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In this work we devise a strategy for discrete coding of anatomical form as described

by a Bayesian prior model, quantifying the entropy of this representation as a function of

code rate (number of bits), and its relationship geometric accuracy at clinically relevant

scales. We study the shape of subcortical gray matter structures in the human brain

through diffeomorphic transformations that relate them to a template, using data from the

Alzheimer’s Disease Neuroimaging Initiative to train a multivariate Gaussian prior model.

We find that the at 1 mm accuracy all subcortical structures can be described with less

than 35 bits, and at 1.5 mm error all structures can be described with less than 12 bits.

This work represents a first step towards quantifying the amount of information ordering

a neuroimaging study can provide about disease status.

Keywords: computational anatomy, diffeomorphometry, neuroimaging, anatomical prior, entropy, complexity, rate

distortion

1. INTRODUCTION

The trend toward a quantitative, task based, understanding of medical images leads to the simple
goal of answering “how many bits of information would one expect a medical image to contain
about disease status?” Knowing the answer to this question could impact a clinician’s decision
of whether or not to order an imaging study, particularly in the case where it involves ionizing
radiation. This quantity can be studied in terms of mutual information between disease status and
anatomical form.

MI(disease, anatomy) = H(anatomy)−H(anatomy|disease) (1)

whereMI is mutual information, and H(·) is entropy and H(·|·) is conditional entropy.
In general, the higher the complexity of a population of normal anatomy, the less informative is

a realization as manifest by an MRI concerning some disease. On the other hand, the simpler the
class of anatomy, the more information gained by making an MRI. This is reflected by sensitivity
and specificity of statistical tests.

Other information theoretic quantities could have a direct impact on clinical decision making
as well. The inverse of the Fisher information puts a lower bound on the variance of any unbiased
estimator (the Cramér-Rau inequality). The Kullback-Leibler divergence D(P1‖P2) between two
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probability distributions P1 and P2 can be used to quantify
bounds on error rates (false positives or false negatives) for
any statistical test (Sanov’s theorem). More specifically, for a
fixed false positive rate, the false negative rate is bounded by
exp(−nD(P1‖P2)) for sample size n. In the typical setting of
“multivariate normal, common covariance 6, different means
µ1,µ2,” this quantity is given by D(P1‖P2) = 1

2 (µ1 −

µ2)
T6−1(µ1 − µ2), a well known signal to noise ratio related

to linear discriminant analysis.
To begin applying the powerful machinery of information

theory to the study of anatomical form, we turn our attention
to the quantity at the heart of information theory: the entropy.
We propose a new method for quantifying the entropy of human
anatomy at clinically relevant spatial resolutions, biological
organization at the millimeter or morphome scale (Hunter and
Borg, 2003; Crampin et al., 2004). In this work we focus our
attention on developing this method and quantifying entropy for
a single population, leaving inferences about specific populations
or disease states to future work.

Since Shannon’s original characterization of the entropy of
natural language in the early 50’s, the characterization of the
combinatoric complexity of natural patterns such as human
shape and form remains open. Human anatomical form, unlike
word strings in English, are essentially continuum objects,
extending all the way to the mesoscales of variation. Therefore,
computing the entropy subject to a resolution, or measurement
quantile becomes the natural approach to quantifying the
complexity of human anatomy. Rate-distortion therefore plays a
natural role. The distortion measure is played by the resolution,
and in this paper we introduce the natural resolution metric
that any anatomist or pathologist would use in examining tissue
which would be the sup-norm distance in defining the boundary
of an anatomical structure.

This paper focuses on these issues, calculating what we believe
is the first bound on the complexity of human anatomy at
the 1 mm scale. 1mm seems appropriate since so much data
is available via high throughput magnetic resonance imaging
(MRI) and therefore that scale of data becomes ubiquitously
available. Also so many studies of neuroanatomy and psychiatric
disorders today are focused on the anatomical phenotype at this
scale.

While the entropy of human anatomy seems difficult to define,
the theory of Kolmogorov complexity gives us a precise tool for
describing arbitrary objects in such a manner. The complexity of
any object, which is related to its entropy by an additive constant,
can be defined as the length of the shortest computer program
that produces it as an output. As discussed in Cover and Thomas
(2012), this quantity generally cannot be computed; doing so
would be equivalent to solving the halting problem. However,
any example of such a program serves as an upper bound on
complexity. In what follows we describe our approach, which will
serve as one such upper bound.

