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Speech-in-noise (SIN) perception is a complex cognitive skill that affects social,

vocational, and educational activities. Poor SIN ability particularly affects young and

elderly populations, yet varies considerably even among healthy young adults with normal

hearing. Although SIN skills are known to be influenced by top-down processes that

can selectively enhance lower-level sound representations, the complementary role of

feed-forward mechanisms and their relationship to musical training is poorly understood.

Using a paradigm that minimizes the main top-down factors that have been implicated in

SIN performance such as working memory, we aimed to better understand how robust

encoding of periodicity in the auditory system (as measured by the frequency-following

response) contributes to SIN perception. Using magnetoencephalograpy, we found that

the strength of encoding at the fundamental frequency in the brainstem, thalamus, and

cortex is correlated with SIN accuracy. The amplitude of the slower cortical P2 wave was

previously also shown to be related to SIN accuracy and FFR strength; we use MEG

source localization to show that the P2 wave originates in a temporal region anterior

to that of the cortical FFR. We also confirm that the observed enhancements were

related to the extent and timing of musicianship. These results are consistent with the

hypothesis that basic feed-forward sound encoding affects SIN perception by providing

better information to later processing stages, and that modifying this process may be

one mechanism through which musical training might enhance the auditory networks

that subserve both musical and language functions.

Keywords: frequency-following response, speech-in-noise, magnetoencephalography, electroencephalography,

neuroplasticity, auditory perception, inter-individual variability, musical training

INTRODUCTION

Understanding the neural bases of good speech-in-noise (SIN) perception during development,
adulthood, and into old age is both clinically and scientifically important. However, it is challenging
due to the complexity of the skill, which can be considered as a special case of auditory scene
analysis, and can involve multiple cognitive processes depending on the information that is offered
including spatial location, spectral and temporal regularity, and modulation (Moore and Gockel,
2002; Pressnitzer et al., 2011), and can be aided by visual cues (Suied et al., 2009), by predictions
formed with the motor system (Du et al., 2014), and based on prior knowledge such as of language
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(Pickering and Garrod, 2007; Golestani et al., 2009) that can
be used to constrain the interpretation of noisy information
(Bendixen, 2014). The contribution of the fidelity with which
an individual encodes various sound properties, including
periodicity, which varies according to a variety of life experiences
(e.g., musical experience Anderson et al., 2013a) is not yet clear.

One means of observing the inter-individual differences in
how people encode periodic characteristics of sound is the
frequency-following response (FFR), an evoked response that is
an index of the temporal representation of periodic sound in the
brainstem (Chandrasekaran and Kraus, 2010; Skoe and Kraus,
2010), thalamus, and auditory cortex (Coffey et al., 2016b,c).
Differences in the strength and fidelity of the fundamental
frequency (f0) of the FFR have been linked to SIN perception
such that increased FFR amplitude is associated with better
performance (reviewed in Du et al., 2011, see also Parbery-Clark
et al., 2009a; Anderson et al., 2012). However, enhancements and
deficits of neural correlates that are related to SIN perception are
most consistently observed either when the FFR is measured in
very challenging listening conditions (e.g., Parbery-Clark et al.,
2009b), in the degree of degradation of the FFR signal between
quiet and noisy conditions (e.g., Cunningham et al., 2001;
Parbery-Clark et al., 2011a; Song et al., 2011), or in the magnitude
of enhancement that is conferred by predictability within a sound
stream (e.g., Parbery-Clark et al., 2011c). f0 representation in the
FFR may be enhanced by training (Song et al., 2008, 2012) and is
often observed to be stronger among musicians even to sounds
presented in silence (e.g., Musacchia et al., 2007), suggesting that
learning mechanisms related to identifying task-relevant features
and possibly attention might act to bias and enhance incoming
acoustic information and suppress noise (Suga, 2012).

However, a clear picture has not yet emerged (Coffey et al.,
2017). It is unclear if the sometimes-observed relationship
between the FFR and SIN is due only to better top-down
mechanisms such as better stream segregation (Başkent and
Gaudrain, 2016) or selective auditory attention (Parbery-Clark
et al., 2011b; Song et al., 2011; Lehmann and Schönwiesner,
2014), or if enhanced feed-forward stimulus encoding also
plays a role. Here, we aimed to better understand the neural
bases of periodicity coding in the brain under optimal listening
conditions to understand its relevance to SIN; if basic encoding
of sound quality in silence is important for more complex tasks
such as hearing in noise, then we predict that there should
be a relationship between FFR measured in silence and SIN
performance. A secondary question we address is whether this
relationship might be enhanced by musicianship.

Musicians are thought to have both enhanced bottom-up
(Musacchia et al., 2007; Bidelman and Weiss, 2014) and top-
down (Strait et al., 2010; Kraus et al., 2012) processing of sound.
Because SIN perception and measures of basic sound encoding
are related to musicianship, musical training has been proposed
as a means of ameliorating poor SIN performance (reviewed
in: Alain et al., 2014). Musical training places high demands
on sensory, motor, and cognitive processing mechanisms that
overlap between music and speech perception, and offers
extensive repetition and emotional reward, which could stimulate
auditory system enhancements that in turn impact speech

processing (Patel, 2014). Several longitudinal studies support
a causal relationship between musical training and SIN skills
(Tierney et al., 2013; Kraus et al., 2014; Slater et al., 2015),
although it is difficult to maintain full, experimental control over
naturalistic training studies (Evans et al., 2014). A number of
cross-sectional studies have also reported a musician advantage
in SIN perception (Parbery-Clark et al., 2009a,b, 2011b, 2012b;
Strait et al., 2012; Zendel and Alain, 2012; Swaminathan et al.,
2015); however, other studies have not found significant group
differences (Ruggles et al., 2014; Boebinger et al., 2015) or have
found the musicianship effect to be dependent upon the specific
SIN task variations, such as the degree of information masking
(Swaminathan et al., 2015; Başkent and Gaudrain, 2016) or the
degree of reliance on pitch cues (Fuller et al., 2014). A recent
review of SIN perception among musicians concluded that on
balance there is good evidence for musician enhancement of
SIN, but also highlighted the diversity of study designs used
to study hearing in noisy conditions, which may contribute to
inconsistent findings (Coffey et al., 2017). However, it remains
uncertain to which aspects of cognition any musician advantage
is owed: top-down processes such as selective attention and
working memory that modulate early levels (Rinne et al., 2008)
to filter and temporarily store incoming information (Strait and
Kraus, 2011; Kraus et al., 2012), relatively immutable factors
such as non-verbal IQ (Boebinger et al., 2015) that might
affect multiple cognitive processes, or differences in basic sound
encoding (reviewed in Anderson and Kraus, 2010b; Du et al.,
2011; Alain et al., 2014, see also Weiss and Bidelman, 2015).

