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Exploring functional interactions among various brain regions is helpful for understanding

the pathological underpinnings of neurological disorders. Brain networks provide an

important representation of those functional interactions, and thus are widely applied in

the diagnosis and classification of neurodegenerative diseases. Many mental disorders

involve a sharp decline in cognitive ability as a major symptom, which can be caused

by abnormal connectivity patterns among several brain regions. However, conventional

functional connectivity networks are usually constructed based on pairwise correlations

among different brain regions. This approach ignores higher-order relationships, and

cannot effectively characterize the high-order interactions of many brain regions

working together. Recent neuroscience research suggests that higher-order relationships

between brain regions are important for brain network analysis. Hyper-networks have

been proposed that can effectively represent the interactions among brain regions.

However, this method extracts the local properties of brain regions as features, but

ignores the global topology information, which affects the evaluation of network topology

and reduces the performance of the classifier. This problem can be compensated by

a subgraph feature-based method, but it is not sensitive to change in a single brain

region. Considering that both of these feature extraction methods result in the loss of

information, we propose a novel machine learning classification method that combines

multiple features of a hyper-network based on functional magnetic resonance imaging

in Alzheimer’s disease. The method combines the brain region features and subgraph

features, and then uses a multi-kernel SVM for classification. This retains not only the

global topological information, but also the sensitivity to change in a single brain region.

To certify the proposed method, 28 normal control subjects and 38 Alzheimer’s disease

patients were selected to participate in an experiment. The proposed method achieved

satisfactory classification accuracy, with an average of 91.60%. The abnormal brain

regions included the bilateral precuneus, right parahippocampal gyrus\hippocampus,
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right posterior cingulate gyrus, and other regions that are known to be important in

Alzheimer’s disease. Machine learning classification combining multiple features of a

hyper-network of functional magnetic resonance imaging data in Alzheimer’s disease

obtains better classification performance.

Keywords: fMRI, hyper-network, multi-feature, discriminative subgraph, Alzheimer’s disease

INTRODUCTION

Modern imaging techniques provide effective approaches for
exploring the functional interactions among brain regions,
increasing our understanding of the pathological basis of
mental illnesses. Brain functional network approaches provide
a simplified representation of brain interaction patterns, and
have been successfully used to classify neurological disorders
(Stam et al., 2009; Pievani et al., 2011; Wang et al., 2013).
The application of brain functional networks to neurocognitive
theory has attracted much attention and recognition from
researchers (Richardson, 2010), and they are widely used in the
study of brain diseases, including schizophrenia (Bassett et al.,
2008; Liu et al., 2008; Lynall et al., 2010), depression (Liu F. et al.,
2015), mild cognitive impairment (Liang et al., 2013), attention
deficit hyperactivity disorder (Wang et al., 2009), and Alzheimer’s
disease (AD) (He et al., 2008; Supekar et al., 2008).

Because network structures are composed of nodes and edges,
functional brain network analysis provides an important tool for
systematically detecting abnormalities in several brain regions.
Differences in network topology between normal controls
and brain disease patients can provide useful biomarkers for
diagnosis, and for understanding the pathological underpinnings
of brain diseases. Thus, modeling of functional networks can play
an essential role in accurate diagnosis. Many previous studies
have reported that higher cognition arises from interactions
among many different brain regions, rather than activities in
isolated brain regions. A major symptom in many mental
disorders is a sharp decline in cognitive ability, which can be
related to abnormal connectivity patterns (Delbeuck et al., 2003;
Horwitz, 2003) involving interactions among multiple brain
regions.

So far, many functional connectivity modeling methods have
been proposed, including correlation-based methods (Bullmore
and Sporns, 2009), graphical models (Bullmore et al., 2000),
partial correlation-based methods (Rosa et al., 2015), and sparse
representation methods (Smith et al., 2011; Wee et al., 2014).
However, there are some flaws in the conventional methods of
constructing functional networks. Most of them use correlation-
based methods, which are relatively sensitive for detecting
network connections (Smith et al., 2011). Nevertheless, because
most network modeling methods are based on correlations,
they are only able to reflect relationships between paired
brain regions, which does not fully characterize the multi-
level information among multiple brain regions, and ignores
the higher-order relationships that are important for disease
diagnosis. Moreover, network models based on correlational
methods may contain false connections, because of the arbitrary
selection of thresholds (Biao et al., 2014; Jie et al., 2016). Other

methods of studying brain connectivity have been proposed,
including graphical models such as structural equation models
(Mcintosh et al., 1994; Bullmore et al., 2000) and dynamic causal
models (Marreiros et al., 2010). However, most of these methods
are confirmative rather than exploratory, which makes them
inadequate for studying brain connectivity in AD and mild
cognitive impairment (MCI) because they often require a prior
knowledge—such as which brain regions should be involved
and how they are connected—that is usually unavailable (Huang
et al., 2010). Partial correlation estimation can be implemented
using the maximum likelihood estimation (MLE) of the inverse
covariance matrix. However, using this method, the required
sample size to obtain sufficient data for reliable estimation is
much larger than the number of modeled brain regions (Jie et al.,
2016).

Conventional methods for constructing functional networks
typically model the relationships between pairwise brain regions.
However, recent studies have reported the importance of
interactions among multiple brain regions, in addition to the
relationships between pairwise brain regions. In one study,
Yu et al. (2011) demonstrated that higher-order interactions
are inherent properties of cortical dynamics. Santos et al.
(2010) reported that the recorded activity of units in pairwise
interactions was not best described by neuronal activity patterns.
To address this limitation, they constructed a hierarchical model
of network interactions, using units of interactions at two
spatial levels. The results suggested that hierarchical models
can capture network interactions more accurately than pairwise
models. Montani et al. (2009) modeled the impact of high-
order interactions on the amount of somatosensory information
transmitted by the rate of synchronous discharge. Taken together,
these results suggest that higher-order interactions play an
important role in the dynamics of neural networks. Moreover,
some studies have also suggested that functional interactions
among single brain regions can interact with several other
brain regions (Huang et al., 2010). Therefore, correlational
analysis reflecting pairwise information may not be able to
characterize the higher-order interactions of many brain regions
working together. However, this information may be crucial for
understanding the pathological mechanisms underlying mental
illness.

In view of the shortcomings of the conventional functional
connectivity network models, many new methods of
construction have been developed. Hyper-networks are
one example. A properly constructed hyper-network can
overcome the above disadvantages of conventional methods.
Hyper-networks based on hyper-graph theory can represent
the interactions among multiple brain regions (Biao et al.,
2014; Jie et al., 2016). Recently, Jie et al. (Biao et al., 2014)
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constructed a hyper-network for an MCI dataset, extracted
the local brain region properties as features, and then selected
the most discriminative features for classification. Jie et al.
(2016) similarly constructed a hyper-network for an attention
deficit hyperactivity disorder (ADHD) dataset and extracted
the brain region properties as features. They compared the
hyper-network results with those of the conventional functional
connectivity network methods and verified the robustness of
various technologies.

However, the above classification methods extracted the local
brain region properties as features, so that feature selection
and classification could be implemented. Brain region features,
including global properties (clustering coefficient Dj and Sh,
1998, path length Saramäki et al., 2006, etc.) and local properties
(degree, betweenness centrality Barthélemy, 2004, etc.), have
been widely used in previous studies for the classification
of diseases in connectivity networks. However, such extracted
features may lose some useful information, especially global
topological information (Zhou et al., 2014). Subgraph features
that are extracted from the graph-structure have been widely
applied in the diagnosis of brain diseases (Montani et al., 2009;
Huang et al., 2010) and can effectively compensate for the defects
of conventional feature-extraction methods. However, subgraph
feature-based methods have the drawback of being insensitive to
change in a single brain region (Zhou et al., 2014). Therefore,
both types of methods can lead to the loss of sample information
(Zhou et al., 2014). In addition, the brain network itself is a
complex network structure and its biological features cannot be
captured from the perspective of a single feature.

To solve the problems of conventional methods, we developed
a novel method that uses machine learning classification to
combine multiple features of hyper-network functional magnetic
resonance imaging (fMRI) data in AD. Specifically, based on
the resting-state fMRI time sequence, we constructed a hyper-
network with a sparse representation method. In the current
study, to address the limitations of conventional network
modeling, we combined different types of features, including
brain region features and subgraph features. Three types of
clustering coefficients were extracted as features and a non-
parametric test was applied for feature selection. The subgraph
feature-based method extracted hyper-edges as features and
selected them using the frequently scoring feature selection
(FSFS) method. Finally, two types of kernels based on multi-
kernel support vector machine (SVM) classification were
combined. The study constructed hyper-networks for 38 AD
patients and 28 normal subjects and verified them. The results
showed that the proposedmachine learning classificationmethod
combining multiple features of a hyper-network of fMRI data in
AD achieved satisfactory classification performance.

The main work of this study was as follows. First, the hyper-
network constructionmethod was applied to construct a network
model based on an AD dataset to analyze the interactions among
multiple brain regions. Second, different from previous studies,
this study extracted two types of hyper-network features—brain
region features and subgraph features—to ensure the integrity of
the network topology information and preserve the sensitivity to
change in a single brain region. Third, a multi-kernel SVM was

proposed for the hyper-network, which combines two types of
network features to achieve better classification performance.