Our approach is to follow on Kolmogoroff’s beautiful theory
for calculating complexity of subcortical neuroanatomy by
demonstrating codebooks that attain given logarithmic sizes
coupled to a computer program which decodes elements of the
codebook and attain the distortion measure. We also calculate

various rate-distortion curves showing the trade off in complexity
as a function of distortion.

The field of computational anatomy (Miller et al., 2014) has
been developing the random orbit model of human anatomy,
where a given realization can be generated from a template
(a typical example of an anatomical form) acted on by an
element of the diffeomorphism group. Such diffeomorphic
transformations can be generated from an initial momentum
vector (i.e., closed under linear combinations) though geodesic
shooting (Miller et al., 2006). Our work has largely focused on
brain imaging and neurodegenerative diseases, and we therefore
carry out an examination of subcortical gray matter structures.
By using a sparse representation of initial momenta supported
on anatomical boundaries, and learning Bayesian prior models
for initial momenta from large populations (Tward et al., 2016),
we can produce an efficient representation of anatomical form.

Our approach is to build sets of “codewords,” specific examples
of anatomical structures, and to encode a newly observed
anatomy as one these words. This continuous to discrete process
necessarily introduces distortion, and the relationship between
the number of codewords required (the rate of our code) and
this distortion measure is studied through rate distortion theory.
By relating distortion to geometric error, we can establish the
code rate required for errors at a certain spatial scale. This idea is
illustrated in Figure 1, using a simple example of describing the
hippocampus with a four bit code. In what follows we describe
how this procedure is used to characterize the complexity of
human anatomy at clinically relevant scales.

Much of the existing work in computational anatomy has
focused on addressing the complexity of human anatomy
through data reduction techniques. Foremost, the object of
study was moved from high dimensional images to smooth
diffeomorphisms via the random orbit model, with a fixed
template (Miller et al., 1997) or several templates (Tang et al.,
2013). Later, the construction of diffeomorphisms, typically
created from a time varying velocity field, was moved to
an initial velocity, with dynamics fixed via a conservation of
momentum law (Miller et al., 2006). Sparsity was introduced,
both optimized for specific data types (Miller et al., 2006), and
for ease of interpretation and computational burden (Durrleman
et al., 2014). Further, low dimensional models were developed
based on empirical distributions such as PCA (Vaillant et al.,
2004), or linear discriminant analysis (see Tang et al., 2014
for one example), or other techniques such as locally linear
embedding (Yang et al., 2011). Instead of continuing the trend of
dimensionality reduction, the novelty of this work is to address
discretization. Our specific contribution is to develop a coding
procedure informed by Bayesian priors, opening the study of
anatomy through medical imaging to information theoretic
techniques, and for the first time estimate the entropy of a
population of neuroanatomy.

2. METHODS

2.1. Empirical Priors
Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
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FIGURE 1 | The idea of the discrete coding is illustrated. Codewords, random realizations of anatomy, are shown at left in green. Two examples of real hippocampi

are shown in blue, with their closest codewords overlayed in green.

database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD). For up-to-date information,
see www.adni-info.org.

Using 650 brains from the ADNI and the Open Access Series
of Imaging Studies (OASIS), we extract 12 subcortical graymatter
structures (left and right amygdala, caudate, hippocampus,
globus pallidus, putamen, and thalamus) using FreeSurfer (Fischl
et al., 2002) and create triangulated surfaces. For each structure,
population surface templates were estimated following (Ma et al.,
2010), and diffeomorphic mappings from template to each target
were computed using current matching (Vaillant and Glaunès,
2005). The subcortical structure surface templates are shown in
Figure 2.

These datasets were combined to provide a larger and
more diverse sample. This is useful for achieving our goal of
characterizing a population, as opposed to using more well
controlled samples for hypothesis testing between populations.

As described in Miller et al. (2006), these diffeomorphic
transformations are parameterized by an initial momentum
vector, with three components per triangulated surface vertex
at point xi ∈ R

3 denoted by pi0. This momentum defines a
smooth velocity field v which is integrated over time to construct
diffeomorphisms ϕ, as described by the following system of
equations.

v(x) =
∑

i

K(x− xi)pi (2)

FIGURE 2 | An example of the subcortical gray matter structures studied in

this work are shown. They include left and right amygdala, caudate,

hippocampus, globus pallidus, putamen, and thalamus.