In the present study, we first aimed to clarify whether robust f0
encoding in the auditory system, which is known to be enhanced
in musicians (Musacchia et al., 2007; Bidelman et al., 2011a,b),
influences SIN perception in a feed-forward fashion. Rather
than relating fundamental encoding recorded in the presence of
noise to later performance (which has previously been shown,
described above) and might include influences from top-down
processes that spontaneously act to separate speech and noise
streams, here we reduce the similarity between the conditions of
the electrophysiological recording and the offline SIN behavioral
task to a single overlapping feature: the presence of pitch-
related information. Although several studies have not found a
significant relationship between FFR-f0 measured in conditions
of silence and SIN performance (e.g., Parbery-Clark et al.,
2009a), such relationships may be obscured by EEG-based FFR
recordings which likely blend responses coming from different
sources (Zhang and Gong, 2016; Tichko and Skoe, 2017).
Despite the relative insensitivity of magnetoencephalography
(MEG) to deep sources (which approximate radial sources, Baillet
et al., 2001), sufficient information is preserved in the MEG
signal for accurate localization of deeper structures such as the
hippocampus, amygdala and thalamus (Attal and Schwartz, 2013;
Dumas et al., 2013), and for the contributions from subcortical
and cortical FFR generator sites to be separated (Coffey et al.,
2016b), which may increase the sensitivity of the experimental
design to behavioral relationships. Therefore, an additional novel
aspect of the present study is to use MEG to determine how
FFR signals coming from distinct anatomical structures may be
contributing to the putative relationship to SIN performance.We
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thus extend previous investigations of the anatomical origins of
FFR signals to their behavioral meaning in the context of SIN
perception.

If enhanced encoding is partly responsible for better auditory
skills because a better quality signal is encoded from incoming
sound and passed to higher-order cognitive processes and
networks (Irvine, 1986; Musacchia et al., 2008), we would
expect that the relationship between SIN and sound encoding
would persist even under optimal listening conditions when the
system is not challenged, and when the listener’s attention is
otherwise engaged. We therefore first measured SIN perception
behaviorally, then in a separate session simultaneously recorded
EEG and MEG data while listeners were presented with a speech
sound in quiet as they watched a silent film. Secondarily, we
evaluate correlations of measures of musical experience with
FFR-f0 and SIN within our sample to evaluate the possible
influence of musicianship on performance.

In addition to FFR-f0, which is derived from the higher-
frequency EEG activity (Skoe and Kraus, 2010), other
lower-frequency cortical potential measures covary with
SIN performance, in particular the ERP P2 component (∼200
ms post stimulus onset; Cunningham et al., 2001), which is also
known to be related to speech processing and is sensitive to
training effects (Key et al., 2005; Musacchia et al., 2008; Bidelman
and Weiss, 2014; Tremblay et al., 2014). If the two signals
represent sequential processes in the same processing stream,
we would expect enhancements in FFR-f0 to be paralleled by
enhancements in the strength of the ERP P2 component, and
for each of these measures to be related to SIN accuracy. To
test this hypothesis, we used distributed source modeling of
the magnetic signals to localize the neural origins of the MEG
FFR-f0 and the P2, and examined their spatial and statistical
relationships to each other (as well as spatial relationships to
preceding and following ERP components) for the first time in
order to explore how these signals may be related. Collectively,
these data should help us to understand the neural basis of
inter-individual differences in sound encoding and its effects on
the important real-world function of SIN perception.

METHODS AND MATERIALS

The experimental procedures concerning the MEG and (single
channel, Cz) EEG recordings of the brain’s response to the speech
syllable /da/, and much of the pre-processing, have previously
been reported in the context of determining their neural origins
and will be discussed only briefly here (please see Coffey et al.,
2016b “Methods” for details). The correlations between FFR-f0
strength and musicianship that are included in the summary of
musical enhancements in Table 1 have been reported in Coffey
et al.; all other findings have not been reported previously.
Behavioral testing took place in a sound-attenuated room on
different day prior to the MEG recording session.

Participants
Data from the same 20 neurologically healthy young adults
included in the previous study (Coffey et al., 2016b) were
included in this study (mean age: 25.7 years; SD = 4.2; 12

TABLE 1 | Summary of evidence for musicianship-related behavioral and

neurophysiological enhancements (N = 12).

Measure Age of start Practice hours

SIN rs = −0.70, p = 0.006* rs = 0.39, p = 0.10

Fine pitch discrimination rs = 0.45, p = 0.07 rs = −0.67, p = 0.008*

FFR-f0 (right AC) rs = −0.53, p = 0.05* rs = 0.57, p = 0.04*

P2 amplitude rs = −0.21, p = 0.25 rs = 0.59, p = 0.05*

Asterisks (*) indicate significant rank correlations (alpha < 0.05, one tailed). In

general, earlier start ages and a larger number of practice hours are associated with

enhancements, suggesting an influence of musical training. Note that lower fine pitch

discrimination scores indicate better performance; therefore correlations in opposite

directions are expected.

female; all were right-handed and had normal or corrected-to-
normal vision;<= 25 dB hearing level thresholds for frequencies
between 500 and 4,000 Hz assessed by pure-tone audiometry; and
no history of neurological disorders). All but three subjects were
native English speakers; the other three (one Korean, two French
speakers) were highly proficient in English and all scored within
the range of the native speakers on the HINT task, thus ruling
out that any of our findings were due to second-language effects.
Informed consent was obtained and all experimental procedures
were approved by the Montreal Neurological Institute Research
Ethics Board.

