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The complexity of basal ganglia (BG) interactions is often condensed into simple models

mainly based on animal data and that present BG in closed-loop cortico-subcortical

circuits of excitatory/inhibitory pathways which analyze the incoming cortical data and

return the processed information to the cortex. This study was aimed at identifying

functional relationships in the BG motor-loop of 24 healthy-subjects who provided

written, informed consent and whose BOLD-activity was recorded by MRI methods. The

analysis of the functional interaction between these centers by correlation techniques

and multiple linear regression showed non-linear relationships which cannot be suitably

addressed with these methods. The multiple correspondence analysis (MCA), an

unsupervised multivariable procedure which can identify non-linear interactions, was

used to study the functional connectivity of BG when subjects were at rest. Linear

methods showed different functional interactions expected according to current BG

models. MCA showed additional functional interactions which were not evident when

using lineal methods. Seven functional configurations of BG were identified with MCA,

two involving the primary motor and somatosensory cortex, one involving the deepest BG

(external-internal globus pallidum, subthalamic nucleus and substantia nigral), one with

the input-output BG centers (putamen and motor thalamus), two linking the input-output

centers with other BG (external pallidum and subthalamic nucleus), and one linking

the external pallidum and the substantia nigral. The results provide evidence that the

non-linear MCA and linear methods are complementary and should be best used in

conjunction to more fully understand the nature of functional connectivity of brain centers.
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INTRODUCTION

Basal ganglia (BG) are composed of a number of interconnected
subcortical centers which receive projections from all cortical
areas and return the processed information to its cortical origin.
The global dynamic of BG is currently estimated based on the
local excitatory/inhibitory interactions of their main centers,
which is a useful strategy to explain some of the functional
disturbances of Parkinson’s disease (PD) and other frequent
neurological disorders. However, closed-loop circuits may have
complex dynamics whose emergence cannot be extrapolated
from the local interactions of their components. Current models
include five parallel cortico-subcortical closed-loops linking the
activity of BG to those of the brain cortex. One of these
cortico-subcortical circuits is the “motor loop,” which is a
circuit composed of neurons projecting from the primary
motor (M1) and somatosensory (S1) cortex to the caudate and
putamen (Put), and from these centers to the external globus
pallidum (GPe), subthalamic nucleus (STN), internal globus
pallidum (GPi), and substantia nigral (SN). Motor information
processed by these centers goes to the anterior thalamus (motor
thalamus; MTal) and then returns to M1/S1. The “motor
loop” is composed of three main components: the direct
pathway (M1-Put-SN/GPi-MTal-M1), the indirect pathway (M1-
Put-GPe-STN-GPi/SN-MTal-M1), and the hyperdirect pathway
(M1-STN-SN/GPi-MTal-M1) (Figure 1A). These feed-forward
circuits have been widely used over the last 20 years to explain
different movement disorders and to justify the beneficial effects
of drugs and surgical therapies in PD (Alexander et al., 1986;
Penney and Young, 1986; Albin et al., 1989; Delong, 1990; Obeso
et al., 2008a,b). However, the finding of a number of subcortical
loops and feed-back circuits (Redgrave et al., 1992; Mchaffie et al.,
2005) suggests that the dynamic for BG could be more complex
than that expected for these feed-forward circuits (Figure 1B). In
addition, BG interactions may be mediated by “crossing centers”
which transfer but do not process information, thus facilitating
the functional interactions of some centers of the closed-loop
circuit which do not have direct structural interconnections
(Rodriguez-Sabate et al., 2015).

Methodological restrictions currently limit the study of the
BG dynamic in humans, with human models of BG being
mainly based on animal data. The most commonly methods
used to study human BG are based on recording the blood-
oxygen-level-dependent (BOLD) signal by magnetic resonance.
Functional magnetic resonance imaging (fMRI) methods use
the increase of the BOLD-signal level to distinguish the BG
involved in particular tasks (centers showing a BOLD-level
increase during the execution of a task are generally considered
as being involved in the task execution). However, fMRI does not
provide information about the functional interaction between
centers. This interaction is better approached by studying the
temporal relationship of the spontaneous fluctuation of their
BOLD-signals (functional connectivity MRI; fcMRI) (Fox and
Raichle, 1986; Fox et al., 1988; Kim and Ugurbil, 1997; Raichle,
1998; Van Dijk et al., 2010). fcMRI has some methodological
restrictions which can be particularly challenging for BG studies.
The limited spatial-resolution of fcMRI hampers the finding

of BOLD-signals representing the smallest BG. This weakness
can be counteracted by: (1) associating the BOLD-images to
high spatial-resolution anatomical images (recorded in the same
session and with the head fixed to the coil), (2) working
with BOLD-signals computed from regions of interest (ROIs)
located in the central portion of each nucleus of each individual
(instead of working with data obtained after averaging functional
images of different subjects), and (3) manually identifying each
BG on a subject-by-subject basis (3D-anatomical images) and
using both internal (e.g., the shape of the nucleus in the high-
resolution MRI) and external (e.g., the anatomical relationship
of the nucleus with neighboring structures) cues. Under these
conditions, the contamination of the BOLD-signal of a center by
those from the neighboring BG may be controlled (Rodriguez-
Sabate et al., 2015). The relatively low time-resolution is another
limitation of fcMRI. The excitatory/inhibitory interactions of BG
(which generally occur with latencies lower than 0.1 s) cannot
be properly identified by fcMRI (whose time-resolution is over
1 s). However, the time-resolution of fcMRI is enough to study
multisecond BOLD-oscillations which also provide information
about the dynamic of large-scale functional networks (Filippov,
2005; Fox and Raichle, 2007; Fox et al., 2009; Rayshubskiy et al.,
2014). The analysis of these very-slow fluctuations has been
mainly performed by correlating BOLD-signals recorded from
different centers, with the Pearson correlation being the most
widely used procedure (Biswal et al., 1995; Fox and Raichle, 2007;
Fox et al., 2007; DiMartino et al., 2008; Treserras et al., 2009; Cole
et al., 2010). The efficacy of the Pearson correlation decreases
in centers with non-linear relationships, a problem which is less
relevant for other methods such as the non-parametric Spearman
correlation, partial correlation coefficient, mutual information,
wavelet correlation coefficient, extended maximal information
coefficient, and coherence methods (Reshef et al., 2011; Su et al.,
2013; Kinney and Atwal, 2014). However, these methods include
centers in a network when they show any relationship with a
particular nucleus selected as a “seed” region. Thus, they perform
pair-wise associations (between the “seed” center and potential
candidates to be included in the network) but not multi-link
associations (between three or more centers). This fact decreases
the sensitivity of these methods to identify networks, particularly
when they are composed of centers which are massively
interconnected by non-linear feed-back interactions. In addition,
they are hypothesis-driven methods which will not identify
networks not predicted by the examiner. The multiple linear
regression may be used to predict the BOLD-activity of a center
(dependent variable) as a result of the BOLD-activity of other
centers selected as predictors (independent variables). However,
this is also a hypothesis-driven method which is less sensitive
with non-linear relationships (non-linear regression methods
such as the generalized linear/non-linear models, multivariate
adaptive regression splines, or the structural equation modeling
present complex interpretations and need of hypothesis-driven
procedures). On the other hand, there are multivariate methods
which can be used to identify massive interacting networks
with “unsupervised” data-driven procedures. This is the case
of the independent component analysis (ICA), a method that
induces a self-organizing clustering of centers according to their
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FIGURE 1 | Connectivity of basal ganglia according to the cortico-subcortical loop (A) and to feedforward-feedback pathways (B). M1, primary motor cortex; S1

somatosensory cortex; Put, putamen; GPe, external globus pallidumN; STN, subthalamic nucleus; GPi, internal globus pallidum; SN, substantia nigral; MTal, motor

thalamus; MTal.

