining the amplitude
threshold.

Attempts at quantifying and reducingmotion artifacts in scalp
EEG during cyclical motion has been addressed in different ways.
Gwin and co-workers in two studies (Gwin et al., 2010, 2011)
have used a template subtraction method that may reduce the
influence of motion artifacts from independent components.
Onikura et al. (2015) recently proposed a cleaning method
based on the correlation of head accelerometry and individual
independent components. Both these methods achieve some
success, but they also have limitations. The template subtraction
can be deleterious since the template may remove relevant neural
information from the EEG dataset. In the case of Onikura
et al. (2015), the limitation is that head accelerometry is not
correlated uniformly to all EEG channels (Kline et al., 2015),
because the six degree of freedom motion of the head influences
individual EEG channels differently (Kline et al., 2015; Costa
et al., 2016). These limitations emphasize the difficulty in defining
a single ideal method for reducing motion artifacts during
EEG recordings. Regarding spectral analysis, Seeber and co-
workers (Seeber et al., 2015) have created a frequency clustering
method to separate muscle activity artifacts (especially from
neck muscles) from neural activity. Muscle activity is usually
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FIGURE 13 | Scalp maps (A) and power spectrum (B) of independent components extracted from EEG datasets processed without the template correlation

rejection (TCR) and with the TCR method.

broadband, and previous studies have shown motion artifacts
being present in low frequencies (Castermans et al., 2014). Our
study provides evidence that motion-related artifacts may occur
from 4 H to 24 Hz, also occurring even in higher frequencies
between 30 and 80 Hz (Figure 9). Further studies can evaluate

whether frequency clustering method is also feasible to identify
motion-related artifacts during walking.

Nathan and Contreras-Vidal (2016) investigated motion
artifacts during walking by applying artifact subspace
reconstruction for removing artifacts. The authors also
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FIGURE 14 | (A), boxplots of the spectral power of neural independent components extracted from datasets processed using traditional channel rejection (CR1) and

using the TCR method to remove channels and independent components containing motion-related artifacts (TCR). In (B), relative difference in spectral power

between CR1 and TCR for different frequency bands. For each box, the central red mark is the median, the edges of the box the 25th and 75th percentiles. The

whiskers cover approx. 99% of the data. +Denotes samples outside the boxplot limits.

performed wavelet coherence analysis at the delta band (0.1–
4Hz) between one accelerometer and three different EEG
channels for showing the reduced artifact content on these
channels. The authors concluded that motion artifacts during
locomotion are negligible for walking speed below 4.5 km/h (1.25
m/s). It is noteworthy that using a single six degree-of-freedom
accelerometer for validating the success of a cleaning method
may be questionable. EEG recordings throughout different scalp
regions present different acceleration patterns as described in
Kline et al. (2015) and illustrated in our Figure 1B. Moreover,
the focus of the coherence analysis only on the delta band
must be taken into account, as there is no data supporting the
absence of motion artifacts in other higher frequency bands.
Our results have shown that independent components carrying
motion-related artifacts can influence spectral power up to 25
Hz (theta, alpha, and beta bands), and at a lesser extent the
gamma band (>30Hz). Other research groups have suggested

that motion artifacts may be present at frequencies up to 60Hz
(Castermans et al., 2014).

It is important to emphasize that we used an active electrode
EEG system (Biosemi Active Two) and took all precautions
cited by Nathan and co-workers in order to minimize cable
movements and reduce motion artifacts on the EEG recordings.
Nonetheless, we still found a considerable amount of channels
being influenced by motion artifacts. In addition, the use of
artifact subspace reconstruction requires a clean baseline for
identifying noisy sectors of data. Nathan and co-workers do
not mention which type of data were used as baseline, and
reported data of three EEG channels from only three subjects.
The results from Nathan and Contreras-Vidal (2016), may point
to a possible direction for EEG cleaning, but more research is
needed to reinforce the results. Previous studies have shown
that motion artifact is a major to investigate EEG during
locomotion (Castermans et al., 2014; Reis et al., 2014; Kline
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et al., 2015; Snyder et al., 2015; Oliveira et al., 2016a), and
the present results demonstrated that not rejecting channels
carrying motion-related artifacts can influence the results and
interpretations of EEG processing.

There were no differences between neural independent
components extracted with and without using the TCR method.
Therefore, the proposed method may not compromise the
identification of relevant/neural independent components,
both in terms of scalp maps and spectral power. This result
raises a question: What is the relevance of the proposed
cleaning method if it is possible to identify neural components
without applying such method? The TCR method has the
potential to remove channels that can generate misleading
independent components, or add undesired power into
neural components. The channels identified using the TCR
method can generate independent components containing
gait-related motion artifacts (see Figure 7), and removing
these channels may be crucial to assure appropriate
interpretation of electrocortical activity during cyclical
whole-body movements. Therefore, the advantage of using
TCR is the possibility of minimizing the potential inclusion of
misleading components into the EEG data processing and further
interpretations.