Speech-in-Noise Assessment
SIN was measured using a custom computerized implementation
of the hearing in noise test (HINT; Nilsson, 1994) that allowed
us to obtain a relative measure of SIN ability using a portable
computer, without specialized equipment. In the standard HINT
task, speech-spectrum noise is presented at a fixed level and
sentences are varied in a staircase procedure to obtain a (single-
value) SIN perceptual threshold (Nilsson, 1994). Our modified
HINT task used a subset of the same sentence lists (Bench
et al., 1979) and speech-spectrum noise, but presented thirty
sentences in three empirically determined difficulty levels in
randomized order: easy (2 dB SNR; i.e., target speech was 2
dB louder than noise), medium (−2 dB SNR), and difficult
(−6 dB SNR). The sentences and noise were combined using
sound processing software (Audacity, version 1.3.14-beta, http://
audacity.sourceforge.net/; 44100Hz sampling frequency). Stimuli
were presented diotically (i.e., identical speech and masker in
each ear) via headphones (JVCHA-M5X) with the noise adjusted
to a loud but not uncomfortable sound level on pilot subjects
(∼75 db SPL) and thereafter held constant. No verbal or visual
feedback was given. A single overall accuracy score as the
proportion of sentences correctly repeated back to experimenter
was calculated by averaging the accuracy across all three levels;
however, the score distributions showed a clear ceiling effect in
the easiest level, with 12 out of 20 participants scoring over 95%
(mean of subset of easy trials: 93.5%, SD = 7.5; medium trials:
79.9%, SD = 14.0; hard trials: 32.6%, SD = 12.1). We therefore
excluded the easiest trials from the mean accuracy score in
order to obtain a cleaner estimate of inter-individual variability;
control analyses were conducted for the main research questions
by assessing correlations between SIN scores at each level of
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difficulty and the FFR-f0 strength to ensure that the pattern of
results was robust to this exclusion.

Fine Pitch Discrimination
Fine pitch discrimination thresholds were measured as described
in Coffey et al. (2016b), using a two-interval forced-choice
task and a two-down one-up rule to estimate the threshold at
79% correct point on the psychometric curve (Levitt, 1971).
The reference tone, which was presented once per trial, had a
frequency of 500 Hz. The adaptive procedure was stopped after
15 reversals and the geometric mean of the last eight trials was
recorded. Thresholds were derived from the average of five task
repetitions.

Stimulus Presentation
The stimulus for the MEG/EEG recordings was a 120-ms
synthesized speech syllable (/da/) with a fundamental frequency
in the sustained vowel portion of 98 Hz. The stimulus
was presented binaurally at 80 dB SPL, ∼14,000 times in
alternating polarity, through Etymotic ER-3A insert earphones
with foam tips (Etymotic Research). For five subjects, ∼11,000
epochs were collected due to time constraints. Stimulus onset
synchrony (SOA) was randomly selected between 195 and 205
ms from a normal distribution. A separate run was collected
of ∼600 stimulus repetitions spaced ∼500 ms apart, to record
later waves of the slower cortical responses. To control for
attention and reduce fidgeting, a silent wildlife documentary
(Yellowstone: Battle for Life, BBC, 2009) was projected
onto a screen at a comfortable distance from the subject’s
face. This film was selected for being continuously visually
appealing; subtitles were not provided in order to minimize
saccades.

Neurophysiological Recording and
Preprocessing
Two hundred and seventy-four channels of MEG (axial
gradiometers), one channel of EEG data (Cz, 10–20 International
System, averaged mastoid references), EOG and ECG, and one
audio channel were simultaneously acquired using a CTF MEG
System and its in-built EEG system (Omega 275, CTF Systems
Inc.). All data were sampled at 12 kHz. Data preprocessing was
performed with Brainstorm Tadel et al. (2011) and using custom
Matlab scripts (The Mathworks Inc., MA, USA) as described in
Coffey et al. (2016b), and in brief, below.

FFR Correlates of SIN Accuracy
FFR-f0 strength was extracted from regions of interest (ROIs)
in the auditory system (AC: auditory cortex, MGB: medial
geniculate body of the thalamus, IC: inferior colliculus and CN:
cochlear nucleus) using the MEG distributed source modeling
approach described previously (for the specifications of each
ROI, please see Methods in Coffey et al., 2016b). Using this
approach, the amplitude of a large set of dipoles are used to
map activity originating in multiple generator sites; these are
constrained by spatial priors derived from each subject’s T1-
weighted anatomical MRI scan (Baillet et al., 2001; Gross et al.,
2013), from which cortical sources and subcortical structures

were prepared using FreeSurfer (Fischl, 2012). As reported in
Coffey et al., anatomical data were imported into Brainstorm
(Tadel et al., 2011), and the brainstem and thalamic structures
were combined with the cortex surface to form the image
support of MEG distributed sources: the mixed surface/volume
model included a triangulation of the cortical surface (∼15,000
vertices), and brainstem and thalamus as a three-dimensional
dipole grid (∼18,000 points). An overlapping-sphere head model
was computed for each run; this forward model explains how
an electric current flowing in the brain would be recorded at
the level of the sensors, with fair accuracy (Tadel et al., 2011).
A noise covariance matrix was computed from 1-min empty-
room recordings taken before each session. The inverse imaging
model estimates the distribution of brain currents that account
for data recorded at the sensors. We computed the MNE source
distribution with unconstrained source orientations for each run
using Brainstorm default parameters. The MNE source model
is simple, robust to noise and model approximations, and very
frequently used in literature (Hämäläinen, 2009). Source models
for each run were averaged within subject. We extracted a
timeseries of mean amplitude for each ROI and for each of the
three orientations in the unconstrained orientation sourcemodel,
from which three spectra were obtained by first windowing the
signal (5 ms raised cosine ramp), zero padding to 1 s to enable a 1
Hz frequency resolution, with subsequent fast Fourier transform,
and rescaling by the proportion of signal length to zero padding.
The spectra of the three orientations were then summed in
the frequency domain to obtain the amplitude of each subject’s
neurological response at the fundamental frequency, which was
detected by an automatic script; this is referred hereafter as the
FFR-f0 strength.