interactions, and which has proved useful to identify cortical
networks (Mckeown and Sejnowski, 1998; Damoiseaux et al.,
2006; Goebel et al., 2006; Fox and Raichle, 2007; Li et al., 2009;
Smith et al., 2009). However, this procedure assumes there are
linear interactions between the centers of the network, a fact
that, as will be shown below, is not very common in human
BG. An alternative to ICA is the data-driven sparse GLM, which
extracts individually adaptive activation patterns more accurately
than spatial and temporal ICA (Lee et al., 2011; Su et al., 2016).
The multiple correspondence analysis (MCA) is introduced here,
which is a data-driven method which can be used to identify
non-linear interactions in categorical data. Although MCA has
been successfully implemented in different disciplines including
psychology and health sciences (Bouilland and Loslever, 1998;
Guinot et al., 2002; Meyer et al., 2004; Ambrogi et al., 2005;
Almeida et al., 2009; Rennie and Roberts, 2009; Pinti et al., 2010;
Avolio et al., 2013; Costa et al., 2013; Sagawa et al., 2013; Ayele
et al., 2014; Touso et al., 2014), it is seldom encountered in
neuroimaging literature. This method was applied here to study
the functional connectivity of BG, centers which have shown
multiple non-linear interactions in both animal and human
studies (Rodriguez et al., 2003a,b; Marceglia et al., 2006; Schroll
and Hamker, 2013).

The initial hypothesis of this work was that the motor-
loop of BG contains several functional networks which may
be identified by studying the time relationship of the slow
BOLD-fluctuations of their main centers with MCA. The first
step was to categorize each BOLD-data as high or low level
(according to its mean value), thus replacing the analogical
BOLD-data by discrete data representing the status of each center
(high activity vs. low activity). MCA showed BG co-activations
of the different BG, revealing functional configurations which
were not detected by pair-wise comparisons (Pearson and
Spearman correlations) or multiple regression analysis. Finally,

the relationship between centers grouped by the MCA was
studied with the correspondence coefficient (CC), an index of co-
activation degree between individual centers of a network, and
which was computed from the Burt table of relative frequencies.

METHODS

Participants
Twenty four right-handed volunteers (12 males and 12
females 24–64 years of age) with no history of neurological or
mental diseases were included in the study (Oldfield, 1971).
MRI studies were performed following recently reported
methods (Rodriguez-Sabate et al., 2015). All procedures
were in accordance with the ethical standards of the 1964
Helsinki declaration, and performed with the approval of the
local Institutional Human Studies Committee of La Laguna
University. All individual participants provided written,
informed consent.

MRI Recording
The involuntary movement of the head during the MRI studies
was prevented by attaching the head to the fixed head-coil of
the MRI equipment. BOLD contrast images (64 × 64 sampling
matrix with brain slices 4-mm thick and 4 × 4 mm voxels in-
plane resolution) were acquired (General ElectricMedical System
3.0 T) in a coronal plane (250 × 250 mm field of view) with
gradient-echo (echo-planar imaging with a repetition time of
1,600 ms; and echo time of 21.6 ms; a flip angle of 90◦). Data
were recorded with subjects at rest (the instruction was “Stop
moving and do not make any particular action”). 180 volumes
were recorded in each subject under these conditions. fMRI data
were co-registered with 3D anatomical images (repetition time
7.6 ms; echo time 1.6 ms; flip angle 12◦; 250 × 250 mm field
of view; 256 × 256 sampling matrix; 1 mm slice thickness and
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1 x 1 mm voxel resolution). A balanced position between the
space vs. time resolution was adapted here for fcMRI studies
to prevent a high spatial resolution from possibly decreasing
the time resolution (1.6 s in this study) and hampering the
identification of functional interactions between BG. As space
resolution affects the construction of ROIs representing the
activity of the smallest BG (e.g., STN), special care was taken
to place each ROI in each subject. Based on a previous work
(Rodriguez-Sabate et al., 2015), ROIs (4 mm isotropic) were
located on anatomical studies (1 mm isotropic voxels) performed
in the same session, with a stable head position so that the
correspondence between the structural and functional images
was not affected. Different structural markers were jointly used
to place each ROI, particularly in the case of the smallest BG.
The volume of the smallest BG is low, particularly in the case
of the subthalamic nucleus. The spatial resolution of the BOLD
signals can be increased by decreasing their time-resolution, a
fact which produces problems in functional connectivity studies.
Thus, we opted for a workable compromise which includes a
spatial resolution of 4 mm and a time resolution of 1.6 s. Of
course, it is not possible to rule out the possible influence of
a partial volume effect which could underestimate the activity
of the smallest centers (such as the subthalamic nucleus) on
the BG dynamic. The functional and anatomical studies were
always obtained in a single session and with the head fixed
in the same position of the field-of-view to facilitate a stable
relationship between each fcMRI voxel (4 × 4 × 4 mm) with the
corresponding 64 structural voxels (1 × 1 × 1 mm) during the
whole study. All data sets were normalized to the Talairach space.

Data Preprocessing
The preprocessing of data (performed with the BrainVoyager
software; version 2.1.2 of BVQX) included a slice scan time
correction (cubic spline), a 3D motion correction (trilinear
interpolation), and a temporal filtering (high-pass GLM-Fourier
filter which removed frequencies below 0.009 Hz). Unwanted
BOLD-correlations produced by coherent fluctuations originated
from residual motion artifacts and physiological signals were
prevented both by restraining the head movements during
the BOLD-signal recording and by “regressing” the recorded
BOLD time-series with “regressors” computed from BOLD
signals simultaneously recorded in the white matter and brain
ventricles (which are largely independent of the neural activity
but which are sensitive to confounding variables including
scanner instabilities, subject motion, respiration, cardiac effects)
(Murphy et al., 2009; Anderson et al., 2011; Saad et al., 2012; Jo
et al., 2013; Power et al., 2014).

Identification of Representative ROIs of
Basal Ganglia
The spatial resolution was established at 4 mm (a higher spatial
resolution induced an undesirable increase of the repetition time
over 1.6 s), in order to reach the time resolution needed to
study the functional connectivity between BG. Although this is
not a high spatial resolution, it proved to be high enough to
study the smallest BG. According to previously reported methods
(Rodriguez-Sabate et al., 2015), particular attention was paid

to identifying representative ROIs of the smallest BG, which
were located on a subject-by-subject basis by considering (1)
the Talairach coordinates, (2) the shape of the nucleus, and
(3) the anatomical relationship of the nucleus with neighboring
structures. All centers were identified in coronal slices located 4–
27 mm posterior to the anterior commissure (Table 1). GPi was
identified ≈6 mm posterior to AC and just above the optic tract.
The putamen zone which receives projections from the somato-
sensorimotor cortex was identified in the postcomisural region
(≈5 mm posterior to AC) (Selemon and Goldman-Rakic, 1985;
Parent, 1990; Haber, 2003; Nambu, 2011). GPe was located ≈3
mm posterior to AC andMTal was located≈11 mm posterior to
AC (5 mm posterior to the GPi). The STN was identified in the
slice where the oculomotor nerve was trapped in the most medial
region of the contact between the pons and cerebral peduncle,
just above a horizontal line crossing the optic tract (10 mm
medial to this tract), and near themedial boundary of the cerebral
peduncle (the STN ROI was small and clearly located within the
nucleus). SN pars compacta is intermixed with SN pars reticulata
in humans and both portions of the SN cannot be clearly
segregated in MRI images. Thus, the ROI of this center included
the whole SN, which was located between the red nucleus and
the cerebral peduncle (22–26 mm posterior to AC). The M1 was
located in the precentral gyrus posterior to the junction of the
superior frontal sulcus with the precentral sulcus, and according
to a previously reported procedure (Rodriguez et al., 2004).
Additional comments about the ROI identification can be found
in previous studies (Rodriguez et al., 2004; Rodriguez-Sabate
et al., 2015, 2016).