MATERIALS AND METHODS

Method Framework
A flowchart of the proposed framework for machine learning
classification combining multiple features of a hyper-network
of fMRI data in AD is presented in Figure 1. Specifically, the
framework consists of several major steps.

1. Data acquisition and pre-processing.
2. Construction of the hyper-network: for each subject, we

constructed a hyper-network using a sparse linear regression
model that estimated a region using a linear combination of
the times series of other regions, and optimized the objective
function by sparse learning.

3. Feature extraction and selection: non-parametric tests were
performed to select the brain region features and the FSFS
algorithm was used to select discriminative subgraphs; then,
the corresponding kernel matrix was computed.

4. Multi-kernel SVM: multi-kernel SVM was used for
classification of the kernel matrixes with brain region
features and subgraph features combined.

Data Acquisition and Pre-processing
This study was carried out in accordance with the
recommendations of the medical ethics committee of Shanxi
province (reference number: 2012013). All subjects gave their
written informed consent in accordance with the Declaration of
Helsinki. Twenty-eight healthy right-handed participants and
thirty-eight major depression disorder participants underwent
resting-state fMRI in a 3T MR scanner (Siemens Trio 3-
Tesla scanner, Siemens, Erlangen, Germany). The subjects’
demographic information and clinical characteristics are
summarized in Table 1. Data collection was completed at the
First Hospital of Shanxi Medical University. All scans were
performed by radiologists who were familiar with MRI. All
patients underwent a complete physical and neurological
examination, standard laboratory tests, and an extensive
neuropsychological assessment battery.

During the scan, participants were asked to relax with their
eyes closed but not to fall asleep. The scanning parameters
were set as follows: axial slices = 33, repetition time (TR) =

2,000ms, echo time (TE)= 30ms, thickness/skip= 4/0mm, field
of view (FOV) = 192 × 192mm, matrix = 64 × 64mm, flip
angle = 90◦, volumes = 248. The first 10 volumes of each time
series were discarded to allow for magnetization stabilization. See
Supplemental Text S1 for details of the scanning parameters.

Data preprocessing was performed with SPM8 (Statistical
Parametric Mapping, SPM) (Friston, 2007). First, slice-timing
correction and head-movement correction were carried out. Two
samples exhibiting more than 3.0mm of translation and 3.0◦ of
rotation were discarded, which were not included in the final
28 samples. The corrected images were optimized with a 12-
dimensional affine transformation and normalized to 3 × 3
× 3mm voxels in the Montreal Neurological Institute (MNI)
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FIGURE 1 | Flowchart of the proposed method. (A) Data Pre-processing. AAL: automatic anatomic labeling. fMRI: functional magnetic resonance imaging. After fMRI

data pre-processing, according selected AAL template, the whole brain was divided into 90 regions. Then, the mean regional time series were extracted to divided

brain regions, (B) Hyper-network Construction. (C) Feature Selection (brain region and subgraph). For subgraph features, NC, normal control; AD, Alzheimer’s

disease, hyperedges were extracted respectively from the hyper-networks contructed the NC group and the AD group, which were regarded as subgraph features, so

two groups of subgraph features were obtained. In addition, for brain region features, the values of three different clustering coefficient respectively were computed,

then Kolmogorov-Smimov test was adopted to feature selection, which obtained discriminative features. (D) Classification with multi-kernel SVM. Two different types

of kernel matrix were combined, adopting multi-kernel SVM for classification.

standard space. Finally, linear detrending and band-pass filtering
(0.01–0.10Hz) were performed to reduce the effects of low-
frequency drift and high-frequency physiological noise.

Construction of the Hyper-Network
Most previous studies have used the simple-graph to construct
network models, which only characterize information between
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TABLE 1 | Demographics and clinical characteristics of the subjects.

NC AD P-value

Age(years) (68–76)

72.6 ± 3.42

(66–76)

71.4 ± 4.68

0.44a

Sex (male/female) 13/15 15/23 0.57b

Handedness (R/L) 28/0 38/0 –

MMSE (23–30)

26.1 ± 3.2

(20–25)

22.8 ± 2.1

<0.0001a

Values are mean + standard deviation; AD, Alzheimer’s disease; NC, normal controls;

MMSE, Mini-Mental State Examination; *All tests are two-tailed; aTwo-sample t-test;
bPearson Chi-square test.

pairwise brain regions. In the current study, we constructed a
hyper-network connectivity model based on hyper-graph theory,
which can reflect higher-order interactions amongmultiple brain
regions. A hyper-graph is an expansion based on a simple-graph,
and the approach has been widely used in numerous fields. The
hyper-graph is summarized as follows.

Hyper-Graphs
To date, hyper-graph theory has been successfully used for many
applications, including image classification (Yu et al., 2012) and
protein function prediction (Gallagher and Goldberg, 2013). In
the field of neuroimaging, graph theory is commonly used to
analyze brain connectivity (Kaiser, 2011; Sporns, 2012; Fornito
et al., 2013). In the traditional graph theory approach, every edge
merely links two nodes with a particular relationship, meaning
that it only reflects the interactions between two nodes. In
addition to paired relationships, such as functional interactions
among multiple brain regions, many scenarios involve higher-
order relationships, which simple graphs cannot describe. To
address this limitation, some researchers have proposed the
use of hyper-graphs, which are able to reflect the higher-
order relationships among multiple nodes. Generally, a hyper-
graph can be represented by an extension of a conventional
simple graph in which one hyper-edge links two or more nodes
(Schölkopf et al., 2007).

A hyper-graph is represented by G = (V ,E), where V denotes
a set of nodes and E represents a set of hyper-edges. We can
then use a |V| × |E| incidence matrix H to denote G, where H
is represented by the following elements:

H (ν, e) =

{

1, if v ∈ e
0, if v /∈ e

(1)

where v ∈ V indicates a node of G, and e ∈ E indicates a
hyper-edge of G.

Based on H, the node degree of each node v ∈ V can be
represented as:

d (v) =
∑

e∈E
H (v, e) (2)

The edge degree of hyper-edge e ∈ E can be represented as:

δ (e) =
∑

v∈V
H (v, e) (3)

Let Dv and De represent the diagonal matrices of node degrees
d (v) and hyper-edge degrees δ (e):

A = HHT − Dv (4)

where HT is the transpose of H. A
(

i, j
)

represents the number of
hyper-edges that contain nodes cvi and vj.

Notably, the traditional graph is a specific hyper-graph where
one hyper-edge includes only two nodes. An example of a hyper-
graph is shown in Figure 2: Figure 2A displays a conventional
graph; Figure 2B shows a hyper-graph; and Figure 2C is an
incidence matrix for the hyper-graph in Figure 2B, where 0
indicates that there is no connection between the nodes in the
corresponding row and column and 1 indicates that there is such
a connection.

Construction of Hyper-Networks
Based on the sparse linear regression model, hyper-networks
were constructed from rs-fMRI time series (Mcintosh et al.,
1994). Specifically, X = [x1, · · · , xm, · · · , xM]T ∈ RM×d is used
to denote subjects with a total of M regions of interest (ROIs),
where xm denotes the regional mean time series of the designated
m-th ROI, and d is the length of the time series. A response vector
xm is then denoted by the regional mean time series of each ROI,
which can be represented by adopting a linear combination of the
time series of otherM − 1 ROIs, as follows:

xm = Amαm + τm, m = 1, 2, · · · ,M (5)

where Am = [x1, · · · , xm−1, 0, xm+1, · · · , xM] denotes a data
matrix that contains all time series except them-th ROI, in which
the regional mean time series was set a vector of all zeros), αm

denotes the weight vector to indicate the degree of the effect of
other ROIs on the m-th ROI, and τm ∈ Rd represents a noise
term. It should be noted that the element in αm indicates that its
corresponding ROI is meaningless for accurately evaluating the
time series of them-th ROI.

For solving sparse linear regression models, this optimization
target function is as follows:

min
αm

‖xm − Amαm‖2 + λ ‖αm‖0 (6)

This is a well-known non-deterministic polynomial (NP)
problem, owing to the l0-norm term. Meanwhile, this method
is usually approximately equal to solving a standard l1-norm
regularized optimization problem through a target function
(Wright et al., 2009), as follows:

min
αm

‖xm − Amαm‖2 + λ ‖αm‖1 (7)

where λ > 0 denotes a regularization parameter to control the
levels of sparsity of the model. Different λ values correspond
to different solutions of the degree of sparsity, and a larger
λ value represents a sparser model, which indicates that there
are more zero elements in αm. Most existing sparse learning
algorithms can be implemented to solve the l1-norm, such as
least angle regression (Statistics, 1998). Adopting the sparse linear
regression model, we can obtain one brain region’s interactions
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FIGURE 2 | Hyper-graph. (A). A hyper-graph. G denotes the graph, V denotes the set of nodes. E denotes the set of edges. In a hyper-graph, multiple nodes can be

connected toghter by each hyper-edge. (B) The corresponding incidence matrix of the hyper-graph in A. 0 represents no connection between nodes of the

corresponding row and column, and 1 represents connection between them.

TABLE 2 | The definitions and formulas of hyper-network properties.