We first evaluated correlations between SIN accuracy
scores and FFR-f0 strength averaged across bilateral pairs
of structures, using Spearman’s rho (rs; one-tailed). Non-
parametric statistics were used throughout as FFR-f0 measures
were generally not normally distributed (using Shapiro-Wilk’s
parametric hypothesis test of composite normality, the null
hypothesis was rejected for AC, CN, and IC bilateral averages),
and one-tailed tests were used as our goal was to test the
specific hypothesis that higher amplitude FFR-would be related
only to better behavioral performance, as stronger or less
degraded FFRs in the presence of noise have been reported
consistently in the EEG literature (Cunningham et al., 2001;
Parbery-Clark et al., 2009a,b, 2012a; Song et al., 2011), see
also (Du et al., 2011). To correct for multiple comparisons,
the false discovery rate (FDR) was controlled at δ = 0.05
where tests on multiple ROIs are used (Benjamini and
Hochberg, 1995). The EEG equivalent of the FFR-f0 was
also computed for comparison of sensitivity to behavioral
measures. Correlations were computed between SIN accuracy
and the left and right auditory cortex ROIs separately, as a
lateralization effect in FFR-f0 strength and its relationship to
measures of musicianship and fine pitch discrimination had
been observed previously (see Figure 5c–e in Coffey et al.,
2016b). We tested for a stronger correlation on the right
than left side using Fisher’s r-to-Z transformation (one-tailed,
alpha= 0.05).
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Later Cortical Evoked Responses
Event-related potentials (ERPs) within the 2–40 Hz band-pass
filtered single-channel EEG data were obtained in order to
establish a connection between previous FFR-ERP research
that showed SIN sensitivity at ERP components P2 and N2
(Cunningham et al., 2001; Parbery-Clark et al., 2011a) and the
MEG data. In order to maximize the interpretability of the
results with respect to a large body of work that has used EEG-
based measures of P2 amplitude (which may not be entirely
equivalent to their magnetic counterparts due to differences in
each technique’s sensitivity to source orientation), the primary
measure of ERP amplitude is based on EEG rather than MEG;
MEG sources were localized for the same time period.

Although, SIN perception has also been found to be correlated
with N1 latency and amplitude measures (e.g., Parbery-Clark
et al., 2011a; Billings et al., 2013; Bidelman and Howell, 2016),
N1 is strongly affected by the characteristics of the stimulus and
its stimulation paradigm (Billings et al., 2011). In this paradigm,
and using a single-EEG channel positioned at the vertex (Cz),
we did not observe a clear N1 nor N2 from all subjects. We
therefore took the amplitude of only P2 as a measure; this simpler
metric occurs at a single time point and also allowed for a more
straightforward comparison to and interpretation of the MEG
equivalent. A researcher who was blinded to the subjects’ FFR-
f0 amplitudes and behavioral results at the time of measurement
selected P2 wave peaks individually on ERP waves averaged
across epochs for each subject (cortically processed; 2–40 Hz with
−50 to 0 ms DC baseline correction; P2 was considered to be the
strongest positive deflection within a ∼40 ms window centered
on the group grand average P2 at 183 ms). Amplitudes of these
custom peaks were then correlated with SIN accuracy and FFR-f0
strength.

MEG evoked response fields (ERFs) on simultaneously
recorded data were obtained in order to extend this work using
distributed source modeling. The EEG cortical evoked response
complex (ERP) elicited by the speech syllable /da/ consists of two
positive waves at about 50–90ms (“P1”) and between 170 and 200
ms (“P2” or “P1 prime”) and two negative waves at about 110 ms
(“N1”) and after 200 ms (“N2” or “N1 prime”) (reviewed in Key
et al., 2005); see also Cunningham et al., Figure 6 (Cunningham
et al., 2001) and Musacchia et al., Figure 2 (Musacchia et al.,
2008). For the purposes of this study we identified wave peaks in
the ERP and ERF average at the group level for the SIN-sensitive
P2 peak (183ms), and at the earlier P1 component that has a well-
known physiological origin in order to confirm the quality of data
and validity of the analysis (60 ms; see Figures 3A,C).

Origins of Later Cortical ERP Components
To confirm that the MEG data could be used to localize areas
that showed above-baseline activity at the group level, and to
observe the origins of the SIN-sensitive P2 wave in relation to
preceding and following ERP waves, we first computed cortical
volume MNE models based on each subject’s T1-weighted MRI
scan in which the orientation of sources was uncontrained, but
their location was constrained within the volume encompassed
by the cortical surface. These models were normalized to the
baseline period (−50 to 0 ms). We exported 10 ms time windows

around each peak of interest (mean-rectified signal amplitude)
and for the baseline (−50 to 0 ms) for statistical analysis in
the neuroimaging software package FSL (Smith et al., 2004;
Jenkinson et al., 2012). These source volume maps were co-
registered to the subject’s high-resolution T1 anatomical MRI
scan (FLIRT, 6 parameter linear transformation), and then to the
2 mm MNI152 template (12 parameter linear transformation,
Evans et al., 2012). Normalized difference images were created
by subtracting the baseline images from those of the peaks
of interest and calculating z-scores within each image (P1 >

Baseline, P2 > Baseline). Permutation testing was used to reveal
locations where the magnetic signal was greater during peaks
of interest as compared with baseline [non-parametric one-
sample t-test (Winkler et al., 2014); 10,000 permutations]. The
family-wise error rate was controlled using threshold-free cluster
enhancement as implemented in FSL (p < 0.01), after applying
a cortical mask of the MNI 152 template with the brainstem and
cerebellum removed (these latter structures were not included in
the MEG source model).