Correlation and Multiple Linear Regression
Methods
All the voxels of ROIs of the same center in the right and left
brain sides were grouped together (Gopinath et al., 2011), and
BOLD-values were then normalized according to their mean
value (BOLD-value ∗ 100/mean BOLD-value computed for the
whole recording). Thus, the normalized BOLD-signals fluctuated
around the value 100 in all centers (which facilitates the data
analysis with MCA and the other methods). These normalized

TABLE 1 | Coordinates (normalized to Talairach) and size (number of voxels) of

ROIs of the centers included in the study.

X Y Z Size

Primary somatosensory

cortex

36.0 ± 8.9 −26.7 ± 3.7 51.3 ± 8.0 41.5 ± 12.1

Primary motor cortex 38.4 ± 6.3 −20.3 ± 5.3 49.2 ± 7.1 36.8 ± 11.1

Putamen 27.5 ± 1.5 −5.4 ± 1.5 0.1 ± 0.3 22.8 ± 3.9

External pallidum 15.8 ± 4.8 −2.4 ± 1.1 2.7 ± 2.2 11.2 ± 2.8

Internal pallidum 14.4 ± 2.1 −6.4 ± 1.2 −1.7 ± 1.8 12.2 ± 1.9

Subthalamic nucleus 10.8 ± 1.7 −13.7 ± 2.2 −4.4 ± 2.8 2.3 ± 0.4

Substantia nigra 7.3 ± 1.2 −18.9 ± 1.3 −8.4 ± 2.6 256.2 ± 31.1

Ventral-anterior

thalamus

9.5 ± 1.1 −11.2 ± 1.2 7.2 ± 2.4 29.6 ± 8.8

Values are mean ± standard error.
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values were used to compute the Pearson (r) and Spearman (S)
correlations and the multiple linear regression. The functional
relationship between each center and all the other BG was
initially estimated with multiple linear regression, including the
computation of the regression coefficient (B; partial correlation
of each independent variable with the dependent variable), the
correlation coefficient (R; the degree to which the independent
variables predict the dependent variable), and the coefficient

of determination (R2; an indicator of how well the model fits
the data). The statistical significance for these statistics was
computed with a two-tailed t-test (p < 0.001).

Multiple Correspondence Analysis (MCA)
and Correspondence Coefficient (CC)
The MCA is a multivariate method (Caceres et al., 2010;
Pinti et al., 2010) (Greenacre, 1992, 2010; Grassi and Visentin,
1994) which distributes values of a table of relative frequency
(Burt table) in an n-dimensional space, and then uses the
distance between the variables in each dimension to establish
the similarity degree of variables. Applied to BOLD-signals
representing the activity of the main BG, MCA was used here
to perform an unsupervised (driven by data) identification of
centers with a similar functional connectivity (those showing
co-activation). Thus, MCA is free from assumptions and,
working with categorical data, it may represent linear and
non-linear relationships equally well. These are key advantages
over more traditional techniques which may need linear
relationships between variables and a previous hypothesis about
the possible variable relationships. MCA is not very familiar in
the neuroimaging world and, as far as we know, it has never been
used to analyze fMRI data. Therefore, theMCA terminology used
in this study is defined in the following paragraph, and it can also
be consulted in different reports (Greenacre, 1992; Grassi and
Visentin, 1994; Greenacre, 2010).

Because MCA works with categorical data, the first step was
to categorize the previously normalized BOLD-data (see above
and Figure 2). Bearing in mind that the normalized BOLD-
signals fluctuate around the value 100 (which is the mean value
of the normalized BOLD-signals), the categorization of signals
was performed by replacing the normalized BOLD-data with
the number 1 (high status) if they were higher than 100, and
with the number 0 (low status) if they were lower or equal to
100 (categorized BOLD-signal). The second step was to compute
a contingency table using categorized data. This table had two
columns per BG, one for the low status and the other for the high
status. There was a row for each of the BOLD-points recorded
in the BG of each subject (180 BOLD-points × 8 centers × 24
subjects). Thus, the rows represented the relative status (high-
low) of each center in a particular moment of the MRI recording.
Finally, the frequency of inter-center co-activations was grouped
in the Burt table, which displayed the number of low-low, high-
high, high-low and low-high coincidences between the different
BG. This table was used to compute MCA.

MCA used the frequency distribution provided by the Burt
table to distribute all variables across each of the computed
dimensions (7 dimensions were chosen in the present study),

with variables with the lowest distance being considered as
those with the highest degree of similarity in the corresponding
dimension. The interpretation of the possible meaning of each
dimension was performed using the outliers (variables that
contribute most to the information of a dimension), a possibility
that will be commented on below. The distance between
coordinates in the MCA space was initially computed in a
Euclidean metric and then normalized to a Chi2 metric whose
values ranged between −1 to +1. Two centers showing similar
Chi2 coordinates indicate that they have analogous interactions
with the other BG (a similar probability of high/low status with
the other BG centers). In this way, the MCA grouped centers
according to their functional connectivity with the other BG
(global similarities), a possibility which cannot be performed
by analyzing series of pair-wise correlations or by using the
multiple regression analysis. The MCA is similar to the principal
component analysis but with the advantage that it can be suitably
applied to categorized data obtained from brain centers with
non-linear relationships.

The validity of the MCA was evaluated by different
complementary approaches. The different MCA metric
considered were:

- Inertia which shows the dispersion of data around their center
of gravity G (or centroid) and which is considered as a measure
of information. The term inertia is used by analogy with
the definition in applied mathematics of “moment of inertia,”
which stands for the integral of mass times the squared distance
of the centroids.

- Total inertia which represents the inertia of all BG in all
the dimensions analyzed (it was normalized between 0 -no
information- and 1 -all available information-).

- Accumulated inertia which shows the inertia of each
dimension (all the centers grouped together) accumulated with
the inertia of the lower dimensions. The accumulated inertia of
the highest dimension is the same as the total inertia. Starting
from a 16 × 16 Burt table (8 centers -BG- × 2 states -high and
low-), 16 dimensions could be computed (no. columns -1 +

no. of rows- 1). The aim of MCA is to decrease the number of
dimensions in a manner that retains almost all information (in
other words to reproduce the distances between the row and/or
column points of the Burt table in a lower-dimensional space).
The accumulated inertia was used to select the minimum
number of dimensions necessary to include almost all the
information of the time-series (7 dimensions covered≈95% of
information in this study).

- Relative inertia represents the inertia of each variable in each
dimension (normalized between 0 and 1 which represents all
the information of a variable in all the dimensions). The relative
inertia has also been referred to as “contribution” in MCA
literature.

- The quality of a variable (cosine2) represents the distribution
of the inertia of this variable across dimensions (normalized
between 0 and 1 which represents whole inertia of the variable;
a value lower than 0.1 indicates a poor representation of the
variable in the computed dimensions). The term cosine2 refers
to the fact that this value is also the squared cosine value of the
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FIGURE 2 | Linear and non-linear computing methods for analyzing the normalized and the categorized BOLD-signal.
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angle the point makes with the specific dimension (it may also
be interpreted as the correlation of the respective point with the
respective dimension).