Properties Definitions Formulas

HCC1 The number of adjacent nodes

that have connections not

facilitated by node ν

HCC1 (ν) =
2

∑

u,t∈N(ν) I(u,t,¬ν)

|N(ν)|(|N(ν)−1|)

HCC2 The number of adjacent nodes

that have connections facilitated

by node ν

HCC2 (ν) =
2

∑

u,t∈N(ν) I
′
(u,t,ν)

|N(ν)|(|N(ν)−1|)

HCC3 The amount of overlap among

adjacent hyper-edges of node ν

HCC3 (ν) =
2

∑

e∈S(ν) (|e|−1)−|N(ν)|

|N(ν)|(|S(ν)−1|)

with other brain regions, while setting the irrelevant or false
connections to zero. This means that, in the weight vector αm,
the brain regions corresponding to zero elements are regarded
as irrelevant for estimating one region’s time series. Thus,
this approach provides a method for modeling interactions
among one brain region and other brain regions by eliminating
irrelevant connections.

In this study, for each subject, we constructed a hyper-
network by adopting a sparse linear regression model, where
a node is represented by one brain region, and a hyper-edge
em contains the m-th ROI and other ROIs with corresponding
non-zero elements in the weight vector αm , which is computed
by Equation (7). As a regularization parameter, λ controls the
amount of non-zero solutions of the sparistiy vector αm. In the
extreme situation, when αm obtains all the zero solutions, λ

could get the maximum value which is always denoted as λmax.
On the contrary, when αm obtains all the non-zero solutions,
λ could get the minimum value which is a positive number
close to 0, denoted as λmin. Thus the value of λ should be set
ranging from λmin to λmax (Lee et al., 2011; Li et al., 2012). One
of the limitations of the above setting method iss that different
experimental data could achieve different λmin and λmax. It make

TABLE 3 | The abnormal brain regions and significance of brain region feature.

No ROI Name P-values

HCC1 HCC2 HCC3

1 Right Middle frontal gyrus 0.0199 0.1578 0.1690

2 Left Inferior temporal gyrus 0.1181 0.1181 0.0077

3 Right Posterior cingulate gyrus 0.3033 0.0941 0.0451

4 Left Supplementary motor area 0.2075 0.0557 0.0077

5 Right Parahippocampal gyrus 0.6384 0.0157 0.0059

6 Right Inferior temporal gyrus 0.0173 0.2601 0.1096

7 Right Precuneus 0.0606 0.0396 0.0451

8 Left Fusiform gyrus 0.7929 0.0478 0.6121

9 Left Supramarginal gyrus 0.0481 0.2145 0.1181

10 Right Hippocampus 0.3930 0.0049 0.0905

11 Right Lenticular nucleus, putamen 0.2145 0.1226 0.0478

12 Left Thalamus 0.2943 0.0370 0.2521

13 Left Middle temporal gyrus 0.8049 0.0379 0.1813

ROI denotes the reigon of interest. Bold indicates significance p < 0.05.

the parameter λ hard to be compared among different methods.
Previous research standardized the range of λ from 0 to 1 based
on λmin and λmax that made λ comparable (Liu et al., 2013). In
the current study, we follow the latter setting method. When
λ is more close to 0, there are more non-zero solutions in
the αm which suggests that there are more nodes in the given
hyper-edge. Otherwise, the opposite. Besides, to characterize
the multi-level relationships within multiple brain regions, an
array of hyper-edges can be obtained by setting different values
of λ within a required range for each node. Thus, multi-level
relationships indicate that different values of λ mean different
levels of information within multiple brain regions. That is, a
target function shown in Equation (7), which reflects a larger
value of λ, can obtain a sparser solution and thus the hyper-edge
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FIGURE 3 | Discriminative subgraphs. (A) Denotes normal controls (NC) group, (B) Denotes Alzheimer’s disease (AD) group. Connected Patterns represent the

connectivity pattern of discriminative subgraphs. Subgraph represents that a subgraph was combined discriminative subgraphs within group, where the blue nodes

indicate that these nodes are only in the NC group or only in the AD group, and the red nodes indicate that these nodes appear in both NC group and AD group. The

nodal size represents the occurrences amount of this node.

only includes some ROIs (i.e., nodes). We conducted tests to set
different values of λ, ranging from 0.1 to 0.9 with a step of 0.1.
Notably, in Equation (7), the values of weight vector αm are the
same for brain regions within the same time series. Therefore,
they will simultaneously be contained or excluded in the hyper-
edge corresponding with them. In the current study, we were able
to obtain the optimal solution in Equation (7) by using the SLEP
package (Liu et al., 2013).

Feature Extraction and Selection
After constructing hyper-network, we investigated two types of
network features: brain region features and subgraph features.

The two types of features were then selected: the Kolmogorov-
Smirnov non-parametric test was used for selecting quantifiable
brain region features and the FSFS algorithm was used for
selecting discriminative subgraph features.

Brain Region Features and Feature Selection
To quantify the local brain region properties of the hyper-
network, three local clustering coefficients—HCC1, HCC2, and
HCC3 (Gallagher and Goldberg, 2013)—were adopted, as they
describe the local aggregation of the hyper-network from
different angles. Table 2 shows the definitions and calculation
formulas of these properties.
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FIGURE 4 | The abnormal brain regions of subgraph feature. (A) Denotes these nodes that nodes appear in both normal control (NC) group and Alzheimer’s disease

(AD) group, where the size of nodes represents the number of occurrences of the node. (B) Denotes a statistical chart about the occurrences of these nodes in (A).

That is, the occurrences of abnormal brain regions respectively appearing in discriminative subgraphs of NC group and AD group, where red color indicates AD, and

blue color indicates NC. Then, ordinate represents these abnormal brain regions, and abscissa represents the occurrences of these brain regions in NC group and AD

group, respectively.

Amultiple linear regression method was adopted to eliminate
the influence of confounding factors of age, gender, and
educational status for every network property (independent
variable: the area under the curve (AUC) value of every network
property; dependent variables: age, gender, and educational
status). These results indicated that the relationship between
network properties and confounding factors was not significantly
relevant (see Supplemental Table T1 for the detailed results).

To select the discriminative features, the Kolmogorov-
Smirnov non-parametric test (Fasano and Franceschini, 1987)
was used to select the quantifiable local brain region properties,
corrected by the false-discovery rate (FDR) (Benjamini and
Hochberg, 1995) (q = 0.05) method. The brain region features
with P < 0.05 (FDR correction) were selected as discriminative
features. Finally, we obtained a kernel matrix according to the
above selected features.

Subgraph Features and Feature Selection
The hyper-edges are regarded as the subgraph features of the
hyper-network. The number of subgraphs is very large, but only
a few features are truly discriminative. Accordingly, in this study,
we selected the most discriminative subgraphs as features to be
used in the classification in the next step. Detailed information on
the discriminative subgraphs can be found in the Supplemental
Text S2.

Discriminative subgraphs can be regarded as features for
classification (Kong et al., 2013). However, because the subgraph
features extracted from the normal control (NC) group and
the AD group may not have discriminative ability, adopting

TABLE 4 | The TOP10 abnormal regions of subgraph feature.

No. ROI Name Citations

1 Left Precuneus He et al., 2007

2 Right Hippocampus Liu et al., 2014

3 Right Superior temporal gyrus Solépadullés et al., 2009

4 Right Angular gyrus Liu et al., 2014

5 Right Fusiform gyrus Yetkin et al., 2006

6 Left Fusiform gyrus He et al., 2007

7 Right Precuneus He et al., 2007

8 Left Angular gyrus Liu et al., 2014

9 Right Lingual gyrus He et al., 2007

10 Right Middle temporal gyrus Berg et al., 1998

ROI denotes the region of interest.

only the extracted subgraph features would degrade the
classification performance. To solve this problem, first, we used
the discriminative score of the subgraph pattern (Santos et al.,
2010) to complete the initial feature selection, also referred to
as FSFS. This method calculates the discriminant scores of these
subgraphs mined from the NC and AD groups and sorts them.
The most discriminating scores t1 , t2 are selected as discriminant
subgraphs.

Formally, we introduce the following notation:
D:D =

{

Dn,Dp

}

, where Dn represents the negative samples,
and Dp represents the positive samples.

G:G =
{

Gn,Gp

}

, where GP =
{

gp1, gp2, · · · , gpm
}

denotes
a set of all subgraph features in positive samples, and Gn =
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TABLE 5 | Classification performance of different methods.

Method Research Disease Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

Partial-network Rosa et al., 2015 MDD 58.33 53.33 63.33

Wee et al., 2016 EMCI 62.71 60.00 65.52

Guo et al., 2013 MDD 86.01 – –

Pearson-network Liu F. et al., 2015 MDD 63.00 40.00 83.00

Wee et al., 2016 EMCI 66.10 76.67 55.17

Wee et al., 2012 MCI 86.49 – –

Wang et al., 2011 AD – 81.00 73.00

Chen G. et al., 2011 AD – 85.00 80.00

Hyper-network Biao et al., 2014 MCI 94.60 91.70 96.00

Jie et al., 2016 ADHD 82.90 83.90 86.10

Frequent subgraph Du et al., 2016 ADHD 94.91 93.22 96.94

Fei et al., 2014 MCI 97.30 – –

Combined multiple

features

Zhou et al., 2014 MCI 86.47 – –

Hyper-network Subgraph feature AD 74.80 83.33 67.60

Brain region feature AD 83.30 84.21 82.14

Proposed AD 91.60 93.50 90.50

AD represents Alzheimer’s disease, MDD represents major depressive disorder, MCI

represents mild cognitive impairment, EMCI represents mild cognitive impairment, and

ADHD represents attention deficit hyperactivity disorder.