Comodulation of Low and High Frequency
Activity
We considered the spatial relationship between FFR-f0
generators and the source of the SIN-sensitive P2 wave by
inspecting the FFR-f0 > Baseline and P2 > Baseline maps in the
MEG data, and calculated Spearman’s correlations between the
FFR-f0 strength from each auditory cortex ROI (MEG) and the
amplitude of the P2 wave measured with EEG.

Musicianship Enhancements
Twelve subjects reported varying levels of musical experience
on a range of musical instruments [primary instruments: piano
(6), guitar (2), flute (1), saxophone (1), trumpet (1), voice (1)],
as obtained by self-report using the Montreal Music History
Questionnaire (Coffey et al., 2011). Start ages ranged from
5 to 12 years, and total cumulative practice hours ranged
from 1,000 to 16,000 h. We assessed correlations between SIN
accuracy and total music practice hours and age of training start.
We then evaluated the relationship between P2 amplitude in
the EEG recording and musicianship, and between fine pitch
discrimination skills and musicianship.

RESULTS

Behavioral Scores
The mean averaged SIN score was 56.3% (SD = 12.0). Subjects
with finer pitch discrimination ability had statistically better SIN
accuracy (one-tailed rs=−0.47, p= 0.018).

MEG FFR-f0 Strength Is Related to SIN
throughout the Auditory System
As described by Coffey et al. (2016b), MEG is able to separate
FFR activity arising from auditory cortex (Figure 1A), as well
as brainstem and thalamus (Figure 1B). Relationships between
FFR values measured via MEG from each ROI (averaged across
left and right pairs) and SIN accuracy scores are presented in
Figures 1C–F. A positive correlation between SIN accuracy and
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FIGURE 1 | Correlations between FFR-f0 strength and speech-in-noise

accuracy (SIN) within regions of interest (ROIs) in the auditory cortex (A,C),

and subcortical areas (B,D–F) as measured with magnetoencephalography

(MEG) suggest that better SIN performance is related to better periodicity

encoding throughout the auditory system. The FFR measured using

electroencephalography at the vertex (Cz) is shown for comparison in (G). AC,

auditory cortex; MGB, medial geniculate body; IC, inferior colliculus; CN,

cochlear nucleus. Correlations are calculated using Spearman’s rho (rs).

FFR-f0 strength was found at each of the four structures tested,
statistically significant (FDR-corrected for multiple comparisons)
in all but the inferior colliculus, where a similar trend was
nonetheless noted. We did not find evidence of a relationship
between the EEG-derived FFR-f0 and SIN accuracy (Figure 1G),
nor did a relationship appear with the inclusion of age as a
covariate (rs= 0.08, p= 0.37).

To confirm that the precautionary exclusion of the easiest SIN
trials in which a ceiling effect was found was inconsequential with

respect to the observed relationships between SIN and FFR-f0
strength, we recalculated the correlation between rAC FFR-f0 and
SIN accuracy including all items (rs= 0.71, p= 0.0003; compare
with the reported value with the exclusion, which is rs = 0.72, p
< 0.0002). The general pattern of a positive correlation between
rAC FFR-f0 and SIN accuracy was even replicated within the
small subsets of easy (rs = 0.65, p = 0.001), medium (rs = 0.80,
p < 0.0001), and hard items (rs = 0.57, p = 0.004), suggesting a
robust relationship that is not highly sensitive to how the overall
SIN accuracy score is calculated.

The Relationship between SIN and Cortical
FFR-f0 Is Lateralized
The relationship between SIN and FFR-f0 strength from auditory
cortical ROIs in each hemisphere is depicted in Figure 2. SIN
accuracy was related to the strength of the FFR-f0 in both
hemispheres, but was numerically larger on the right. We directly
compared the strength of these correlations using Fisher’s r-to-Z-
transformation (one-tailed), and found it to be stronger in the
right hemisphere (Z =−3.12, p= 0.001; the correlation between
the FFR-f0 strength across two hemispheres, which is used for
statistical comparison of correlation strength, was rs= 0.89).

Origins of Later Cortical ERP Components
We confirmed that the MEG data analysis used here is suitable
for localizing temporal lobe auditory activity at the group level
using P1, which was known to originate in the primary auditory
areas bilaterally (Figure 3D). Note that while we had selected the
earliest maximum in the P1 wave in the EEG signal in order to
capture primary auditory cortex activity (mean latency: 60 ms),
the peak energy in the MEG signal is slightly later (∼15 ms);
nonetheless, visual inspection of the same analysis performed on
a 10 ms window centered on 75 ms indicates that this analysis
is not sensitive to minor variations in P1 window selection.
The mean latency of P2, the second prominent positive EEG
wave, was 183 ms (SD = 11 ms), and its mean amplitude was
4.1 uV (SD = 1.7). We confirmed, as previously reported by
Cunningham et al. (2001) using a pediatric sample, that P2
amplitude was related to SIN accuracy in the current sample
(Figure 3B) thus providing a basis for further investigating FFR-
f0 and P2 relationships. P1 amplitude was not related to SIN
accuracy (rs = 0.11, p = 0.33). We then identified the sources
of magnetic activity that was concurrent with the EEG-derived
P2 wave, which proved to be relatively more anterior, and right-
lateralized (Figure 3D; colored areas depict significant clusters
corrected for multiple comparisons; maps are thresholded to best
expose the areas of strongest signal).

Low and High Frequency Activity Covary
Right but not left AC FFR-f0 strength was significantly related
to P2 amplitude (Figures 4C,E). For completeness, we also
calculated the correlation between the EEG FFR-f0 and P2
amplitude but it was not significant: rs = 0.23, p = 0.16). The
magnetic equivalent of the P2 wave overlapped considerably with
the FFR-f0 regions using a corrected significance-based threshold
of p < 0.05. However, inspection of the centroid of each map
showed that whereas the FFR-f0 sources were distributed in the
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FIGURE 2 | Asymmetry in the relationship between speech-in-noise (SIN) and cortical FFR-f0 representation (A,C) within left and right hemisphere auditory cortex

ROIs, illustrated in (B). Although a positive relationship between FFR-f0 strength and SIN is found in each hemisphere, it is significantly stronger in the right

hemisphere (Z = −3.12, p = 0.001, one-tailed).

posterior section of the superior temporal gyrus, the P2 wave’s
foci were more anterior (Figure 4D).