ẋi = v(xi), x0 = template (3)

ṗi = −DvT(xi)pi (4)

ϕ̇ = v(ϕ), ϕ0 = identity, (5)

where K is a Gaussian kernel of standard deviation 6.5 mm.
The space of possible parameterizations is a vector space, in the
sense that it is closed under scalar multiplication and addition.
This substantial difference from the diffeomorphisms themselves,
which are only closed under composition, allows us to study
shape using multivariate Gaussian models.

The initial momentum vectors are analyzed using tangent
space PCA as proposed in Vaillant et al. (2004), and described
for this population in Tward et al. (2013). A low, B dimensional
representation is chosen by selecting the largest principal
components that account for 95% of the trace of the covariance
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matrix. The low dimensional approximation of our initial
momentum vector p0 is written

p0 = b0 +

B
∑

i=1

β ibi

where p0, b
0, bi are vectors of dimension three times the number

of vertices, and β i are scalar parameters. As described in the
references, the basis vectors bi are chosen to be orthonormal
with respect to an inner product in the dual space of smooth

functions, 〈bi, bj〉 =
∑

k b
ikTK(xi0, x

j
0)b

jk = δij, where T denotes
the transpose of a vector inR

3, and δij is the Kronecker delta (1 if
i = j and 0 otherwise).

Our empirical prior model corresponds to choosing the
β i as independent Gaussian random variables with mean 0
and variance σ 2i, measured from the population. We create
one empirical prior for each of the 12 subcortical structures
examined.

2.2. Rate Distortion Theory for Multivariate
Gaussians
For readers unfamiliar with rate distortion theory we review
some standard terminology and results which will be necessary
for our purposes. More details can be found in Cover and
Thomas (2012).

Our empirical prior is a continuous distribution and must be
discretized to be understood in terms entropy and complexity.
This can be achieved through encoding our continuous random
vectors β i. That is, through constructing a mapping e(β) from
β ∈ R

B to a finite set S. Here S is chosen to be the
set of binary strings of fixed length, as shown in the left
side of each subfigure in Figure 1. Associated to this encoder
is a decoder, a mapping e(s) from s ∈ S back to R

B.
Because S is finite, d(e(β)) can take only a finite number of
values in R

b, which we enumerate as β̂ i for positive integers
i and refer to as codewords. The distribution of d(e(β)) is
therefore a weighted sum of Dirac measures at these specific
codewords β̂ i. Examples of anatomies represented by a set of 16
codewords are shown toward the left side of each subfigure in
Figure 1.

One can reason that an encoder/decoder pair is good if β

is similar to d(e(β)) on average. The difference between the
two is known as distortion. Because it admits well characterized
solutions, we measure distortion using sum of square error in
this work. Distortion can be minimized if we discretize β by
mapping it to its closest codeword. In other words, we choose
the encoder by

e(β) = si, the i
th string in S,

where i = argmin
j

|β − β̂ j|2,

FIGURE 3 | Cummulative variance as a function of dimensions for anatomical priors. In lexicographic order: amygdala, caudate, hippocampus, globus pallidus,

putamen, thalamus.
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for | · |2 the norm squared in R
B, and the decoder by

d(si) = β̂ i.

Furthermore, one notices that lower distortion can be achieved
with larger sets S. We refer to the size of S as |S| = 2R for a
code rate R. We note that R is the length of the binary strings
in S, so that the examples in Figure 1 have a rate of R = 4
bits.

We aim to identify the minimum number of codewords
that are required to achieve a given amount of expected
distortion D. The best achievable code is characterized by the
rate distortion curve (D as a function of R). This can be
shown to be equal to the minimum of the mutual information
between β and d(e(β)) while enforcing distortion less than or
equal to D (i.e., the shortest code respecting the distortion
constraints is the worst one: that with the smallest mutual
information with β). This definition, while arcane, can be
used to compute rate distortion curves in closed form in
several situations. In general this curve can be approached
asymptotically, by coding blocks of N structures simultaneously
using 2NR codewords, considering the average distortion, and
letting N → ∞.