- Eigenvalues represent the relative relevance of each dimension
to the total inertia (it is normalized to 1 which represents
all the information of all the variables in all the dimensions).
The highest eigenvalue was always in the first dimension,
progressively decreasing across the following dimensions. This
variable (together with the accumulated inertia) is commonly
used to select the maximum number of dimensions to be
included in the MCA. Thus, dimensions with an eigenvalue
lower than 0.05 are frequently not considered.

- Outliers are the variables (BG) that contribute most to the
information of each dimension, Outliers were detected by
identifying BG with the highest coordinate values and a
high contribution to the dimension (a high variable quality
and relative inertia). Outliers were used to facilitate the
interpretation of the possible meaning of the dimension.

The MCA computation was performed by the Statistics program
(StatSoft, Tulsa). MCA can identify the centers of a network
(those with a similar functional connectivity), but it does not
provide information about the possible interaction between these
centers. The introduction of individual BG as supplementary
points of the MCA could be used to estimate intra-network
relationships but, after testing this procedure, it did not show
enough clear data to be included in this study. Thus, a
procedure which used the Burt table (bottom-right Figure 2)
to estimate the co-activation probability of particular BG was
introduced (correspondence coefficient; CC). CC represents
the coincidence degree (high-high plus low-low states) vs. anti-
coincidence degree (high-low plus low-high states) of the activity
of two centers. Data were normalized in such a way that
the CC was always between +1 and −1. CC values near +1
indicate a marked co-activation (coincidence of their low-low

and high-high status), and values near −1 indicate a frequent
anti-coincidence (when one center was in a high status the other
was in a low status and vice versa). CC values near 0 indicate
that the status of two BG centers have a random relationship
(points are randomly distributed in the four squares). CC is
similar to the Phi coefficient (also known as the correlation
coefficient of Mathews) but applied to data of the Burt table. The
statistical significance of the CC was estimated by the Chi2 test of
independence.

RESULTS

Table 1 shows the position and size (no. voxels) of ROIs
used to characterize the BOLD activity. Figure 3 shows the
Pearson and Spearman correlations between BG. In this figure,
all correlations showed statistical significance except for those
indicated by the letters “ns.” Thus, M1 and S1 showed a marked
positive correlation between each other and a more moderate
positive correlation with the putamen. M1 and S1 showed a
negative correlation with GPe, STN, and SN. Put showed a
positive correlation with all BG, and with M1 and S1. MTal
showed a positive correlation with BG and a negative correlation
with M1 and S1 (the Pearson correlation with S1 and STN did
not show statistical value). GPe, STN, and SN showed a positive
correlation between one another and a negative correlation with
M1 and S1. GPi showed a positive correlation with the other BG
but not with M1 and S1.

Figure 4 shows the multiple linear regressions of BG, using
one center as dependent variable and the other centers as
independent variables. All the regression equations showed a
significant statistical value, with a correlation coefficient R higher
than 0.35 and a coefficient of determination R2 higher than
0.12. The regression coefficient B showed a significant positive
partial correlation between M1, S1 and Put (see the first three

FIGURE 3 | Pearson and Spearman correlation coefficients for the individual interactions of BG. M1, primary motor cortex; S1, somatosensory cortex; Put, putamen;

GPe, external globus pallidumN; STN, subthalamic nucleus; GPi, internal globus pallidum; SN, substantia nigral; MTal, motor thalamus; MTal.
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FIGURE 4 | Multiple regression analysis of BG interactions. The distribution of residuals (values predicted by the regression equation minus observed values)

regarding values expected according to a normal distribution of residuals (red line) are shown on the right of each regression equation. M1, primary motor cortex; S1,

somatosensory cortex; Put, putamen; GPe, external globus pallidumN; STN, subthalamic nucleus; GPi, internal globus pallidum; SN, substantia nigral; MTal, motor

thalamus; MTal; R, correlation coefficient; R2, coefficient of determination.

equations at the top of Figure 4). Negative partial correlations
were observed between M1-GPe and between S1-STN and S1-
MTal. Put showed a positive relationship with M1, GPe, STN,
GPi, andMTal, and a negative relationship with SN.MTal showed
a positive relationship with Put, GPe, GPi, and SN, and a negative
relationship with M1 and S1. GPe showed a positive relationship
with Put, GPi, and STN, and a negative relationship with M1
and STN. GPi showed a positive relationship with Put, STN,
SN, and MTal. STN showed a positive relationship with S1,
Put, GPe, GPi, and SN. SN showed a positive relationship with
GPe, STN, GPi, and MTal, and a negative relationship with
Put. The analysis of the residuals of the regression equations
(predicted minus observed values) did not show the expected
normal distribution. This fact can be observed in images included

on the right of the equations in Figure 4, Q-Q plots where
the expected normal distribution (plotted as a red line; Y = X
line) and the distribution of residuals (plotted as blue points)
show clear disagreements. This fact, and the curvature of the
distribution of residuals, show non-linear components in the
relationship between most BG. Even under these circumstances,
equations of the multiple linear regression proved to be suitable
for predicting the BOLD-behavior of centers (used as dependent
variables) with the BOLD-behavior of the other centers (used
as independent variables). However, multiple linear regression
does not provide information about the underlying causal
mechanisms (e.g., excitatory/inhibitory interactions between
centers), or about multiple interactions between several centers
(coefficient B of the regression equation represents the partial
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correlation of the corresponding independent variable with
the dependent variable). MCA, a data-driven method which
groups BG according to their co-activations, identified multiple
interactions better.

The MCA identified seven subgroups of BG with similar
functional interactions which could be referred to by different
generic names, including “functional network” and “functional
configuration.” Although the term “functional network” has been
commonly used for centers grouped by other fcMRI methods in
the brain cortex, it may not be the most appropriate term in the
present context. “Functional network” could suggest that centers
are wired by selective pathways, which is not necessarily true
because they can be “indirectly” linked by other centers, which
is more probable in centers which, as occurs in BG, are included
in closed-loop circuits with multiple feed-back interactions

(Figure 1B). In addition, the name “functional network” may
suggest that all centers are normally recruited at the same time
by in-phase fluctuation, which was not always the case here.
The term “functional configuration” (fc) which does not suggest
either direct wiring or simultaneous in-phase recruitment of
centers (a configuration may present both in-phase and anti-
phase association of their high vs. low status) will be used here
to refer to the BG subgroups identified by the MCA.