{

gn1, gn2, · · · , gnk
}

denotes a set of all subgraph features in
negative samples.

T∗: The optimal set of subgraph features, T∗ = T∗
1 ∪ T∗

2 and
T∗
1 ⊆ Gp,T

∗
2 ⊆ Gn; hence, T

∗ ⊆ G.
J (T): The criteria to evaluate the effectivity of subgraph

feature subset T.
S
(

gs
)

: The discriminative score of a subgraph pattern gs is
defined as follows:

S
(

gs
)

=
∣

∣fq
(

gs|Dp

)

− fq
(

gs|Dn

)∣

∣ (8)

The discriminative score of subgraph gs means its frequency
difference between positive samples and negative samples, that is,
the bigger the S

(

gs
)

, the bigger the difference of these subgraphs
between the AD and NC groups. S

(

gs
)

= 0 denotes that this
subgraph pattern gs was not present in any graphs in the NC
group, but was present in all graphs in the MDD group, or vice
versa.

In this study, we obtained the optimal set of subgraph features
according to Equation (9):

T
∗

=T1⊆Gp ,T2⊆Gn
argmaxJ (T) s.t |T1| ≤ t1, |T2| ≤ t2 (9)

where |·| denotes the size of the feature set, and t1,t2 are the
maximum number of features selected from the NC and MDD
groups, respectively. We can then obtain the following equation:

J (T) =
∑

i≤t1
S
(

gpi
)

+
∑

j≤t2
S
(

gnj
)

(10)

FIGURE 5 | The Relief weight of different methods. The ordinate stands for the

Relief weight, and the abscissa denotes different feature extraction methods.

Brain region feature represents the Relief weight by using the method based

on brain region features. Subgraph feature represents the Relief weight by

using the method based on subgraph features. Proposed represents the Relief

weight by adopting the method combined subgraph features and brain region

features. And then, ***indicates that P-value obtained by non-arametric

permutation test is less than 0.001, and *indicates that P-value is less than

0.05.

We can compute the discriminative score of each subgroup using
Equation (8). Suppose the scores of all subgraphs are denoted as

S
(

g1p

)

≥ S
(

g2p

)

· · · ≥ S
(

gmp

)

, S
(

g1n
)

≥ S
(

g2n
)

· · · ≥ S
(

gkn

)

(11)

Based on Equation (11), we can obtain the optimal set of
subgraph features, as

T∗ =
{

gip, g
j
n|i ≤ t1, j ≤ t2

}

(12)

We obtained discriminative subgraphs based on the selected
subgraph features by adopting the FSFS method. Due to the
excessive number of discriminant subgraphs obtained by the
FSFS method, we conducted a further selection using the
threshold of discriminative score K.

Construction of Classification Model
Because we used a combination of local brain region features
and subgraph features as classification features, we adopted the
multi-kernel SVM classifier based on the vector kernel and the
graph kernel. For the vector kernel, we used the function-based
RBF kernel, which is a widely used classification method (Cortes
and Vapnik, 1995; Chen X. et al., 2011). The graph kernel is a
common method for subgraph tests of isomorphism. It bridges
the gap between graph-structured data and a large spectrum of
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FIGURE 6 | The classification performance of different regularization

parameters λ. The ordinate indicates accuracy, specificity and sensibility of this

method, and the abscissa denotes nine groups of different regularization

parameter λ, where 1 represents that λ value is {0.1}, and 2 denotes that λ

value is {0.1, 0.2},and 3 denotes that λ value is {0.1, 0.2, 0.3}, … , 9

represents that {0.1, 0.2, … , 0.9}. Thus, when λ is {0.1, 0.2, … , 0.9}, better

classification performance can be obtained, including that accuracy is

91.60%, and specificity is 93.50%, and then sensibility is 90.50%.

FIGURE 7 | The classification accuracy and the number of features under

different discriminative score threshold K. The ordinate indicates accuracy of

this method, and the abscissa denotes different discriminative score threshold

K, ranging from 2.0 to 3.0 at a step size of 0.1. As shown in the figure, when K

= 0.25, the number of features is 36. Meanwhile, better classification accuracy

was obtained; including that accuracy is 91.6%.

machine learning algorithms called kernel methods (Borgwardt
et al., 2005), which include algorithms such as support vector
machines, kernel regression, or kernel principal component
analysis (Hofmann et al., 2007). The graph kernel is outlined
below.

Graph Kernel
Kernels are widely considered to be suitable indicators for
evaluating the topological similarity of pairwise subjects. Kernels

FIGURE 8 | The classification performance of different optimal weighting

parameters αi . The ordinate indicates accuracy, specificity and sensibility of

this method, and the abscissa denotes different optimal weighting parameter

α
i , ranging from 0 to 1 at a step size of 0.1, and

∑M
i=1 αi = 1. As shown in the

figure, when α
i = 0.3, better classification performance was obtained,

including that accuracy is 91.60%, and specificity is 93.50%, and then

sensibility is 90.50%.

can map the data from an original space onto a higher
dimensional feature space, generally causing the data to be more
linearly separable. The corresponding kernel between subject x
and y can be represented as follows:

k
(

x, y
)

=
〈

ϕ (x) ,ϕ
(

y
)〉

(13)

where ϕ denotes a mapping function that can map data from the
input space to the feature space. Many complex data types can
be implemented through the kernel. The corresponding kernel
of the graph is referred to as the graph kernel (Vishwanathan
et al., 2008), which evaluates the topological similarity between
paired graphs. Various methods have been proposed for
constructing graph kernels, including walk-based (Gärtner
et al., 2003), path-based (Alvarez et al., 2011), and subtree-
based kernels (Shervashidze et al., 2011). Graph kernels have
been successfully adopted for image classification (Harchaoui
and Bach, 2007) and protein function prediction (Borgwardt
et al., 2005). In the current study, we used the Weisfeiler-
Lehman subtree kernel to measure the topological similarity
between pairwise graphs. This method is implemented through
the Weisfeiler-Lehman test of isomorphism (Shervashidze
et al., 2011), which is described in detail in Supplemental
Text S3.

Multi-Kernel SVM
Recent studies have shown that a multi-kernel SVM
can more effectively integrate features from different
modalities than a single kernel SVM (Vishwanathan
et al., 2008). The combination of multiple kernels can
improve classification performance, and can also increase
the interpretability of the results (Lanckriet et al., 2002).
In general, given two subjects x and x′, multiple kernels
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FIGURE 9 | The ROC curve of different methods. Random represents the

ROC curve by randomly selecting sample, where AUC value is 0.500.

Subgraph feature represents the ROC curve by adopting the method based

on subgraph features, where AUC value is 0.762. Brain region feature

represents the ROC curve by adopting the method based on brain region

features, where AUC value is 0.831. Proposed represents the ROC curve by

adopting the method combined subgraph features and brain region features,

where AUC value reach to 0.919.

can be integrated by a linear combination method, as
follows:

k
(

x, x′
)

=
∑M

i=1
αiki

(

x, x′
)

s.t
∑M

i=1
αi = 1 (14)

where ki(x, x
′) denotes a basic kernel between x and x′, αi denotes

a weighting parameter (αi > 0), and M denotes the number of
combined kernel matrices.

In the current study, two types of kernel, based on a
vector kernel and a graph kernel, were combined to construct
the multi-kernel SVM classification model. However, when
using two types of kernel for the classification, it was
necessary to first implement one step separately to achieve
normalization by computing Equation (15), then combining
them.

k∗
(

x, x′
)

= k(x, x′)/
√

k(x, x)k(x′, x′) (15)

Notably, in most studies of the multi-kernel method, the
optimal weighting parameter ai was simultaneously obtained
with some other parameters. However, we adopted a grid
search method to obtain ai. When ai was determined,
the multi-kernel SVM can be achieved by embedding the
multi-kernel method into the conventional single-kernel SVM
classifier.

TABLE 6 | Demographics and clinical characteristics of the subjects.

EMCI LMCI AD P-value

Number(n) 33 32 29 –

Female/male(n) 16/17 13/19 18/11 0.53a

Age (mean ± SD, year) 72.0 ± 6.0 72.6 ± 8.3 72.3 ± 7.4 0.48a

MMSE 27.6 ± 2.1 26.9 ± 2.7 21.0 ± 3.6 <0.0001b

EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; AD,

Alzheimer’s disease; MMSE, Mini-Mental State Examination. achi-square test. bone-way

analysis of variance tests.

TABLE 7 | The abnormal brain regions and significance of brain region feature

between the normal control group and the early mild cognitive impairment group.

No ROI Name P-values

HCC1 HCC2 HCC3

1 Left Superior frontal gyrus, medial 0.0396 0.5082 0.6102

2 Right Middle temporal gyrus 0.7149 0.0442 0.9990

3 Right Olfactory cortex 0.1616 0.0396 0.6522

4 Right Temporal pole: superior temporal gyrus 0.3013 0.0050 0.2474

5 Right Parahippocampal gyrus 0.4322 0.0352 0.0272

6 Right Postcentral gyrus 0.2351 0.1286 0.0352

7 Right Angular gyrus 0.6102 0.1363 0.0129

ROI denotes the reigon of interest. Bold indicates significance p < 0.05.