The details of Gaussian rate distortion curves can be found in
Cover and Thomas (2012) chapter 13. For single variate Gaussian

random variables with square error distortion the rate distortion
curve can be computed in closed form:

R(D) =

{

1
2 log2

σ 2

D , 0 ≤ D ≤ σ 2

0, D > σ 2

Note that if the desired distortion is greater than the variance, we
need only 1 codeword, or R = 0. If this 1 codeword is the mean,
the expected distortion is equal to the variance. Otherwise, we
require more codewords in a manner increasing logarithmically
with the variance.

We finally specify how our codewords are chosen. This
minimal distortion can be achieved for codewords chosen as
independent realizations of a Gaussian random variable. We can
motivate this as follows. Let the joint distribution of data β and
codewords β̂ be described by drawing β from the distribution
β̂ ∼ N (0, σ 2 − D), and β = β̂ + err with error err ∼

N (0,D). This coding scheme has square error distortion at most
D. The mutual information between β and β̂ can be calculated

as 1
2 log

σ 2

D , the value of the rate distortion curve. On the other
hand, if the allowable distortion D > σ 2, we can simply choose
β̂ = 0 and achieve R(D) = 0.

FIGURE 4 | Examples of the first two modes of variability in our empirical prior for left side structures. The mean shape is shown in the center. Each step to the right

(top) moves one standard deviation in the direction of the first (second) mode of variation. In lexicographic order: amygdala, caudate, hippocampus, globus pallidus,

putamen, thalamus.
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This approach can be extended to B independent Gaussians
using the reverse water filling method.

Di =

{

λ, λ < σ 2
i

σ 2
i , λ ≥ σ 2

i

λ s.t.

B
∑

i=1

Di = D

The optimum corresponds to choosing a fixed amount of
distortion per dimension for variables with “large” variance
(σ 2

i > λ), and no additional codewords for those of “small”
variance.

This leads to the rate distortion curve

R(D) =

B
∑

i=1

1

2
log

σ 2
i

Di
(6)

which can be asymptotically approached (coding blocks of N
anatomies simultaneously, and allowing N → ∞) with a
random code, with the ith component of a codeword generated
according to

β̂ i ∼

{

N (0, σ 2
i − λ), σ 2

i ≥ λ

N (0, 0), σ 2
i < λ

The reverse waterfilling method is named by imagining each
independent Gaussian to be represented by an object of height σ 2

i
in a room with rising water. As the water rises, those Gaussians
with small variance become submerged. Everything below the
surface represents distortion, a fixed amount for each of the
variables with large variance, and amount equal to its variance
for the others. We allow the water to continue to rise until the the
total distortion is given by D.

For our experiments, from the empirical prior for each
subcortical structure a set of codewords is generated for rates
from 0 to 32 bits, and for coding N = 1 and N = 2 examples
simultaneously.

2.3. Complexity at Clinically Relevant
Spatial Scales
By shooting our template with the initial momentum from a
given codeword, we can compute the expected geometric error
between an anatomical structure defined by our continuous
model and its discretely coded version. Error in units of mm
are considered, using Hausdorff distance between surfaces (max
error between closest pairs of vertices between realization and
codeword). We measure geometric error as a function of rate,
fit this curve to a simple model, and compute the code rate
required at clinically relevant scales. Owing to the computational

FIGURE 5 | Square error distortion as a function of code rate for left side structures. Coding one structure is shown in magenta, and two structures simultaneously is

shown in cyan. The rate distortion curve for a multivariate Gaussian model is shown in black.
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FIGURE 6 | Corresponding data from Figure 5 for right side structures.

FIGURE 7 | Hausdorff distance between example surfaces and closest codeword. Coding one structure is shown in magenta, and two structures simultaneously is

shown in cyan. The black curve is a simple fit through the data (not a model), and is used for estimating code rate at 1 and 1.5mm geometric error.
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complexity of looping through 232 codewords and solving system
Equation (2), this procedure is repeated for 10 observations of
each subcortical structure.

3. RESULTS

3.1. Empirical Priors
Empirical prior models for the 6 structures examined are
quantified in terms of their variance spectra in Figure 3. The
number of dimensions that captured 95% of the trace of the
covariance matrix for each left (right) structure was found to
be: amygdala 21 (22), caudate 26 (26), hippocampus 31 (32),
globus pallidus 24 (24), putamen 27 (25), thalamus 39 (41). These
numbers are quite similar for the left and right hand sides of the
same structure. Examples of the first two modes of variability are
shown for the left side structures in Figure 4.