The eigenvalues which represent the relative relevance of
each dimension to the total inertia decreased from the first to
the seventh dimension. The sum of eigenvalues is 1, and it
progressively decreased from 0.28 in the first dimension to 0.08
in the seventh dimension (Figure 5A). The following dimensions
had an eigenvalue lower than 0.05 and were not considered in
this study. Thus, the accumulated inertia, which shows the inertia

FIGURE 5 | Multiple correspondence analysis (MCA). (A) the eigenvalue (contribution of each dimension to the total inertia; it is normalized to 1 which represents all

the information of all the variables in all the dimensions) and accumulated inertia (inertia of each dimension added to those of lower dimensions; it is normalized to 100

which represents the total inertia of all the variables in all the dimensions). (B) the quality of variables (representation of each variable in the 7 dimensions included in

the study; it is normalized between 0 and 1, values near 0 indicate a poor representation of the variable in the computed dimensions and the values near 1 indicate a

strong representation of the variable in the computed dimensions). (C,F,I) coordinates of centers in the seven dimensions (values are normalized between −1 and 1

following a Chi2 metric). (D,G,J) the relative inertia represents the inertia of each variable in each dimension (normalized between 0 and 1 which represents all the

information of a variable in all the dimensions). (E,H,K) the quality of variables -cosine2- represents the distribution of the inertia of each variable across the seven

dimensions; it is normalized between 0 and 1 which represents the total inertia of the variable in all the dimensions). Values shown in percentages represent the

proportion of relative inertia or quality of each functional configuration with respect all the variables. M1, primary motor cortex; S1, somatosensory cortex; Put,

putamen; GPe, external globus pallidumN; STN, subthalamic nucleus; GPi, internal globus pallidum; SN, substantia nigral; MTal, motor thalamus; MTal.
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of each dimension accumulated with the inertia of the lower
dimensions (shown in Figure 5A as a percentage of total inertia),
increased from 28% (dimension 1) to 94% (dimension7). It is
generally assumed that the number of dimensions analyzed by
MCA methods should be high enough to include almost all the
information concerning the significant interactions, but avoiding
weak relationships which are highly influenced by noise. Thus,
dimensions with an eigenvalue lower than 0.05 are often not
considered. On the other hand, an accumulated inertia higher
than 90 is often enough to detect the main interactions of a
system. Seven dimensions were included in the present study
because they contained more than 90% of all the information
(the seventh dimension showed an accumulated inertia of 94; the
value 100 indicates all the information fluxing in the networks),
with the eigenvalue of the dimension seven being higher than
0.05. Thus, only the first seven dimensions which contained 94%
of all the information were considered in this study (Figure 5B).

GPe, STN, GPi, and SN had similar coordinates in dimension
1 (between +0.6 and +0.7 in a Chi2 metric whose values are
between −1 and +1) (Figure 5I). This was a marked association
which contained 91% of the relative inertia of dimension 1 (the
dimension that contained most of the global inertia) (Figure 5J).

The relative inertia represents the inertia of each dimension
normalized between 0 and 1 (the value 1 indicates all the
information of a variable in all the dimensions). The relative
inertia of each of these variables in dimension 1 was around 0.2,
and the addition of the relative inertia of GPe, STN, GPi, and
SN in this dimension was 0.91, thus showing that most inertia
of dimension 1 (91%) is associated to the interaction of these
BG. This, and the fact that dimension 1 contained most of the
global inertia, suggest that the GPe, STN, GPi, and SN functional
interactions are the most relevant in BG, a fact also supported by
the finding that these interactions represent 51% of the quality
of these variables (Figure 5K). The quality of a variable (which
represents the distribution of its inertia across dimensions and
was normalized between 0 and 1 here; cosine2) was around 0.9 for
any of these four centers in dimension 1. The outliers represent
the centers that contribute most to the information of each
dimension. These results and the fact that GPe, STN, GPi, and
SN have the highest coordinate values in this dimension show
that these centers are the outliers of dimension 1. Because these
centers are the deepest nuclei of BG, their functional aggregation
will be referred to as inner functional configuration (Ifc).

Dimension 2 grouped M1 and S1, centers which are closely
located in coordinates between +0.7 and +0.8 (Figure 5C). The
association of these outliers contained 89% of the relative inertia
of dimension 2 (Figure 5D) and 61% of the quality (cosine2)
(Figure 5E) of these variables. The functional aggregation of
these centers will be referred to as synchronic functional

configuration (Sfc).
Dimension 3 grouped Put and MTal (Figure 5F) in

coordinates between +0.4 and +0.7. This association contained
77% of the relative inertia of dimension 3 (Figure 5G) and 40%
of the quality (Figure 5H) of these variables. Because these are
key centers for the interchange of information between BG
and the brain cortex, their aggregation will be referred to as
input/output functional configuration (IOfc).

Dimension 4 grouped the following four centers: Put, MTal,
GPe, and STN (Figures 5F,I). These centers were subgrouped in
opposite poles, the Put and STN in positive coordinates (between
+0.3 and +0.4) and the MTal and GPe in negative coordinates
(around −0.4). This association contained 90% of the relative
inertia of dimension 4 (Figures 5G,J) and 18% of the quality of
these variables (Figures 5H,K). The relatively low value of the
quality of this group is justified by the parallel involvement of its
centers in other BG configurations. This BG aggregation will be
referred to as input functional configuration (Ifc).

Dimension 5 showedMTal and GPe (Figures 5F,I) in opposite
poles, the MTal in positive coordinates (+0.5) and GPe in
negative coordinates (−0.6). This association contained 72% of
the relative inertia (Figures 5G,J) of dimension 5 and 29% of the
quality of these variables (Figures 5H,K). This aggregation will
be referred to as output functional configuration (Ofc).

Dimension 6 showed M1 and S1 in opposite poles
(Figure 5C), the S1 in positive coordinates (around +0.5) and
M1 in negative coordinates (around −0.5). This association
contained 68% of the relative inertia (Figure 5D) of dimension
6 and 23% of the quality of these variables (Figure 5E). Thus,
most of the quality of M1 and S1 (84%) was distributed between
the dimensions 2 (61%) and 6 (23%). Because these centers were
aggregated in opposite poles of dimension 6, their functional
grouping will be referred to as diachronic cortical functional

configuration (DCfc).
Finally, dimension 7 displayed SN and GPi in opposite poles

(Figure 5I), the SN in positive coordinates (+0.4) and the GPi
in negative coordinates (−0.5). This association contained 58%
of the relative inertia of dimension 7 (Figure 5J) and 21% of
the quality of these variables (Figure 5K), which considering the
relatively low eigenvalue of this dimension and the involvement
of both centers in other network, suggest that the interaction of
these centers shown by dimension 7 is weak. Because the main
pathways of SN and GPi go to MTal (the main output center
of BG) and both centers were observed in opposite poles, this
grouping will be referred to as alternating output functional

configuration (AOfc).
Thus, seven BG functional configurations were identified by

MCA, one per dimension (see Figures 6B,E,H). Although all
these configurations showed enough inertia and quality to be
clearly identified, some of them present a more marked influence
on the global dynamic of BG than others (ITfc, SCfc, and IOfc had
most of the relative inertia of the dimensions with the highest
eigenvalues). Another interesting fact was finding different BG
in more than one functional configuration, which is particularly
relevant in the case of the MTal, this center was functionally
linked to three different aggregations (IOfc, Ifc, and Ofc).

The analysis of the Burt table with the CC showed relevant
relationships between some particular BG. M1 and S1 showed
a positive CC between both and between each of them and
the Put. M1 and S1 showed a negative CC between with all
the other BG except for the GPi (Figures 6A,C). Put showed a
positive CC with all the other BG and, to a lesser but significant
degree, with the S1 and M1 (Figure 6D). MTal showed a positive
CC with all the other BG and a negative CC with M1 and S1
(Figure 6F). Similarly, the GPe (Figure 6G), SN (Figure 6I), and
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STN (Figure 6J) showed a positive CC with all the other BG
and a negative CC with S1 and M1. Put showed a positive CC
with all the other BG and a not significant CC with S1 and M1
(Figure 6K).