In the current study, the multi-kernel SVM was used to
implement the classification. We adopted the multi-kernel
SVM method to effectively integrate multiple features, which
fully described the overall interactive information of the brain
network. Specifically, the vector kernel characterizes interactions
among multiple brain regions using three different local
cluster coefficients. Moreover, the graph kernel characterizes
information about topological structure within the connectivity
network.

Cross-Validation
In the current experiment, we adopted 10-fold cross-validation
(Chang and Lin, 2011) to evaluate the performance of our
proposed classification method. Specifically, the subject dataset
was randomly divided into 10 parts, one of which was left as the
testing set, while the remaining nine were regarded as training
sets. In this study, 10-fold cross validation was performed 100
times to obtain more accurate results. Finally, we computed the
arithmetic mean of the 100 repetitions as the final result.

RESULTS

Two types of features were extracted and selected from the
constructed networks, including brain region features and
subgraph features. Brain region features computed and selected
for the HCC1, HCC2 and HCC3. Subgraph features were selected
by FSFS algorithm.
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TABLE 8 | The abnormal brain regions and significance of brain region feature

between the normal control group and the late mild cogniticve impairment group.

No ROI Name P-values

HCC1 HCC2 HCC3

1 Left Posterior cingulate gyrus 0.0371 0.8474 0.3563

2 Left Middle frontal gyrus, orbital part 0.8915 0.0134 0.9569

3 Left Insula 0.7154 0.0338 0.6870

4 Right Amygdala 0.5039 0.0134 0.6727

5 Right Temporal pole: middle temporal

gyrus

0.9109 0.0291 0.3563

6 Right Rolandic operculum 0.6727 0.8474 0.0353

7 Left Supplementary motor area 0.6727 0.1936 0.0250

8 Left Anterior cingulate and

paracingulate gyri

0.1487 0.1668 0.0405

9 Right Calcarine fissure and

surrounding cortex

0.3675 0.9015 0.0337

10 Right Postcentral gyrus 0.1376 0.1606 0.0216

ROI denotes the reigon of interest. Bold indicates significance p < 0.05.

Brain Region Features
After constructing the hyper-network, three local brain region
properties, HCC1, HCC2, HCC3, were extracted and selected.
Specially, HCC1 calculates the amount of adjacent nodes that
have connections not facilitated by node v. HCC2 computes
the amount of adjacent nodes that have connections facilitated
by node v. HCC3 computes the number of overlap among
adjacent hyper-edges of node v. The local brain region features
and abnormal brain regions were then analyzed. Table 3 lists
the abnormal brain regions and the significance of the brain
region features. We used HCC1, HCC2, and HCC3, three
local clustering coefficients, to indicate a significant difference
(p < 0.05, FDR correction) in abnormal brain regions. Table 3
shows a total of 13 abnormal brain regions: the right middle
frontal gyrus (MFG), left inferior temporal gyrus (ITG), right
posterior cingulate gyrus (PCG), left supplementary motor
area (SMA), right parahippocampal gyrus (PHG), right ITG,
right precuneus (PCUN), left fusiform gyrus (FFG), left
supramarginal gyrus (SMG), right hippocampus (HIP), right
putamen (PUT), left thalamus (THA), and left middle temporal
gyrus (MTG).

Subgraph Features
After constructing the hyper-network, hyper-edges were
extracted as subgraph features from the AD and NC groups.
Subgraph features that were repeated within the group were
removed to ensure their uniqueness. Then, the FSFS algorithm
and the threshold of discriminative score K were used to select
the most discriminative subgraphs. With the discriminative score
K threshold set to 0.25, we obtained 18 subgraphs in the NC
group and 32 subgraphs in the AD group. To ensure a balanced
number of features, the 18 subgraph features with the highest
discriminative scores were selected from the AD group. Figure 3
shows the distribution of the discriminative subgraph features in
the brain.

TABLE 9 | The abnormal brain regions and significance of brain region feature

between the normal control group and the Alzheimer’s disease group.

No ROI Name P-values

HCC1 HCC2 HCC3

1 Right Calcarine fissure and

surrounding cortex

0.0060 0.9512 0.9580

2 Right Cuneus 0.0058 0.9641 0.7833

3 Left Lingual gyrus 0.0067 0.4542 0.2203

4 Left Fusiform gyrus 0.0155 0.8045 0.5478

5 Right Superior parietal gyrus 0.0343 0.1704 0.0390

6 Left Thalamus 0.0138 0.6394 0.8114

7 Right Inferior frontal gyrus, triangular

part

0.5780 0.0301 0.6009

8 Right Amygdala 0.1272 0.0160 0.5629

9 Right Temporal pole: middle temporal

gyrus

0.2514 0.0317 0.2289

10 Left Inferior frontal gyrus, opercular

part

0.6086 0.2079 0.0334

11 Right Olfactory cortex 0.8695 0.2908 0.0179

12 Left Superior occipital gyrus 0.2246 0.0912 0.0325

13 Right Postcentral gyrus 0.5553 0.0189 0.0074

14 Left Inferior parietal, but

supramarginal and angular gyri

0.0642 0.2706 0.0361

ROI denotes the region of interest. Bold indicates significance p < 0.05.

To make it easier to analyze the differences between groups,
the 18 subgraphs in each group were combined, as shown
in Figure 3. The subgraph of group A and the subgraph
of group B in Figure 3 were further analyzed. The results
showed that the majority of the discriminative regions were
those brain regions that appeared together in both groups;
however, those that showed significant differences indicated
abnormal regions. Figure 3 shows that these abnormal brain
regions were mainly distributed in the left PCUN, right HIP,
right superior temporal gyrus (STG), right angular gyrus
(ANG), right FFG, left FFG, right PCUN, left ANG, left
lingual gyrus (LING), right MTG, left SMG, right cuneus
(CUN), right LING, left THA, and right postcentral gyrus
(PoCG).

In addition, in order to better analyze the abnormal brain
regions, and the differences among them in the NC group
and AD group, this study examined the distribution of these
abnormal regions in the brain. The number of occurrences
of abnormal brain regions was summed in the NC and
AD groups, and the regions were then sorted according to
their sums. Figure 4A shows the distribution of the abnormal
regions, and Figure 4B shows the distribution of the sum of
occurrences in the NC and AD groups. We counted the sum
of occurrences of these abnormal brain regions, and then chose
the 10 highest for further analysis: the left PCUN, right HIP,
right STG, right ANG, right FFG, left FFG, right PCUN, left
ANG, left LING, and right MTG. Table 4 shows the detailed
information of the top 10 abnormal regions with significant
differences.
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TABLE 10 | Top 10 abnormal brain regions of subgraph features of the Alzheimer’s disease patients in our collected dataset and ADNI dataset.

No Our Collected Dataset Citations ADNI Dataset Citations

1 Left Precuneus+ He et al., 2007 Right Hippocampus+ Liu et al., 2014

2 Right Hippocampus+ Liu et al., 2014 Right Lingual gyrus+ He et al., 2007

3 Right Superior temporal gyrus+ Solépadullés et al., 2009 Right Fusiform gyrus+ Yetkin et al., 2006

4 Right Angular gyrus Liu et al., 2014 Left Lingual gyrus He et al., 2007

5 Right Fusiform gyrus+ Yetkin et al., 2006 Left Fusiform gyrus+ He et al., 2007

6 Left Fusiform gyrus+ He et al., 2007 Left Precuneus+ He et al., 2007

7 Right Precuneus He et al., 2007 Left Posterior cingulate gyrus He et al., 2007

8 Left Angular gyrus+ Liu et al., 2014 Left Angular gyrus+ Liu et al., 2014

9 Right Lingual gyrus+ He et al., 2007 Right Superior temporal gyrus+ Solépadullés et al., 2009

10 Right Middle temporal gyrus Berg et al., 1998 Right Cuneus He et al., 2007

+ Indicates the abnormal brain region appears in both datasets. ADNI, Alzheimer’s Disease Neuroimaging Initiative.

TABLE 11 | Top 10 abnormal brain regions of subgraph features in the early mild cognitive impairment group, the late mild cognitive impairment group and Alzheimer’s

disease group in ADNI dataset.

No EMCI Group Citations LMCI Group Citations AD Group

1 Right Superior frontal gyrus, dorsolateral× Yetkin et al., 2006 Right Superior frontal gyrus, dorsolateral× Yetkin et al., 2006 Right Hippocampus*

2 Left Middle frontal gyrus × Zhao et al., 2015 Left Superior frontal gyrus, medial× Yetkin et al., 2006 Right Lingual gyrus

3 Right Middle frontal gyrus× Zhao et al., 2015 Left Parahippocampal gyrus× Liu J. et al., 2015 Right Fusiform gyrus

4 Right Olfactory cortex Zhao et al., 2015 Right Precentral gyrus Devanand et al., 2006 Left Lingual gyrus

5 Left Superior frontal gyrus, medial× Yetkin et al., 2006 Left Middle frontal gyrus× Zhao et al., 2015 Left Fusiform gyrus

6 Right Superior frontal gyrus, medial× Yetkin et al., 2006 Right Middle frontal gyrus× Zhao et al., 2015 Left Precuneus

7 Left Insula× Devanand et al., 2006 Right Superior frontal gyrus, medial× Yetkin et al., 2006 Left Posterior cingulate gyrus

8 Left Superior occipital gyrus× Morgen et al., 2013 Left Insula× Devanand et al., 2006 Left Angular gyrus

9 Left Parahippocampal gyrus× Liu J. et al., 2015 Left Superior occipital gyrus× Morgen et al., 2013 Right Superior temporal gyrus

10 Left Fusiform gyrus Lim et al., 2011 Right Hippocampus* Morgen et al., 2013 Right Cuneus

× Indicates the abnormal brain region appears in both EMCI and LMCI groups. *Indicates the abnormal brain region appears in both LMCI and AD groups. EMCI, early mild cognitive

impairment; LMCI, late mild cognitive impairment; AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative. The citations of AD group are shown in Table 10.