Measures of Musicianship
Twelve out of 20 subjects reported some level of musical training.
We previously showed that FFR-f0 strength in the right AC is
related to hours of musical training and age of training start
in this sample (Coffey et al., 2016b). Here, we first confirmed
that the correlation between AC FFR-f0 strength and SIN scores
that we observed within the whole group was present within
both the musician subgroup (averaged AC ROIs: rs = 0.67, p
= 0.012) and the non-musical subgroup (averaged AC ROIs:
rs = 0.86, p = 0.005); these results represents an internal
replication in independent groups and suggest that the sample
size used in this study is sufficiently large to be sensitive to
the statistical relationships of interest. Musical enhancements
in behavioral and neurophysiological measures reported in this
study are summarized in Table 1. Among those with musical
experience, earlier start ages significantly correlated with better
SIN scores, but the correlation between total practice hours and
SIN showed only a non-significant trend. P2 wave amplitude
correlated with practice hours, but not the age of start. We also
found a significant correlation between hours of musical training
and fine pitch discrimination ability, as expected, and a non-
significant trend between start age and fine pitch discrimination
ability.

DISCUSSION

In this study, we aimed to clarify whether individual differences
observed in fundamental frequency (f0) encoding in the auditory
system of normal-hearing adults is related to SIN perception.
Toward this end, we filtered the neural responses in two
frequency bands in order to isolate the higher-frequency 98 Hz
f0 within the FFR, and the lower-frequency cortical responses
(2–40 Hz), and we compared their strength, spatial origins, and
relationships to behavioral and musical experience measures.

We first showed that the strength of the MEG-based FFR-
f0 attributed to structures throughout the ascending auditory
neuraxis, including the auditory cortex in each hemisphere,

is positively correlated with SIN accuracy (Figures 1C–F),
suggesting that basic periodic encoding is enhanced throughout
the auditory system in people with better ability to perceive
speech under challenging noise conditions. Although, the IC vs.
SIN relationship falls short of significance, the trend is in the
predicted direction (rs = 33, p = 0.075); it is therefore most
parsimonious to assume that we failed to observe the relationship
strongly here for reasons related to noise in the data rather than
that the strength of the pitch representation is uncorrelated at
a midpoint location between nuclei through which the same
information passes.

Importantly, the principal similarity between the conditions
under which the neurophysiological measurement was made
(i.e., passive listening in silence) and the behavioral measure
[i.e., deciphering speech in sentences, similar to the clinical
HINT task (Nilsson, 1994)] was the presentation of an auditory
speech stimulus. Naturalistic SIN situations offer multiple cues,
many of them redundant, that can result in flexibility in how
the task is solved. This is true to a lesser degree of clinical
tests of SIN (including the HINT variant used here), which
approximate the naturalistic experience of perceiving speech
masked by sound, but lack factors that are important in real-
life conversations such as familiarity with the talker (Nygaard
et al., 1994; Souza et al., 2013), visual cues (Zion Golumbic et al.,
2013), and context- and listener-dependent adaptations of the
speaker (Lombard, 1911). Tasks that have been used to study the
neural correlates of SIN perception range in cue-richness from
natural language comprehension in daily life, to intermediate
tasks like the sentence-in-noise and word-in-noise measures,
to discrimination of phonemes from among a restricted set of
possibilities (Du et al., 2014), and finally to passively listening
to single sounds with or without masking noise; different types
of noise such as energetic maskers and informational maskers
have also been investigated (Swaminathan et al., 2015). Because
the effects of variations in paradigm design are unclear (Wilson
et al., 2007), [for example the HINT may be presented with
or without spatial cues (Nilsson, 1994)], this diversity may
be contributing to confusion in SIN literature, for example
regarding the possibility of a using musical training to improve
SIN skills (Coffey et al., 2017). A systematic analysis of SIN task
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FIGURE 3 | Later cortical evoked responses and their origins. (A) Time courses of the lower frequency evoked response potentials (ERPs) from EEG data with the

time windows used for MEG source analysis marked (P1: blue, P2: red), and (C) evoked response fields (ERFs) from simultaneously recorded MEG data. Each is

averaged over subjects (N = 20). (B) The amplitude of the P2 ERP wave peak (red) correlates with SIN accuracy. (D) Group-level MEG topographies (left, strength and

polarity is indicated in the color bar below) and source analyses of P1 and P2 component origins using (1mm MNI space; cluster threshold; p < 0.005). Note that

single-channel EEG data are used to derive P2 amplitudes in order to maximize interpretability with respect to previous work whereas source localization is performed

on concurrent MEG data.

requirements and differences in their neural correlates may be
helpful to clarify these issues [e.g., by using task decomposition
(Coffey and Herholz, 2013)].

According to such an approach, our neurophysiological
recording paradigm did not explicitly engage auditory working
memory and it did not require attention, which instead was
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FIGURE 4 | Relationship between FFR-f0 strength (blue-green) and P2 amplitude (red). (A) Time course of the FFR-f0 response, single channel (as presented in

Coffey et al., 2016b; 80–450 Hz bandpass filtered; −50 to 150 ms window). The green portion indicates period over which FFR-f0 strength is calculated. (B) ERF over

the same time period; these signals are separated by frequency band (2–40 Hz bandpass filtered) but P2 occurs after the FFR. Correlations between the FFR-f0

strength from the cortical ROIs as measured using MEG and the ERP strength at P2 as measured using EEG are shown for (C) the left and (E) the right auditory

cortex. (D) Illustrates the relationship of the cortical origins of each signal (1mm MNI space; cluster threshold; p < 0.005).

directed to a silent film. Although, top-down processes might
conceivably act spontaneously even in the presence of such
a distraction, the speech sounds were presented in perfect
clarity and did not offer more than one stream of information
upon which top-down mechanisms of auditory stream analysis
such as stream segregation (Başkent and Gaudrain, 2016) or
selective auditory attention (Song et al., 2011; Lehmann and
Schönwiesner, 2014) might act.