DISCUSSION

MCA of categorized BOLD-signals recorded under resting-
state conditions proved to be useful for identifying functional
configurations in the motor circuit of BG, even when
these centers showed evident non-linear interactions. This
unsupervised procedure identified seven configurations, SCfc
and DCfc (includingM1 and S1), IOfc (Put andMTal), ITfc (GPe,
STN, GPi, and SN), Ifc (MTal, Put, STN, andGPe), Ofc (MTal and
GPe), and AOfc (SN and GPi). The CC, Pearson and Spearman
correlations, and multiple linear regression provided additional
information which was useful to understand the interaction of
these centers.

Some Methodological Considerations
MCA is an extension of principal component analysis whose
origin can be traced to the early work of Karl Pearson at the
beginning of the twentieth century and whose modern version
came from the 1960s in France (analyse des données of Jean-
Paul BenzécRi). It is also known as reciprocal averaging, optimal
scaling, optimal scoring and homogeneity analysis and, as far
as we know, it has never been used to study the functional
connectivity of the brain with fMRI data. MCA exhibited some
advantages over methods commonly used to study cortical
networks but whose value decreases when studying centers
massively inter-connected by closed-loop feed-back circuits such
as those of BG. Because the time-resolution of MRI is 1–2 s, and
most neuronal interactions occur with millisecond latencies, the
usefulness of fcMRI to study high-speed neuronal interactions is
limited. However, very-slow BOLD fluctuations are also useful to
identify the centers involved in a network (Filippov, 2005; Fox
and Raichle, 2007; Fox et al., 2009; Rayshubskiy et al., 2014),
with the cross-correlation of very-slow BOLD fluctuations being
the most extensively used method (Biswal et al., 1995). This
and other analogous procedures identify a network‘s centers
as those showing in-phase fluctuations with a center initially
selected as the keymember of the network (“seed” center) (Reshef
et al., 2011; Su et al., 2013; Kinney and Atwal, 2014). Since
only center couples are computed at the same time (a candidate
center vs. the seed center), the multi-link between three or
more centers cannot be detected, which limits the sensitivity of
these methods to study networks with massive interconnections.
An important feature of MCA is that its multivariate nature
can reveal complex interactions between a group of centers
which cannot be detected by pair-wise comparisons. In addition,
correlation methods are hypothesis-driven procedures whose
results are dependent on the examiner’s expectations, which bias
the finding of new networks and leaving previously unsuspected
networks undiscovered. The ICA (Goebel et al., 2006; Meindl
et al., 2010), clustering analysis (Li et al., 2009), and fuzzy
(Windischberger et al., 2003) or hierarchical (Cordes et al.,
2002) clustering analysis are data-driven methods able to identify

networks without using prior information or assumed models.
MCA is similar to principal component analysis but whereas
this method extracts the variables explaining the largest amount
of variance in the data set, the focus of MCA is to examine
the associations among variables, which is essentially the aim
in this study (to find associations among BG). Cluster analysis
discovers whether different variables are related to one other,
whereas MCA goes a step further to explain how variables
(BG) are related. In addition, these multivariate techniques work
with analogical BOLD-oscillations often containing non-linear
components which may decrease their sensitivity (Mckeown
and Sejnowski, 1998). MCA is less vulnerable to the effect of
noise and non-linear activity because it works with categorical
data (analogic BOLD-signals were replaced by discrete values
representing the high-activity vs. low-activity status), and not
with the continuous analogic BOLD-values. This is similar to that
performed by digital devices which substitute analogic signals
(which are more vulnerable to noisy fluctuations and non-linear
influences) by discrete values (0 when analogic values are under
a threshold level and 1 when they are over a threshold level).
Thus, MCA categorized BOLD activity in two states, the low-
states representing the lowest values of the BOLD signal which
are presumably associated to a low metabolic rate and neuronal
activity, and a high-state whichmay represent highmetabolic rate
and neuronal activity. What the MCA approach does is identify
the time-coincidence of low-low and high-high status between
centers and of low-high and high-low status between centers. In
other words, the MCA approach identifies centers whose activity
coincides in time (which are involved in the same functional
network) and centers whose activity never coincides in time
(which are involved in alternative networks never recruited at the
same time). Similarly, other methods also use the BOLD time-
coincidence to identify the centers of the functional networks,
but often working with the analogical data of the BOLD signal.
At the end of the process all the functional connectivity methods
arrive at a “binary” conclusion regarding the centers (they are
activated together and belong to the same network or they are not
activated together and belong to different networks). A difference
between MCA and other functional connectivity methods is that
MCA binarization takes place at the beginning of the process
(thus decreasing the influence of noise and non-linear behavior
on the identification of networks) whereas binarization in most
of the other methods occurs at the end of the process and when
conclusions are being made (“being or not being” centers of a
network). In addition, MCA is a non-parametric statistic and
does not make any distributional assumptions (Greenacre, 1992,
2010; Grassi and Visentin, 1994; Caceres et al., 2010; Pinti et al.,
2010). These advantages could be particularly relevant when the
centers of the network present a complex non-linear dynamic as
that found in BG (see Figure 4). In any case, it could be of interest
to compare the behavior of other multivariate methods (e.g.,
ICA and clustering techniques) with that of MCA, a comparison
that could be better performed in data obtained from brain
regions simpler than BG and where the expected results could
be more evident (there is no obvious procedure to quantify the
relative selectivity and sensitivity of each method). As MCA
is not an inferential method, the additional use of inferential
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FIGURE 6 | Correspondence coefficient (CC) and functional configurations identified by the multiple correspondence analysis. (A,C,D,F,G,I–K) show the CC between

a center (underlined at the top of each figure) and all the other centers (indicated at the bottom of each figure). (B,E,H) Show the functional configurations identified by

the MCA, each with the color indicated at the bottom of the figure and containing the name of the centers involved (in red color for centers found in positive

coordinates and in blue color for centers found in negative coordinates). M1, primary motor cortex; S1, somatosensory cortex; Put, putamen; GPe, external globus

pallidumN; STN, subthalamic nucleus; GPi, internal globus pallidum; SN, substantia nigral; MTal, motor thalamus; MTal.
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procedures (such as the CC proposed here and the Pearson and
Spearman correlation and the multiple linear regression) may
provide complementary information to understand the nature of
the functional networks.

Functional Meaning of MCA Results
Certain key features can help to interpret the factorial maps
provided by MCA. Points near the origin (coordinates near
to 0), or those with a low relative inertia or quality, have an
undifferentiated profile and do not essentially contribute to the
information contained in a particular dimension. Points with
both a high absolute coordinate value and a high contribution
to the dimension (relative inertia) can be considered as suitable
outliers to interpret the meaning of the dimension. Points of a
cloud (group of BG in this study) situated far from the origin but
close to each other (in similar positive or negative coordinates)
present in-phase fluctuations of their functional status (with
their high and low status coinciding in time), and have similar
profiles of interaction with the other centers (in-phase with
centers located in the same positive or negative axis and in anti-
phase with centers located in regions of the dimension with the
opposite sign). Points of a cloud situated far from the origin but
in opposite poles of the axis (positive vs. negative coordinates
of the dimension) present anti-phase fluctuations between one
another and opposing interaction with the other centers. Bearing
these considerations in mind, MCA showed seven functional
configurations in BG, a term which indicates the link between
their On or Off activity, but which does not necessary imply their
co-activation (there could be a time-association of the activation
of a center and the deactivation of another) or the existence of
direct wiring between them (they can be functional linked by
other centers).