Classification Results
The classification accuracy, specificity, sensitivity, and AUC
under the ROC curve were used as a quantitative measure
to evaluate the experimental results. To demonstrate the
classification performance of the proposedmethod, we compared
the accuracy, sensitivity, and specificity of different classification
methods, and analyzed the differences among different network
construction methods and feature extraction methods. As can be
seen from Table 5, the proposed method performed better than
the conventional methods of constructing the functional network
by partial correlations or Pearson correlations.

To accurately compare the different methods of feature
extraction, we used the same dataset and constructed the same
network, and the brain region features, subgraph features,
and multi-features method were used for the classification,
respectively. The classification results are shown in Table 5. The
experimental results showed that the proposedmethod’s accuracy
of 91.60%, specificity of 90.50%, and sensitivity of 93.5% were
significantly better than the classification results using only a
single feature.

Finally, the Relief algorithm was used to evaluate the
importance of features. The Relief algorithm was first proposed
by Kira (Kira and Rendell, 1992) and has been widely applied
in selecting features for classification (Rosario and Thangadurai,

2015). As shown in Figure 5, to verify the validity of the proposed
method, the brain region feature, subgraph feature, and multi-
feature methods were each evaluated by the Relief algorithm. The
weight of every feature was obtained according to the correlation
between the feature and its class. The greater the relief weight,
the stronger the correlation between the feature and the class,
indicating that the feature is more important for classification.
Figure 5 shows that the relief weight of the multi-feature method
was significantly higher than that of the single feature method.

In conclusion, the proposed method of machine learning
classification combining multiple features of a hyper-network of
fMRI data in AD could be used to effectively classify healthy
people and AD patients.

Effect of Regularization Parameter λ

The proposed classification model involves setting some
parameters, which would be expected to affect the final
results. Here, we tested the classification performance with
different parameters, including the regularization parameter λ

of the sparse target optimization function, the threshold of the
discriminative score K, and the optimal weighting parameter αi,
and attempted to determine the optimal parameter settings.

We constructed the hyper-networks by adopting a sparse
representation method, where λ indicates a regularization
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TABLE 12 | The abnormal brain regions of brain region features of the Alzheimer’s disease patients in our collected dataset and ADNI dataset.

No Our Collected Dataset Citations ADIN Dataset Citations

1 Right Middle frontal gyrus Wang et al., 2011 Right Calcarine fissure and surrounding cortex Hampel et al., 2002

2 Left Inferior temporal gyrus Wang et al., 2011 Right Cuneus He et al., 2007

3 Right Posterior cingulate gyrus He et al., 2007 Left Lingual gyrus He et al., 2007

4 Left Supplementary motor area Wang et al., 2011 Left Fusiform gyrus+ He et al., 2007

5 Right Parahippocampal gyrus Wang et al., 2011 Right Superior parietal gyrus Zhou and Jin, 2008

6 Right Inferior temporal gyrus Wang et al., 2011 Left Thalamus+ Solépadullés et al., 2009

7 Right Precuneus He et al., 2007 Right Inferior frontal gyrus, triangular part He et al., 2007

8 Left Fusiform gyrus+ He et al., 2007 Right Amygdala Hampel et al., 2002

9 Left Supramarginal gyrus Grady et al., 2003 Right Temporal pole: middle temporal gyrus Zhou and Jin, 2008

10 Right Hippocampus Liu et al., 2014 Left Inferior frontal gyrus, opercular part He et al., 2007

11 Right Lenticular nucleus, putamen De-Jong et al., 2008 Right Olfactory cortex Vasavada et al., 2015

12 Left Thalamus+ Solépadullés et al., 2009 Left Superior occipital gyrus Grady et al., 2003

13 Left Middle temporal gyrus Grady et al., 2003 Right Postcentral gyrus Wang et al., 2011

14 – – Left Inferior parietal, but supramarginal and angular gyri Grady et al., 2003

+ indicates the abnormal brain region appears in both groups. ADNI, Alzheimer’s Disease Neuroimaging Initiative.

parameter for controlling the sparsity of the network (λ > 0).
By setting different values of λ within a required range, we
obtained an array of hyper-edges. To research the classification
performance of this method with different λ values, nine groups
of different λ values were tested, {0.1}, {0.1, 0.2}, {0.1, 0.2, 0.3},
. . . , {0.1, 0.2, . . . , 0.9}. The classification results indicated
that a greater number of λ values corresponded with better
classification performance. In a previous study (Jie et al., 2016),
the λ value was set to {0.1, 0.2, . . . , 0.9}, as shown in Figure 6,
and was confirmed experimentally. Therefore, in this study, λ

was set to {0.1, 0.2, . . . , 0.9}. Figure 6 shows the classification
performance under different regularization parameters.

Effect of Discriminative Score Threshold K
The FSFS algorithm was adopted to select discriminative
subgraphs. Because of the excessive number of selected
subgraphs, a threshold value was set (the discriminative score
threshold K). The other parameters were controlled to select a
more accurate discriminative score threshold K. The threshold
K ranged from 0.20 to 0.30 and the interval was 0.01. Figure 7
shows the classification accuracy and the number of features
under different discriminative score threshold K-values. The
experimental results showed that when the discriminative score
threshold K = 0.25, the number of features was 36, and the
classification accuracy was optimal. One potential explanation is
that when the threshold was too small, features that contributed
little to the classification were also chosen, but when it was
too large, features that made large contributions were removed,
leading to lower classification accuracy in both cases.

Effect of Optimal Weighting Parameter αi
A multi-kernel SVM was used for classification, which involved
finding the optimal weighting parameter αi. To examine the
effects of different values of αi on classification performance,
the range was set from 0 to 1, with a step size of 0.1 and
∑M

i=1 αi = 1. Figure 8 shows the classification performance

under different optimal weighting parameters αi. The best
classification performance was obtained when αi = 0.3, with
accuracy of 91.60%, sensitivity of 93.50%, and specificity of
90.5%. The experimental results showed that different values
of optimal weighting parameters αi influenced the classification
results.

DISCUSSION

In this study, we proposed a method of machine learning
classification combining multiple features of a hyper-network of
fMRI data in AD. Hyper-networks were constructed on the AD
dataset to analyze the interactions among multiple brain regions.
Then, two types of features were used for feature extraction
and selection: brain region features were selected using a non-
parametric test method, and subgraph features were selected
using the FSFS algorithm. Finally, two types of kernel (vector
kernel and graphkernel) were fused, and a multi-kernel SVM
classifier was used for classification. The experimental results
verified the validity of the proposed method.

The most Discriminative Brain Regions
Using Brain Region Features
Two methods were used to discriminate significantly abnormal
brain regions between groups. The results using only brain
region features showed 13 abnormal regions, as shown in brain
region features of experiments and results section.Many previous
researches have found that these brain regions are abnormal in
AD patients. Specifically, the posterior cingulate cortex (PCC)
is mainly involved in episodic memory and short-term memory
processing (Gusnard and Raichle, 2001; Buckner et al., 2008)
and is a critical region in human brain structural and functional
networks (Greicius et al., 2004; Cavanna and Trimble, 2006;
Zhang et al., 2009; Binnewijzend et al., 2012). Studies have shown
that the PCC is one of the most robust brain regions in the
resting state. The PCUN is also an important component of the
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default mode network, and is closely related to the extraction of
episodic memory (Fransson and Marrelec, 2008). Using r-fMRI,
several recent studies have suggested that the PCC/PCu exhibits
reduced regional activity in AD patients (He et al., 2007). In
addition, using resting-state fMRI to measure the amplitude of
low-frequency fluctuations (ALFF) of intrinsic brain activity in
23 patients with moderate AD and 27 age- and gender-matched
healthy controls, Liu et al. (2014) found that AD patients also
showed increased ALFF in the bilateral Hip/PHG. The Hip/PHG
is considered to be critical to memory function. Compared with
normal controls, the AD patients showed decreased ALFF values
in the bilateral PCC/PCu, MTG, and STG. Yetkin et al. (2006)
proved that AD patients showed more activation than controls
in the right MFG, left ITG, left THA, and right PUT and so
on. Wang et al. (2011) used resting-state functional MRI to
investigate spatial patterns of spontaneous brain activity in 22
healthy elderly subjects, 16 MCI, and 16 AD patients. The results
showed that ALFF differences between AD patients and healthy
elderly subjects were mainly found in the bilateral PHG/Hip,
bilateral SMA, and left FFG. The results obtained in this study
are consistent with those of previous studies.