Analyzing uncorrupted channels is undoubtedly crucial to
minimize the influences of motion artifacts on the interpretation
of EEG results. We believe that the first action toward this
direction is the identification of channels influenced by motion,
not allowing such channels to be present during independent
components analysis processing. We used a high-density EEG
system with 256 active electrode channels. The rejection of 15–20
channels influenced by motion artifacts may not compromise the
quality of the final EEG dataset or the independent components
extracted from such a high number of remaining channels. The
use of a large number of channels also optimizes the identification
of amplitude breaking points, which is essential for successful
identification of channels containing high amplitudes. On the
other hand, the use of EEG systems equipped with low numbers
of channels (64 or below) may impose a limitation to optimal
use of the TCR, as the rejection of 2–3 neighboring channels can
substantially reduce the acquired information from target brain
areas. Recent investigation has shown that the signal-to-noise
ratio calculated from independent components increases linearly
as a function of the number of recorded EEG channels (Oliveira
et al., 2016a). Therefore, we recommend the use of as many EEG
channels as possible for maximizing the acquisition of relevant
neural data.

The use of TCR for rejecting independent components
initially identifies any independent components containing time-
locked amplitude patterns related to the motion event, and
the rejection of such independent components without further
evaluation can erroneously remove independent components
containing relevant neural information. Recently, Chaumon
et al. (2015) have published a comprehensive guideline
for identifying relevant neural independent components and
artifactual independent components from EEG data recorded
in stationary conditions. After identifying motion-related
independent components in our datasets, we referred to their

description of neural independent components to identify which
independent components should be maintained in the EEG
datasets. To date, there are no guidelines on how to identify
independent components carrying motion-related artifacts. The
present study exemplifies the power spectrum and scalp maps of
independent components carrying motion-related artifacts and
also the event-related spectral perturbation properties of a cluster
of these independent components across multiple subjects. More
investigations describing problematic independent components
in different types of cyclic motion (walking, running, cycling)
in different speed may help establishing the expected pattern of
problematic components.

In the present study we described a novel method for rejecting
channels and components carrying motion-related artifacts from
two walking tasks performed at an identical speed (1.0 m/s). In
addition to normal walking, subjects also walked blindfolded for
inducing changes in walking pattern that could attenuate the
influence of motion artifacts on the EEG recordings. We found
reduced number of gait cycles correlated to an average template
for the independent components extracted from the blindfolded
condition (Figure 8). In addition, we found slightly reduced
time-locked spectral fluctuations during blindfolded walking for
the cluster of motion-related Independent components, as well
as reduced influence of EEG cleaning using these independent
components on the alpha absolute power of EEG channels.
These results indicate TCR can be sensitive to slight changes in
head dynamics caused during different motion conditions, but
more research involving different walking speeds and other type
of cyclical tasks are needed to further consolidate/validate the
usability of this method. Moreover, proper validation procedures
for this type of method requires a ground truth measure, which
is not possible to extract from scalp EEG during tasks not locked
to external events. Recent studies have been exploring phantom
heads to establish ground truth measurement during head
motion (Chowdhury et al., 2014; Oliveira et al., 2016a). These
authors have successfully described the influence of motion-
related artifacts on scalp EEG data. Studies using phantom
heads are relevant, but the use of a limited number of artificial
EEG sources might oversimplify the real conditions of volume
conduction and mixed sources encountered during experimental
EEG recordings. Nonetheless, future studies using phantom
heads may be highly relevant to compare the effectiveness of
different methods dedicated to remove/minimize artifacts from
EEG recorded during walking.

In summary, in this study we proposed the TCR as a
novel method for identifying and rejecting EEG channels
and components carrying motion-related artifacts. The method
used a template correlation basis and was complemented by
subject-specific amplitude breaking point for defining channels
to be rejected. Identification of independent components
required additional evaluation of scalp topography and spectral
power as has been indicated previously (Snyder et al.,
2015). The template correlation rejection identified channels
and components carrying motion-related artifacts, and their
exclusion may reduce the likelihood of mixing artifacts
into the neural independent components. We recommend
the application of this method for EEG datasets recorded
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during human locomotion using high-density EEG systems,
as larger numbers of channels optimize the identification of
amplitude breaking points and provides high resolution of neural
content.
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