
ORIGINAL RESEARCH
published: 22 December 2017
doi: 10.3389/fnins.2017.00729

Frontiers in Neuroscience | www.frontiersin.org 1 December 2017 | Volume 11 | Article 729

Edited by:

Nikolaus Weiskopf,

Max Planck Institute for Human

Cognitive and Brain Sciences (MPG),

Germany

Reviewed by:

Robert Elton Smith,

Florey Institute of Neuroscience and

Mental Health, Australia

Sjoerd Vos,

University College London,

United Kingdom

*Correspondence:

Stefan Sommer

sommer@biomed.ee.ethz.ch

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 10 March 2017

Accepted: 14 December 2017

Published: 22 December 2017

Citation:

Sommer S, Kozerke S, Seifritz E and

Staempfli P (2017) Uniformity and

Deviation of Intra-axonal

Cross-sectional Area Coverage of the

Gray-to-White Matter Interface.

Front. Neurosci. 11:729.

doi: 10.3389/fnins.2017.00729

Uniformity and Deviation of
Intra-axonal Cross-sectional Area
Coverage of the Gray-to-White
Matter Interface
Stefan Sommer 1, 2*, Sebastian Kozerke 1, Erich Seifritz 3 and Philipp Staempfli 2, 3

1 Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland, 2MR-Center of the

Departments of Psychiatry, Psychotherapy and Psychosomatics and of Child and Youth Psychiatry and Psychotherapy,

Psychiatric Hospital, University of Zurich, Zurich, Switzerland, 3Department of Psychiatry, Psychotherapy and

Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland

Diffusion magnetic resonance imaging (dMRI) is a compelling tool for investigating the

structure and geometry of brain tissue based on indirect measurement of the diffusion

anisotropy of water. Recent developments in global top-down tractogram optimizations

enable the estimation of streamline weights, which characterize the connection between

gray matter areas. In this work, the intra-axonal cross-sectional area coverage of the

gray-to-white matter interface was examined by intersecting tractography streamlines

with cortical regions of interest. The area coverage is the ratio of streamline weights

divided by the surface area at the gray-to-white matter interface and assesses the

estimated percentage which is covered by intra-axonal space. A high correlation

(r = 0.935) between streamline weights and the cortical surface area was found across

all regions of interest in all subjects. The variance across different cortical regions exhibits

similarities to myelin maps. Additionally, we examined the effect of different diffusion

gradient subsets at a lower, clinically feasible spatial resolution. Subsampling of the initial

high-resolution diffusion dataset did not alter the tendency of the area coverage at the

gray-to-white matter interface across cortical areas and subjects. However, single-shell

acquisition schemes with lower b-values lead to a steady increase in area coverage in

comparison to the full acquisition scheme at high resolution.

Keywords: tractography, fiber optimization, area coverage, intra-cellular cross-sectional area, gray-to-white

matter interface, cortical folding

INTRODUCTION

Diffusion tractography algorithms are able to reveal global fiber structures by estimating
continuous streamline connections based on the local diffusion information throughout the brain
(Jbabdi and Johansen-Berg, 2011; Jbabdi et al., 2015). In the last decade, the performance of tracking
algorithms has significantly improved by considering the information contained in orientation
distribution functions (ODF) or fiber orientation distribution (FOD), especially in regions with
complex fiber configurations (Behrens et al., 2007; Fillard et al., 2011; Tournier et al., 2011).
Two excellent reviews considering tractography pitfalls can be found in Jbabdi and Johansen-Berg
(2011), Jones (2010), and Jones et al. (2012). Some of these issues are scanner related (e.g., eddy
current induced distortions), caused by time restrictions, or due to the limited spatial resolution
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in clinically feasible acquisition protocols of diffusion data (about
2.5 mm isotropic), which is orders of magnitude larger than the
diameter of a single axon. In the Human Connectome Project
(HCP), data acquisition techniques and processing protocols
have been significantly advanced (Glasser et al., 2013; Ugurbil
et al., 2013). Besides progress in post-processing, the HCP
provides high quality in-vivo diffusion data acquired with multi-
shell diffusion gradient schemes and a high spatial resolution
(Sotiropoulos et al., 2013). These datasets have been acquired
on a dedicated MR scanner with optimized hardware and less
severe acquisition time constraints in comparison to clinical
applications.

However, not all problems can be addressed by improved
hardware and acquisition protocols. One of the major remaining
challenges is to reliably extract quantitative measures from
tractograms across different populations.

Recent developments in global top-down tractography
optimizations enable the estimation of fiber contributions and
compartment fractions (Sherbondy et al., 2009, 2010; Smith et al.,
2013, 2015b; Pestilli et al., 2014; Daducci et al., 2015). However,
all of these optimization methods have their own pitfalls. An
overview of problems and open challenges is given in Daducci
et al. (2016).

Numerous models based on diffusion weighted imaging have
been proposed to estimate parameters related to the restricted,
intra-axonal compartment, commonly referred to as fiber density
(Calamante et al., 2015; Raffelt et al., 2016). In the work of
(Daducci et al., 2015; Smith et al., 2015b), an optimal weight
for each streamline is determined according to a biologically
motivated forward model and the measured diffusion signal.
By assigning a weight of zero, false positive or implausible
connections can be eliminated. The intra-axonal volume (i.e.,
fiber density) is calculated by multiplying each streamline
contribution (fiber weight) by the streamline length. Therefore,
the fiber weight is related to the intra-axonal cross-sectional area
(Raffelt et al., 2012, 2016; Calamante et al., 2015; Smith et al.,
2015b).