Because we have eliminated cues that might be used by
these higher-level processes that are known to affect SIN,
either by enhancing the incoming signal (e.g., Lehmann and
Schönwiesner, 2014) or at later linguistic/cognitive processing
stages, any residual relationship between basic sound encoding
(measured in silence) and scores on a high-level SIN task is most
parsimoniously explained by the benefits of better lower-level

sound encoding. Thus, we believe that the correlations we
observed at brainstem, thalamic and cortical levels are best
interpreted as reflecting these low-level enhancements.

Amplitude differences in the P2 cortical component and
in FFR-f0 strength have been related to SIN perception
differences between normal and learning-disordered children
when recorded in noise (Cunningham et al., 2001). P2 amplitude
also appears to be stronger in musicians (Shahin et al., 2003;
Kuriki et al., 2006; Bidelman and Weiss, 2014; though this has
not been observed in all studies Musacchia et al., 2008). P2,
along with the P1 and the intervening negativity, is affected
by stimulus parameters including frequency, location, duration,
intensity, and presence of noise (reviewed in Alain et al., 2013; see
also Ross and Fujioka, 2016), is affected by short-term training
(Lappe et al., 2011; Tremblay et al., 2014), and is correlated
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with language-related performance measures such as categorical
speech perception (Bidelman and Weiss, 2014). While P2
amplitude is affected by repetition and predictability (Näätänen
and Picton, 1987; Tremblay et al., 2014), the relationships we
observe here between the P2 amplitude and SIN performance
are unlikely to be unique to the high number of repetitions used
in this experiment, as the relationship between P2 and SIN has
been previously observed with fewer trials (Cunningham et al.,
2001). In any case, any fatigue effects on P2 amplitude would be
more likely to decrease rather than be the cause of a correlation
with the FFR-f0 amplitude, which is known to be comparatively
resistant to cognitive manipulation (Varghese et al., 2015) except
under very specific conditions (Lehmann and Schönwiesner,
2014; Coffey et al., 2016a). Our findings therefore suggest that
the underlying processes are critical to sound representation
generally, though the nature and roles of component processes
represented in the P2 and their relationships to oscillatory brain
networks are still being clarified (e.g., Ross et al., 2012; Ross and
Fujioka, 2016).

We found that variability in P2 amplitude correlated with
inter-individual differences in SIN ability (Figure 3B) and in
FFR-f0 strength (Figures 4C,E), despite that the responses
were measured only in quiet conditions and in a normal
healthy adult population. These results suggest that previously
reported relationships may be present as a continuum in the
population and even in optimal listening conditions. The MEG-
FFR technique may allow us to more consistently observe
behavioral and experience-related relationships with FFR-f0
strength in less challenging listening conditions as compared
with the EEG-FFR. The EEG-FFR is likely a composite from
several subcortical and cortical sources (Herdman et al., 2002;
Kuwada and Anderson, 2002; Coffey et al., 2016b; King et al.,
2016; Zhang and Gong, 2016; Tichko and Skoe, 2017). In recent
work, we compared two common single-channel EEG montages
(Cz-mastoids and Fz-C7) and found that while FFR-f0 strength
in each montage (measured simultaneously) was moderately
correlated, a large proportion of variability was unaccounted for
and the two methods differed in their sensitivity to a behavioral
measure of interest (Coffey et al., 2016a). This observation
suggests that differences in individuals’ head and brain geometry
may sometimes obscure EEG-FFR vs. behavioral relationships,
possibly due to interference from source summation at a given
point of measurement.

The spatial resolution of MEG source imaging may help to
clarify the auditory processes that generate the ERP and ERF
components, which have a long history in auditory neuroscience
yet have predominantly been studied at the sensor level or
using simpler models. We used distributed source modeling
based on individual anatomy to localize the sources of each
ERP/ERF wave (Figure 3D) with a view to confirming the
localization of the wave of interest. The P1 wave originated
bilaterally in the primary auditory areas, as expected (Liégeois-
Chauvel et al., 1994; Key et al., 2005). P2 appeared to be right-
lateralized and comparatively more anterior along the superior
temporal plane as compared to the P1 signal. This observation
is generally consistent with previous work (Alain et al., 2013),
but contrasts with an analysis of equivalent current dipoles

that suggested a more posterior and medial source for the P2
(Shahin et al., 2003). However, both the stimulation and analysis
(e.g., use of the standard brain rather than individual anatomy)
vary considerably between these studies, making this difference
difficult to interpret.

The relatively more anterior location of the P2 compared
to the FFR generators (Figure 4D) could be explained by a
right-lateralized anterior flow of pitch-relevant information that
supports SIN processing, although future work will be needed to
clarify whether the relationship between periodic encoding and
later waves is causal in nature, or if these different frequency
bands represent neural activity in parallel processing streams
in neighboring neural populations. Furthermore, as mentioned
previously, earlier ERP components such as N1 have previously
been related to SIN perception (Billings et al., 2013; Bidelman and
Howell, 2016). Although, we were not able to measure it with the
experimental design used here, it is possible that a relationship
exists between FFR and slower cortical activity earlier than P2. A
combination of multichannel EEG and MEG, and a stimulation
paradigm that is optimized to clearly and consistently evoke
each ERP waveform may be highly informative as to how basic
auditory information is separated and streamed to other cortical
areas in order to accomplish different auditory tasks, using the
spatial information in MEG data or a combinations of EEG and
fMRI data.