The Most Discriminative Brain Regions
Using Subgraph Features
The results using only subgraph features showed that the
abnormal brain regions included the left PCUN, right HIP,
right STG, right ANG, right FFG, left FFG, right PCUN, left
ANG, left LING, right MTG, left SMG, right CUN, right LING,
left THA, and right PoCG. These abnormal brain regions have
been shown to be associated with AD in previous studies. Both
structural MRI and resting-state fMRI scans were collected from
14 AD subjects and 14 age-matched normal controls. He et al.
(2007) found that regional coherence was significantly decreased
in the PCUN in the AD patients compared with the normal
controls. Recent functional imaging studies have indicated that
the pathophysiology of AD may be associated with changes in
spontaneous low-frequency (<0.08Hz) blood oxygenation level
dependent fluctuations (LFBF) measured during a resting state
(He et al., 2007). He et al. also found that AD patients showed
increased LFBF coherence in the bilateral CUN, right LING, and
left FFG. Neuropathological studies indicate that brain lesions are
already present in the inferior parietal lobule (IPL) (including the
ANG and left SMG) in incipient AD, although they are observed
less frequently than in medial temporal areas (Berg et al., 1998;
Markesbery et al., 2006; Haroutunian et al., 2007). Liu et al. (2014)
found that AD patients also showed increased ALFF in the IPL.
Yetkin et al. (2006) evaluated brain activation in patients with
probable AD, MCI, and controls while performing a working
memory task. The AD group showed more right FFG and left
THA activation than the control group. In this study, the right
HIP (Liu et al., 2014) and right STG (Solépadullés et al., 2009) are
consistent with previous studies.

Classification Performance
Conventional methods of constructing functional networks
cannot reflect the interactions among multiple brain regions
and thus ignore the higher-order information among them.
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To study the complex interaction information among multiple
brain regions, Jie et al. (2016) proposed to construct a hyper-
network model. In the Jie et al. study, the local brain region
properties were extracted from the hyper-network as features,
and the most discriminative features were selected. Finally,
the multi-kernel SVM was adopted for classification. The
construction of the hyper-networks enabled us to identify
the interaction information among brain regions. In addition,
to show that the classification method based on subgraph
features can better capture the topological information among
brain regions, Fei et al. (2014) adopted frequent subgraph
mining technology to mine frequent sub-networks in an MCI
dataset, then used a discriminative subgraph mining algorithm
to mine discriminative sub-networks. Finally, they used SVM
based on a graph kernel for the classification. Du et al.
(2016) used the frequent subgraph mining technique to mine
frequent sub-networks in an ADHD dataset, then the FSFS
method to select the sub-networks, and graph kernel principal
component analysis to extract the features. Finally, SVM was
used to classify the data. Wang et al. (Zhou et al., 2014)
adopted the same technology to mine frequent sub-networks
in an MCI dataset, and then combined the discriminative sub-
networks with conventional quantitative properties to select
features. Finally, they used multi-kernel SVM for classification.
The above results show that classification methods based
on subgraph features can effectively improve classification
performance.

The results of this study were compared with those obtained
by conventional methods of functional connectivity network
construction based on partial or Pearson correlations (Table 5).
The results showed that the proposed method does not just
identify the interactive information between brain regions, but
can effectively represent the higher-order information among
them. In addition, Jie et al. (2016) experimented in the MCI
dataset. In comparison, the classification performance of the
proposed method was similar and the difference might have
been due to the use of different datasets. The same method using
different datasets may obtain different classification results,
and different methods also differ in the way they construct the
network and extract and classify features. To accurately compare
the different methods of feature extraction, we used the same
dataset and constructed the same hyper-network, and compared
the classification results using the brain region feature method,
subgraph feature method, andmulti-feature method, respectively
(Table 5). The diagnostic accuracy of the multi-feature method
was 8.3% better than that obtained using only single features.
Furthermore, Figure 9 shows the ROC curves for the different
classification methods. The AUC value was 0.762 for the
subgraph feature method and 0.831 for the brain region feature
method, compared with 0.919 for the multi-feature classification
method, an increase of at least 0.088. The results show that the
proposed classificationmethod combining subgraph features and
brain region features preserved not only the global topological
information of the brain region, but also the sensitivity to change
in a single brain region. The multi-feature classification
method can effectively improve the diagnosis accuracy
of AD.

TABLE 14 | Classification performance of different methods.

Method Research Diseases Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

Hyper-

network

Subgraph feature EMCI 64.90 70.10 61.60

Brain region feature EMCI 69.21 73.27 65.67

proposed EMCI 72.80 78.25 67.13

Subgraph feature LMCI 71.10 76.33 66.95

Brain region feature LMCI 74.33 79.21 69.00

proposed LMCI 78.63 82.54 72.18

Subgraph feature AD 75.60 78.33 71.05

Brain region feature AD 80.23 81.25 77.90

proposed AD 88.91 91.73 85.66

EMCI, early mild cognitive impairment; LMCI, late mild cognitive impairment; AD,

Alzheimer’s disease.

The Relief algorithm was used to verify the importance of the
underlying features for classification accuracy, with significance
analyzed by a non-parametric permutation test. As shown
in Figure 5, the average Relief weight of the multi-feature
method was significantly higher than that of the single-feature
method, indicating that the multi-feature method was better for
assessing the importance of features. However, the underlying
reason was that the multi-feature based method effectively fused
two different yet complementary interaction information: brain
region features and subgraph features. Therefore, it not only
reflected the information from a single brain region, but also
captured the global topological information among brain regions.
All of the above experimental results demonstrate the validity of
the proposed method.

Features Selection
The current findings demonstrated that the multi-feature
combination method effectively integrated multiple network
properties, further improving classification performance.
The relief analysis method was performed to evaluate the
contributions of selected features during the classification
process. The relief weight obtained with multiple combined
features was significantly greater than the weight obtained when
only brain region features or subgraph features were adopted.
Regarding the underlying mechanisms, this is likely to be because
adopting multiple features can integrate complementary network
information, combining local brain region features and subgraph
features, thus further improving classification accuracy. Some
studies have also demonstrated that multiple features can
effectively combine multiple different complementary network
properties for classification (Jie et al., 2014; Zhou et al., 2014).
Global network topology information will be lost only from the
perspective of the brain region features. In addition, subgraph
features can also result in the loss of sensitivity of a single brain
region.

Regularization Parameter λ

Previous researches had demonstrated that the parameter λ had
a great effect on the hyper-network structure. The parameter λ

determined the sparsity and scale of network regions. If λ was
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FIGURE 10 | The illustration of relief weight and MMSE score. The left ordinate

indicates relief weight and the right indicates MMSE scores. The abscissa

indicates the comparison between NC group and three disease groups (EMCI

group, LMCI group and AD group). The blue histogram represents the relief

weight. The dark yellow histogram represents the MMSE values. The figure

showed that the relief weights increased gradually with the reduction in MMSE

scores.

too small, the network would be too coarse and involve much
noise; if λ was too large, the network would be too sparse (Lv
et al., 2015). Besides, it was found that the reliability of network
structure, especial modularity, was sensitive to the sparsity which
was controlled by λ (Xuan and Wang, 2015). Furthermore, the
parameter λ also impacted on the classification performance. The
ultimate classification accuracy was extremely sensitive to the
network model parameters, especial λ (Qiao et al., 2016). As the
authors known there was no golden criterion for selection of λ.
How to find a suitable λ was important for the construction of
hyper-network and classifier. Some optimization methods were
proposed. Qiao et al. conducted parameter selection in a large
range by computing the classification accuracy based on leave
one out test on all the subjects, choosing the corresponding
parametric of the best classification accuracy (Qiao et al., 2016).
Xuan et al. chose the parameter λ by computing the value of
intra-class correlation coefficient (Xuan and Wang, 2015), which
could describe the reliability of network structure (Braun et al.,
2012). However, It was found that it was hard to achieve a high
reliable network structure by setting a single λ. The research
showed that the network achieved a relatively high reliability
only when λ took 0.01 (it was very close to 0, which suggested
that almost all the nodes in the network were connected in the
given hyper-edge). In other cases, it performedmoderately (Xuan
and Wang, 2015). Multi-level λ setting method was proposed
(Jie et al., 2016). Different from single λ setting, multi-level λ

setting method set a combination of several λ which provided
more network structure topology information than the former
method. Multi-level λ setting method could avoid the arbitrary
decision of single λ setting method and reduce the influence of
the low reliability caused by single network structure.

How to get the most optimizing combination of λ values
was one of the important thing in the multi-level λ setting
method. Enumeration method was not suitable because of the

huge computation consumption caused by the large amount
of random combinations. For a nine intervals setting which
was adopted in the current study, there were 511 different
combinations in total (C1

9+C2
9+C3

9+C4
9+C5

9+C6
9+C7

9+C8
9+

C9
9 = 511). More intervals could result in more combinations. In

the current study, a series of serial ascending order combinations
was adopted, embodying as {0.1}, {0.1, 0.2}, . . . , {0.1, 0.2, . . . , 0.9}
(nine combinations in total). The method remained small λ

values in the combinations as many as possible that means more
nodes were connected in the constructed hyper-edges. It was
thought that the hyper-edges with many nodes could describe
the underlying relationship among several nodes. Reverse order
combination was not taken into account because many large
λ values was remained in the combinations. Strict λ setting
could result in a few nodes in the constructed hyper-edges. In
our experiments, it was found that almost all the hyper-edges
connected only two nodes when λ was 0.9. It suggested the
hyper-network had degenerated into the conventional network.
Admittedly, ascending order method was still arbitrary. It was
one of the limitations of the current study. A feasible optimizing
combination selection method should be researched in the
future.