3.2. Rate Distortion Calculations
For each subcortical structure we calculate square error
distortion as a function of code rate. For coding one structure
at a time, we use codes with rate from 0 to 32 bits. For
coding two structures at a time, we use codes with rate from
0 to 16 bits. The results of these calculations are shown for
left side structures in Figure 5 and for right side structures in
Figure 6. Mean and standard error for coding one structure is
shown in magenta, and that for two structures simultaneously

is shown in cyan. The two results are seen to be similar,
indicating that not much is gained by encoding several structures
simultaneously, since the coefficients β are already high (as
compared to 1) dimensional. For each structure, we calculate
the rate distortion curve described by Equation (6) from the
corresponding multivariate Gaussian. This represents a lower
bound on the expected value of the data shown. That our data
is close to these curves serves as an indication that our procedure
is valid.

3.3. Complexity at Clinical Scale
For each structure examined, we consider the geometric
error between our codeword and the anatomy they represent.
We quantified this through the Hausdorff distance between
triangulated surfaces. Mean and standard error of this data is
shown for left side structures in Figure 7 and for right side
structures in Figure 8.

A simple curve was fit through the data and used to estimate
the code rate required for 1 and 1.5mmofmaximum error, values
that are on the order of 1 voxel in a typical clinical MRI. These
rates are shown in Figure 9.

4. CONCLUSION

The complexity of the subcortical gray matter structures we have
examined range from the order of 5–35 bits for 1.0 mm geometric

FIGURE 8 | Corresponding data from Figure 7 for right side structures.
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FIGURE 9 | Code rate required for 1 mm (Left) and 1.5 mm (Right) geometric error.

error, and 0–12 bits for 1.5 mm geometric error. Note that at
1.5 mm error, a 0 bit code is sufficient for the putamen. Its low
amount of variability means it can be represented by an average
template only at this accuracy.

While using up to 232, or more than 4 billion, codewords
may seem excessive, this still represents a huge amount of data
compression. Binary segmentation images, contain roughly 1003

voxels, or the order of one million bits. The triangulated surfaces
have roughly 1,000 vertices, each component stored to double
precision, which correspond to about 192,000 bits. We have
shown that 32 bits, or an amount of data equivalent to one
single precision floating point number, is enough to encode
the variability of gray matter subcortical structures at clinically
relevant spatial scales.

The potential for this work to impact clinical practice stems
from the fact that entropy can be used to devise lower bounds
on the variance of estimators, and that information can be used
as an important figure of merit. When this work is extended
to considering mutual information between anatomical form
and diagnostic status, it could directly influence clinical decision
making and optimization of imaging procedures.

For example, the Image Gently campaign (Goske et al., 2008),
a program designed to reduce radiation exposure to pediatric
patients, suggests first to “reduce or ‘child-size’ the amount
of radiation used” and second to “scan only when necessary”
through a discussion of a risk-benefit ratio. Because lower
radiation doses can be used at lower resolution, the analysis
presented as a function of resolution could lead to appropriately
choosing a dose level for a given level of certainty required.
Further, a scan could be avoided if it will not reduce entropy
about diagnostic status sufficiently.

Turning to imaging optimization, task based analysis of
image quality (Sharp et al., 1996) has been used for many
years, but figures of merit have been largely designed to reflect
the performance of idealized observers on simple detection or
estimation tasks (Barrett et al., 1995). Anatomical variability is
often described simply as stationary power law noise (see for
example Burgess, 1999). Mutual information between observed

anatomy and diagnostic status could be used as a figure of merit
for system design that appropriately accounts for anatomical
variation and models realistic imaging tasks.

One limitation of this study is that we have encoded
only a small number of structures. Due to the computational
complexity of searching through each codeword and solving a
high dimensional geodesic shooting equation in each case, we
limited the number examined. As this work progresses, we will
include larger samples. In what follows, we will restrict ourselves
to disease specific populations to measure how entropy changes
with disease state. This will enable calculation of the mutual
information between anatomical phenotype and disease state as
shown in Equation (1).
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