The Inner Functional Configuration (Ifc)
The highest inertia (information) was found in dimension 1,
which showed an eigenvalue two-fold higher than any of the
other dimensions. GPe, STN, GPi, and SN were grouped together
in a small region of dimension 1. Because of their marked spatial
proximity and because together they accounted for more than
90% of the relative inertia of the dimension 1, these centers can
be considered as members of a single configuration (IFc) and as
outliers of the dimension. The marked proximity of IFc centers
in the same pole of the axis (positive coordinates) suggests that
the four centers have in-phase fluctuations of their functional
high/low status, and a similar profile of interaction with the
other centers. This possibility was also supported by the CC and
the correlation methods, which showed a high positive CC, and
high Pearson and Spearman coefficients between the four Ifc
centers. These facts also suggest a marked in-phase oscillation of
the four centers. Although the Put-MTal and M1-S1 were also
grouped in dimension 1, neither their low coordinates nor their
low relative inertia and quality, suggest that these groupings are
outliers of dimension 1. Put and MTal were located in the same
pole (positive), and M1 and S1 in the opposite pole (negative),
which suggests that GPe, STN, GPi, and SN have an in-phase
fluctuation with Put and MTal, and an anti-phase fluctuation
with M1 and S1. This possibility was also suggested by the

CC, and the Pearson and Spearman correlations, which showed
positive coefficients between the four IFc centers and the MTal
and Put, and negative coefficients between the four IFc centers
and M1 or S1. This congruency did not always reach statistical
value because these tests do not have the same sensitivity (the
disagreements of the Pearson correlation are probably due to
its lower sensitivity for non-linear interactions). In any case,
M1/S1 and MTal/Put “clouds” were later found to be key centers
of the functional configurations identified in dimensions 2 and
3 respectively, where their respective groupings presented a
much higher inertia and could be better typified. The equations
provided by multiple linear regression also agreed with the
MCA results (bottom Figure 4). However, these equations do not
segregate the interaction of each center in each dimension which
could explain some of the disagreements. Although GPe-STN
and SN-Put had negative partial correlations which cannot be
explained by the interaction of these centers in the Ifc, they could
be justified by their interaction in the functional configurations
which will be commented on below.

In summary, dimension 1 identified a functional
configuration composed of four centers (GPe, STN, GPi,
and SN) which fluctuated in phase with MTal and Put and in
anti-phase with M1 and S1. The Ifc was found in the dimension
with the highest inertia, which suggests that GPe-STN-GPi-SN
interactions within this functional configuration prevail over the
other interactions which most of these centers presented in other
dimensions and functional configurations (e.g., in dimensions
4, 5, and 7). Because the four centers of the Ifc are those located
deepest in the BG circuit, their functional aggregation in this
dimension was referred to as “internal functional configuration.”
The position of GPe/STN/GPi/SN in dimension 1 suggests that
the deepest BG (Ifc) act in direct synchrony with the input/output
centers of BG (Put/MTal) and in opposite synchrony with the
cortical areas involved in the motor circuit (M1/S1). It goes
without saying that the interactions of these centers in the other
functional configurations identified by MCA also need to be
considered.

The Synchronic (SCfc) and Diachronic
(DCfc) Cortical Functional Configurations
M1 and S1 were grouped in dimension 2 where both cortical
areas were located in positive coordinates (SCfc), and dimension
6 where S1 was found in positive and M1 in negative coordinates
(DCfc). M1 and S1 were clearly outliers of dimension 2, with
coordinates near +0.8 and high values of relative inertia (≈90%)
and quality (≈60%). The close proximity of M1 and S1 indicates
their in-phase fluctuation and suggests a similar interaction
of both cortical centers with BG. The in-phase fluctuation of
M1 and S1 was also supported by CC, Pearson and Spearman
correlations, and the partial correlation (B in multiple linear
regressions). The location of Put in positive regions of dimension
2 suggests that this BG has in-phase oscillations with both cortical
areas, and this possibility is also supported by CC, Pearson, and
Spearman correlations and the partial correlation.

On the other hand, the location of M1 and S1 in opposite
poles of dimension 6 suggests that these cortical areas may also
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present a slight anti-phase activity. This antagonistic behavior
was not reflected in the results provided by the other methods
which clearly showed the in-phase M1-S1 relationship expected
according to SCfc but not the anti-phase relationship expected
according to DCfc. This difference is associated to the higher
eigenvalue of dimension 2 with respect to dimension 6, together
with the high relative inertia (≈90%) and quality (≈90%)
of SCfc compared to the relative inertia (≈68%) and quality
(≈23%) of DCfc. As commented above, MCA considers all
interactions at the same time, segregating different interactions in
different dimensions, a fact that increases the sensitivity of MCA
compared to other methods based on pair-wise associations
which only detect the predominant relationships. The multiple
regression equations suggest that the opposing coordinates of
M1 and S1 in dimension 6 can be associated to their different
interactions with the GPe, STN, and MTal. Thus, the regression
equations showed an inverse relationship of M1 with GPe and of
S1 with STN and MTal, differences which were slight (B < 0.7)
but significant, and which may be the basis for DCfc.

Thus, M1 and S1 seem to be involved in two different
functional configurations, one showing an in-phase hard-
interaction (SCfc) and the other showing an anti-phase weak-
interaction (DCfc). The weak interaction undetected by CC
and correlation methods could be identified by multiple linear
regression because this method studies the interaction between
individual centers after isolating them from the influence of
the other centers (the regression coefficient B in the regression
equation represents the partial correlation of each independent
variable with the dependent variable after controlling for all the
other independent variables). Thus, multiple regression may be
a suitable complementary approach for the post-hoc analyzing of
interactions identified by MCA. The positive B-value in the M1
and S1 regression equations suggests that these cortical centers
are frequently co-activated (perhaps bymeans of massive cortico-
cortical connections). The positive B-value of Put in the S1 and
M1 regression equations suggests that both cortical centers are
co-activated with the Put (perhaps by means of the massive
cortico-putaminal pathway whereby cortical information arrives
at BG). The inverse relationship observed between the M1
and S1 and most BG suggests that cortical and subcortical
networks may be recruited in an alternating way, with the M1/S1
processing (perhaps in connection with other cortical structures)
and sending information to the Put in the first step, and then
waiting (low-activity status) until the BG return their response to
the cortex across the MTal. As commented above, this possibility
was also suggested by the ITfc of dimension 1. In this way, the
M1/S1 and BG could present alternating activations similar to
those reported for M1/S1 and other cortical regions such as those
involved in the brain’s default network (Fox and Raichle, 2007;
Buckner et al., 2008; Raichle, 2009).

The Input (Ifc), Output (Ofc) and
Input/Output (IOfc) Functional
Configurations
Dimension 3 grouped the main input (Put) and output (MTal)
centers of BG (IOfc). Both centers were located together in

the positive pole of dimension 3, suggesting their in-phase co-
activation. This possibility is also supported by the CC, the
correlation methods and the partial correlation of multiple
regression. Put was the outlier of dimension 3, where it had
the highest coordinate, relative inertia and quality values. Put
displayed a clear in-phase association to MTal (both with positive
coordinates) and a less evident anti-phase association with STN,
GPi, and SN (with negative coordinates) in the IOfc. The relative
inertia and quality was much higher for Put and MTal than
for STN, GPi, and SN, suggesting that the Put-MTal in-phase
link has a clear role in IOfc, and that the Put vs. STN/GPi/SN
anti-phase link is weak or irrelevant. The possible anti-phase
associations between Put and STN/GPi/SN cannot be clarified
by correlation methods because these centers are also involved
in other configurations (MTal in Ifc and Ofc; STN in Ifc; GPi in
AOfc; SN in AOfc), a distinction which is not considered in these
other methods.