The strength of signal generators in the right hemisphere was
stronger for both the FFR-f0 and P2 waves (Figures 4A,B,D). We
found a positive correlation between P2 amplitude (measured
with EEG at Cz) and MEG FFR-f0 in the right hemisphere (but
not left; Figures 4C,E). These results corroborate previous work
suggesting that the right auditory cortex is relatively specialized
for pitch and tonal processing (Zatorre et al., 1994; Patel and
Balaban, 2001; Patterson et al., 2002; Schneider et al., 2002; Hyde
et al., 2008; Mathys et al., 2010; Albouy et al., 2013; Andoh
et al., 2015; Herholz et al., 2015; Cha et al., 2016), as well as
reports of experience-sensitive relationships between FFR-f0 and
lower frequency auditory evoked responses (Musacchia et al.,
2008; Bidelman et al., 2014). It has been proposed that subtle
differences in neural responses early in the cortical processing
stream may lead to distinct functional roles for higher level
processes out of a need for optimization, in particular a right-
hemisphere bias for periodicity and left-hemisphere bias for
fine temporal resolution (Zatorre et al., 2002). It is likely that
other aspects of SIN processing, particularly those related to
linguistic cues, are also relatively more left-lateralized, and that
overall laterality of SIN-related processing may depend on the
degree to which a given paradigm engages combinations of
neural systems (Shtyrov et al., 1998, 1999; Laine et al., 1999; Du
et al., 2014, 2016; Bidelman and Howell, 2016). The relatively
stronger temporal representation of periodicity in the right
hemisphere may be the underlying reason for which we had
previously observed a hemispheric asymmetry in the FFR-f0
and its relationship to fine pitch discrimination ability, hours
of musical practice, and age of training onset (see Figure 5c–
e in (Coffey et al., 2016b); statistics are reported in the present
work in Table 1). The present results are congruent with these
hypotheses.
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Periodicity encoding is related to pitch information (Gockel
et al., 2011), which is one of several cues that the brain can
use to separate streams of auditory information (Bregman,
1994; Moore and Gockel, 2002) and which is useful to help
distinguishing one vowel sound from another (Chalikia and
Bregman, 1989; Summerfield and Assmann, 1999) and can
help speech segregation at the sentence level (Brokx and
Nooteboom, 1982). We previously showed that fine pitch
discrimination skills are correlated with FFR-f0 strength in the
right auditory cortex (Coffey et al., 2016b). Here, we add that
discrimination thresholds correlate with SIN accuracy, and that
SIN accuracy is related to periodic encoding in the auditory
cortex. Together, these results support a mechanistic explanation
for SIN enhancement via better pitch processing leading to
better stream segregation (Anderson and Kraus, 2010a). This
explanation can also account for musician advantages in SIN,
as well as the inconsistency with which it is observed across
studies, whose design may emphasize other, non-periodic SIN
cues. In the subset of subjects who reported having had musical
training, measures of the extent and timing (age of start) of
musical practice were related to behavioral measures of SIN
accuracy and fine pitch discrimination, and were paralleled
in physiology by relationships to FFR-f0 and P2 amplitude.
Experience-dependent plasticity therefore likely tunes FFR-f0
strength and tracking ability as suggested by several prior studies
(Musacchia et al., 2007; Song et al., 2008; Bidelman et al., 2011a;
Carcagno and Plack, 2011). Stronger periodicity encoding might
thereby account in part for a musician advantage. However, other
top-down factors are also at play in SIN perception, including
auditory working memory, long-term memory, and selective
attention. Each of these may be influenced by experience,
and other peripheral and central factors (Anderson et al.,
2013b). These latter factors would likely be related to top-
down effects originating in extra-auditory cortical areas such
as motor and frontal cortices (Du et al., 2014) whereas the
feed-forward mechanisms we emphasize here likely represent
neural modulations within ascending neural pathways including
brainstem nuclei, thalamus, and cortex. Any or all of these
mechanisms may be enhanced by musical training.

We propose that whether a musician advantage in SIN
perception is observed or not in a given study may depend on
interactions between the current state of the auditory system and
the specific cognitive demands of the SIN task used in the study.
Specifically, performance can depend on (1) the cues offered to
the listener in the SIN paradigm [e.g., spatial cues and degree of
information masking; (Swaminathan et al., 2015)]; (2) the degree
to which an individual’s experience has enhanced representations
and mechanisms related to the available cues and caused them
to be more strongly weighted; and (3) how well individuals can
adapt to use alternative cues and mechanisms when one or more
cues becomes less useful either through task differences like levels
of noise (e.g., Du et al., 2014) or due to physiological deterioration
(Anderson et al., 2013b).

CONCLUSION

In this study we present novel evidence that the quality
of basic feed-forward periodicity encoding is related to the

clinically relevant problem of separating speech from noise
signals, and musical training. Specifically, in the absence of
contextual cues and task demands and given a measurement
tool that is sensitive to signal sources (i.e., MEG), enhancements
in periodic sound encoding throughout the auditory neuraxis
were correlated with better SIN ability in an offline task of
sentence perception. This effect was observed to be stronger
in the FFR signal localized to the right auditory cortex, and
was related to slower cortical P2 wave amplitude measured by
EEG, which is concurrent with activity in the right secondary
auditory cortex measured with MEG and suggests an anterior
flow of pitch-related information. Musicians show an advantage
related to FFR strength, suggesting a possible role of experience.
Our results suggest that inter-individual differences in neural
correlates of basic periodic sound representation observed within
the normal-hearing population (Ruggles et al., 2011; Coffey
et al., 2016a) may in part be responsible for the surprising
variability in SIN perception observed inter-individually. This
work sketches in the anatomical and temporal properties of
a stream of pitch-relevant information from subcortical areas
up to and beyond right primary auditory cortex. More work
is needed to explore exactly how this information is routed
and subsequently used by higher-level networks. We conclude
that better sound encoding likely improves SIN perception
through better representation of periodicity, which in turn leads
to better stream segregation. Importantly, these findings may
have practical implications for people suffering from difficulty
with SIN perception because basic sound encoding fidelity has
been shown to be malleable via training; these results therefore
support efforts to develop training-based treatment strategies
(Bidelman and Alain, 2015) to improve people’s participation
in social, vocational, and educational activities (Anderson and
Kraus, 2010b).
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