To characterize multi-level relationships within multiple
brain regions, it is necessary to set a range of different λ

values. The more λ values, the more interaction information
among multiple brain regions contained in the hyper-edges.
In the current study, we set nine groups of different λ

values and the classification results showed that a greater
number of λ values corresponded to better classification
performance. This result suggests that when a hyper-edge
contains more multi-level interaction information, the hyper-
network reflects greater structural differences among the
different samples. These structural differences could be embodied
both by node metrics and hyper-edge connection patterns.
Therefore, the advantages of multiple sparse levels indicates
the superiority of hyper-networks compared with conventional
simple networks.

Limitations
We proposed a method of machine learning classification
combining multiple features of a hyper-network of fMRI data in
AD, which could be used to effectively classify normal controls
and AD patients. However, there were some limitations. A
sparse linear regression model was used to construct the hyper-
networks. However, when constructing the hyper-edges, for a
chosen brain region, if the pairwise correlations between other
brain regions were very high, then this method tended to select
only one region with a grouping effect from the group, but did
not care which one was selected. It is possible that some related
brain regions were not selected, which means the grouping effect
information could not be explained. Constructing the hyper-
network based on sparse representation confirmed the stability
of constructed hyper-edges, which is also an important step. To
address this limitation in future studies, we plan to adopt other
effective methods, such as the robust least absolute shrinkage and
selection operator (LASSO) (Xu et al., 2008) and group LASSO
(Yuan and Lin, 2006).
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REPEATABILITY VERIFICATION

To further verify the repeatability of the proposed method,
we tested it with the public Alzheimer’s Disease Neuroimaging
Initiative (ANDI) data set. The data set included data from 94
subjects, including 33 early mild cognitive impairment (EMCI)
patients, 32 late mild cognitive impairment (LMCI) patients and
29 AD patients. There were no significant differences in gender or
age among the four groups, but mini-mental state examination
(MMSE) scores were significantly different among the groups.
Demographics and clinical characteristics of the subjects are
listed in Table 6.

We adopted the same method as described above. First, a
sparse linearmodel was used to construct the hyper-network with
the EMCI data set. Local brain region properties (HCC1, HCC2,
and HCC3) and subgraphs were then extracted as features.
Finally, two different features were combined, and multi-kernel
SVM was adopted to perform classification. Ten-fold cross-
validation was repeated 100 times. The experimental protocol
was repeated with both the LMCI and AD data sets.

The local brain region properties HCC1, HCC2, and HCC3
were further analyzed, and significant differences (p < 0.05, FDR
correction) in abnormal brain regions were selected for the three
groups. Tables 7–9 list the abnormal brain regions between NC
group and EMCI group, LMCI group, AD group respectively. As
above, the FSFS algorithm was adopted to select discriminative
subgraphs in the three data sets. To achieve a similar number of
discriminative subgraph features to that in our previous study,
the discriminative score K threshold was set at 0.2. We obtained
24 discriminative subgraphs between the NC and EMCI groups,
and 30 discriminative subgraphs between the NC and LMCI
groups, and 32 discriminative subgraphs between the NC and
AD groups. We further analyzed the subgraph patterns for each
group pair, revealing the abnormal brain regions between them.
Detailed results are shown in the Supplemental Figure S1.

We compared the abnormal regions of subgraph features
of AD patients in our collected dataset and ADNI dataset. It
was found that there were many overlapped abnormal regions
between two datasets (Table 10). In the top 10 abnormal regions,
there were seven regions found both in our collected dataset
and ADNI dataset, including right hippocampus, right lingual
gyrus, right fusiform gyrus, left fusiform gyrus, left precuneus, left
angular gyrus and right superior temporal gyrus. In addition, we
compared the abnormal brain regions of the EMCI, LMCI, and
AD groups in ADNI dataset (Table 11). The results showed that
there were a large number of overlapped abnormal brain regions
between EMCI and LMCI, which included right dorsolateral
superior frontal gyrus, left middle frontal gyrus, right middle
frontal gyrus, left medial superior frontal gyrus , right medial
superior frontal gyrus, left insula, left superior occipital gyrus
and left parahippocampal gyrus. The above overlapped regions
showed that the subgraph features had good repeatability and
stability. Analysis showed that many abnormal brain regions of
EMCI and LMCI groups were located in the frontal lobe and
limbic system. It was noted that only one overlapped abnormal
brain region (right hippocampus) was found between LMCI
and AD groups. The results indicated that there were obvious

differences in the abnormal brain regions obtained by subgraph
features of different diseases.

Meanwhile, we compared the abnormal regions of brain
region features of AD patients in our collected dataset and ADNI
dataset. Differentiating from subgraph features, the results of
brain region features showed that there were only two overlapped
abnormal brain regions, including left fusiform gyrus and left
thalamus (Table 12). In addition, after compared among EMCI,
LMCI and AD groups in ADNI dataset, the results of abnormal
regions showed a great deal of difference (Table 13). There was
only one brain region (right postcentral gyrus) appearing in the
all three groups. Only one brain region (right olfactory cortex)
overlapped in EMCI and AD groups and three brain regions
(right amygdala, right temporal pole: middle temporal gyrus and
right calcarine fissure and surrounding cortex) overlapped in
LMCI and AD groups. There was not any region overlapped in
EMCI and LMCI groups. The results showed that, compared the
subgraph features, the brain region features were not stable. The
abnormal brain regions obtained by brain region features were
significantly different in different datasets or different diseases.
Furthermore, the contrast analysis found a result consistent with
subgraph features. The result showed that the abnormal brain
regions mainly were located in the frontal lobe and limbic lobe in
EMCI and LMCI groups (Pennanen et al., 2005; Whitwell et al.,
2008; Schroeter et al., 2009; Wang et al., 2011).

In this paper, the subgraph features and the brain region
features were used as the features of classification, which
described the different network properties from different
perspectives. Subgraph features were represented as connected
patterns while brain region features were represented as
quantifiable values. Compared with brain region features,
subgraph features showed better repeatability and stability. To
be specific, there were more overlapped abnormal brain regions
of subgraph features, no matter in different datasets (AD group
in our collected dataset vs. AD group in ADNI dataset) or
different diseases (EMCI group in ADNI dataset vs. LMCI group
in ADNI dataset). The result suggested that the differences of
network structure, which were embodied by connected pattern,
were not susceptible to the different datasets. It should be noted
that the characteristic of subgraph features also implied that it
was insensitive to the changes of samples. On the contrary, the
brain region features were sensitive to the changes of samples.
Different datasets showed significant differences in abnormal
brain regions. Therefore, the abnormal brain regions obtained
by brain region features in a dataset were difficult to apply to
other datasets. Although the repeatability of the brain region
features was not strong, the quantifiable local property could
capture the specific inter-group differences. These differences
could distinguish between the given groups, despite they were
not repeatable in other datasets. The direct evidence of this
conclusion was that the classification accuracy of brain region
features was higher than that of subgraph features in the both
datasets (Tables 5, 14).

We performed classification in the three different group pairs
separately, including NC vs. EMCI, NC vs. LMCI and NC vs.
AD. In addition, to compare the different feature extraction
methods, we also performed classification using only brain region
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features and subgraph features (Table 14). In the three different
group pairs, the multi-feature method consistently showed better
classification performance than the single feature method. This
result is consistent with the findings of our previous study. In
addition, the classification accuracy between the NC and AD
groups reached 88.91%, which was closed to the results of our
self-collection data set (91.60%). These findings suggest that our
proposed method is stable and repeatable.

It should be noted that the performance of the proposed
method with EMCI and LMCI patients was relatively low (72.80
and 78.63%, respectively). These findings suggest that the hyper-
network method was unable to reveal differences in network
structure in the early stages of disease development. Thus, the
selected network features, brain regions, or subgraph features,
appear to have been insufficient for describing between-group
differences effectively (the classification accuracy with single
feature types was below 80%, in both the EMCI and LMCI
groups). In addition, we analyzed the relief weights of features
and MMSE scores among three disease groups (Figure 10). The
analysis revealed that the relief weights increased gradually with
the reduction in MMSE scores. This result demonstrates that the
classification accuracy gradually increased with the development
of the disease. The severity of the disease would be expected to
enhance the differences in network structure between patients
and normal controls. However, in the early stage of illness,
particularly in the EMCI group, the hyper-network method was
unable to reveal differences in network structure, compared with
normal controls. This represents a potential limitation of the
proposed method.

CONCLUSION

Compared with the conventional methods of constructing
functional connectivity networks, a hyper-network can reflect
the interaction information among multiple brain regions
and improve the classification of disease using higher-order
information. However, existing methods use brain region
features for classification, but an obvious deficiency of this
method is that some useful topology information might be
lost. To address the current limitations of conventional network
modeling approaches, we proposed a method of machine
learning classification combining multiple features of a hyper-
network using fMRI data in AD. The proposed method has
two important advantages. First, the method considers the
interactions among brain regions and thus reflects more complex
interactions. Second, it combines two types of complementary
features for feature extraction, which ensures the integrity of the
structural information and the sensitivity to change in a single
brain region. The results of analyses with two different data
sets showed that the proposed method improved classification

performance of AD, compared with conventional methods.
However, it should be noted that the proposed method was
unable to identify EMCI patients because of the lack of significant
structural differences of hyper-networks in these patients.
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