Ifc showed the MTal and GPe in negative coordinates and the
Put and STN in positive coordinates. This distribution suggests
an anti-phase relationship between the output (MTal projections
to the cortex) and input (cortical projections to the Put and
STN) centers of BG. GPe showed an anti-phase link with the
two other centers of the indirect pathway (see Figure 1A). The
inhibitory projections which connect these centers (GABAergic
projections from Put to GPe and fromGPe to STN) could explain
these anti-phase links, the high activity of Put decreasing the
GPe activity and, in a second step, increasing the STN activity
(now released from the GPe inhibition). However, as can be
seen in Figure 1B, Put, GPe and STN display a complex inter-
connectivity which, together with the possible “indirect” linking
of BG by “crossing centers,” guard against simplistic explanatory
hypothesis. The functional connectivity between GPe and MTal
is an example of how simple explanations based on the structural
connections of centers are not always appropriate. These centers
showed an in-phase link in dimension 4 (both were in the
negative pole) and an anti-phase link in dimension 5 (MTal in
the positive and GPe in the negative pole), even though there
are no significant pathways connecting these centers. GPe and
MTal showed positive CC and correlation coefficients, which
could be linked to their in-phase involvement in the Ifc. In
this case, the anti-phase GPe-MTal relationship indicated by
the Ofc was undetected by the correlation procedures and
CC, methods which working with pair-wise associations cannot
identify the simultaneous (and perhaps competitive) interactions
between multiple centers (the intensive interaction obscuring
slight interactions). Although multiple regression may help to
characterize the interaction between individual BG, the efficacy
of the partial correlation computed by this method decreases
when some centers of the network are not included in the
equation (partial correlations are only “controlled” by the
other independent variables of the equation), and when the
centers present multiple non-linear interactions. The MTal is an
example of this fact, showing multiple non-linear associations
in different functional configurations (IOfc, Ifc, Ofc). The
non-linearity of MTal interactions was shown by both the
distribution of residuals of the multiple linear regression, and
by the fact that the Spearman coefficient (less sensitive than the
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parametric correlation but not influenced by non-linearity) was
always much higher than the Pearson coefficient (whose high
sensitivity decreases in non-linear relationships) (see MTal in
Figure 3). The partial correlation of multiple linear regression
is more sensitive than both correlation methods but, because
it also works with pair-wise associations, it cannot identify
multiple interactions (particularly when they present non-linear
components) as the MCA do. MCA can identify groups of
multiple interacting centers in functional configurations even
when interactions present non-linear components. CC (together
with multiple regression and the Spearman correlation methods)
are useful to estimate the interaction between the components of
configurations identified by MCA.

The Alternating Output Functional
Configurations (AOfc)
ACfc showed a functional GPi-SN link (ACfc) which accounted
for 58% of the inertia of dimension 7 (Figure 5J) and 20%
of the quality of all centers (Figure 5K). Bearing in mind
that this dimension had the lowest eigenvalue, the AOfc
should be considered as representing a weak (but significant)
functional association between GPi and SN. The location of their
coordinates (positive for SN and negative for GPi) suggests that
these centers may be activated in an alternating way (recruited
in anti-phase), displaying some different interactions with the
other BG. SN and GPi showed some differences in the CC
(Figures 6I,K) and in the Pearson and Spearman correlations
(Figure 3) with S1 and M1 (negative relationships for the SN and
no significant linking for GPi), suggesting a different functional
connectivity of GPi and SN with the somatosensory and motor
cortex. AlthoughGPi and SN are frequently considered as a single
entity in BG models (Albin et al., 1989; Alexander and Crutcher,
1990; Delong, 1990; Tanibuchi et al., 2009), there are biochemical
(Windels et al., 2000; Kliem et al., 2007, 2010), odological (Deniau
et al., 1982; Nakanishi et al., 1991; Parent et al., 1999; Mailly et al.,
2003), and electrophysiological (Wichmann et al., 1999; Kaneda
et al., 2005; Kliem et al., 2010; Lafreniere-Roula et al., 2010) data
suggesting functional differences between them (Chastan et al.,
2009; Nambu, 2011).

The Functional Organization of BG
According to the MCA
The high complexity of BG interactions is often condensed
into simple models that facilitate the understanding of the
BG behavior. These models often assume that BG are wired
by closed-loop circuits whose excitatory/inhibitory pathways
process the incoming cortical information and return it to the
brain cortex. Due to methodological restrictions, BG models
are mainly based on animal data extrapolated to the human
brain. However, there are marked differences between the
human and animal BG which hamper the data extrapolation.
In addition, a number of subcortical loops and feed-forward
circuits little known in humans are often not appropriately
included in BG models. All these facts, together with the non-
linear complex behavior of their centers, are hampering getting
to the bottom of the human BG dynamic, and these obstacles
began to be overcome with the use of new imaging methods
and analytical procedures (Fox and Raichle, 2007; Shimony

et al., 2009; Smith et al., 2009). In the case of BG, the analysis
of the BOLD-signal of ROIs of their main centers with non-
linear multivariable methods may help to unravel the functional
network of these centers in humans. MCA of BOLD-signals
have obvious limitations but also clear advantages which have
facilitated the study of the functional configurations of themotor-
loop of the human BG. MCA is a visualization tool which
has been successfully applied in many areas such as medicine,
psychology, sociology and geology but which is based on the
study of plots and not on statistical tests (the significance of
association is tested by the Chi-square test but this test provides
no information as to which the significant individual associations
are between row-column pairs of the contingence table). Thus,
MCA shows the variables (BG) that are related but not what
their relationship is. Because MCA dimensions are empirically
derived, the validation of BG networks proposed here needs
new studies aimed at replicating present data and at supporting
their interpretation. Although the interaction between BG has
clear non-linear components, linear methods working with
continuous analogic data have also proved to be highly sensitive
to identifying functional interactions between BG. Thus, to more
fully understand the nature of functional connectivity of brain
regions, MCA should be used in conjunction with these methods
rather than in place of them.

CONCLUSIONS

In summary, evidence is provided here of non-linear components
in the functional interaction of most BG, a fact not always
considered in BG models. Evidence is also provided showing
massive interaction between most BG, a fact suggested by
structural data but whose actual relevance in the human brain
is difficult to assess by traditional methods. MCA, complemented
by CC, correlation methods and the multiple linear regression,
showed seven functional configurations of the BG here. Many
BG operate in different configurations, suggesting that each
BG may perform different functions depending on the network
involved, and that networks more than centers are the basic
unit of BG activity. Basic questions about the functional
configurations of BG need specific studies. Are these seven
functional configurations alternating ways for BG activity (each
configuration being recruited in a serial way) or could they act
in parallel (with some centers being simultaneously engaged to
different configurations)? Are the functional configurations of
BG dependent on the task which is being performed or are
all configurations continuously activated in any circumstance?
How do the BG configurations change in Parkinson’s disease
and other BG disorders? Some of these questions are presently
being considered in our laboratory. The initial aim of this study
was to test whether MCA could be used to study functional
connectivity of brain centers during resting. Thus, MCA was
applied to BOLD images of a complex network (BG) obtained
during resting in non-selected persons which may represent
the healthy population. Present studies in our laboratory are
considering possible changes of MCA connectivity associated to
aging, sex, BG damage and the task performed during the BOLD
recording. In addition, MCA may be applied to the full parceling
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of the cortical surface, which allows the study of other cortico-
subcortical networks of BG. The methodological development
of MCA application to imaging studies could facilitate the
application of MCA to all boxels of brain images, which could
be particularly useful in the study of cortical networks and for
comparing MCA with other functional connectivity methods.
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