During development, the intricate folding of the cortex is
formed in order to optimize the wiring and organization of the
brain and fit a large cortex in a limited cranial volume (Fernández
et al., 2016; Tallinen et al., 2016). The cortical surface area has
been shown to be inversely correlated with gray matter thickness
(Toro and Burnod, 2005; Pillay and Manger, 2007) and cortical
areas seem to have evolved to optimize inter-areal connections by
minimizing the required axonal volume within the white matter
(Klyachko and Stevens, 2003). An increase of cortical thickness
allows for more local axonal connections, whereby an increase
of surface area might be needed to form more long-range axonal
connections traversing the white matter. The intra-axonal cross-
sectional area coverage is described by the ratio of streamline
weights to gray-matter area and therefore indirectly assesses the
estimated surface area percentage which is covered by intra-
axonal space. Due to strict spatial constraints in the brain, we
anticipate a homogeneous area coverage at the gray-to-white
matter interface (G-WMI).

In this work, we tested this hypothesis by examining the
tractography fiber weights from the COMMIT optimization and

intersect the streamlines with cortical gray matter regions of
interest (ROIs) to estimate the intra-axonal area coverage at
the G-WMI in 10 healthy subjects from the HCP. Furthermore,
the stability and replicability of these findings were tested for
clinically feasible acquisition schemes by reducing the spatial
resolution and utilizing only subsets of the diffusion gradient
scheme of the HCP data. In addition, the area coverage was
compared to myelin maps derived from anatomical T1 and T2–
weighted anatomical images (Glasser and Van Essen, 2011).

MATERIALS AND METHODS

Human Connectome Datasets
MRI datasets of 10 healthy volunteers in the age range
of 22–35 (6 female, 4 male) were obtained from the HCP
Wu-Minn database (https://db.humanconnectome.org). Only
non-restricted, anonymized open access datasets were used.
Therefore, no ethical consent is necessary according to national
laws and regulations. Subjects were scanned at a Siemens 3T
scanner equipped with a dedicated, high performance gradient
system capable of gradient strengths of 100 mT/m with special
gradient amplifiers (Ugurbil et al., 2013). Three shells with
b-values of 1,000, 2,000, and 3,000 s/mm2 were acquired with 90
diffusion encoding directions on each shell. The spatial resolution
was 1.25mm isotropic. Two phase-encoding direction reversed
images for each diffusion direction were acquired. The non-
diffusion weighted volumes with b = 0 were interleaved with
DW volumes such that every sixteenth volume had no diffusion
weighting. More details about the acquisition protocol can be
found in Sotiropoulos et al. (2013).

The utilized diffusion datasets were already preprocessed
by the HCP diffusion pipeline (Glasser et al., 2013). Briefly,
distortions were corrected using a model-based approach that
simultaneously takes into account susceptibility and eddy-
current induced distortions, as well as head motion.

Gradient Non-linearity Correction
The diffusion datasets in the HCP suffer from much stronger
gradient non-linearities compared to datasets from conventional
scanners. Therefore, the diffusion gradients are not spatially
invariant across the field of view. As a consequence, the diffusion
weighting can vary up to ±15% (Sotiropoulos et al., 2013) and
should therefore not be neglected. Unfortunately, many software
tools do not allow the use of spatially varying gradient tables
within a single volume. In order to examine the severity and
influence of the spatially varying diffusion weighting, we analyzed
the effect of the gradient deviations for a simple tensor fit with
and without accounting for the spatially varying b-matrix. The
direction of the primary eigenvector of the tensor deviated up to
3◦ from the correctly processed tensor. Scaling of the diffusion
weightings due to the varying b-factor emerged as the main effect
of the gradient non-linearity. In order to obtain diffusion data
with spatially constant b-values that conform to the limitations
of the used software tools, we locally modeled the normalized
diffusion signal with a mono-exponential signal decay for each
shell. This leads to a corrected diffusion signal with a constant b-
factor per volume and shell. The mono-exponential signal decay
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was modeled as follows:

s (Ex)

s0
= e−b(Ex)D (1)

whereby s (Ex) denotes the local diffusion signal and s0 refers to
the non-diffusion-weighted b = 0 image. b (Ex) is the diffusion
b-factor and D represents the diffusion coefficient. With this
approach, we assume a mono-exponential signal behavior for
the local regime of ±15% of the b-value for each shell. With
this approximation, the corrected diffusion signal scorr can be
calculated in each voxel with the given formula:

scorr = s0

(

sact (Ex)

s0

)

bact (Ex)
bcorr

(2)

where sact (Ex) represents the actual, measured diffusion signal at
a given, spatially varying b-factor bact (Ex) and bcorr represents the
desired, corrected spatially constant b-factor.

Tractography and Global Optimization
Constrained spherical deconvolution with recursive calibration
of the response function (Tournier et al., 2007; Tax et al., 2014)
with a maximal spherical harmonics order of 8 (Lmax = 8) and
fiber tractography was performed in MRtrix3 (www.mrtrix.org)
using the default iFOD2 probabilistic tractography algorithm
(Tournier et al., 2010) with anatomical tissue priors (Smith
et al., 2012). For the high-resolution dataset, the maximal fiber
length was increased to 312.5 mm (250 times the voxel size).
Additionally, the tractography seed points were determined
dynamically using the SIFT model (Smith et al., 2015b). For all
of the experiments, 5 million fibers were generated.

The top-down global tractography optimization was
performed using the COMMIT framework (Daducci et al.,
2015) by applying the Stick-Zeppelin-Ball model (Panagiotaki
et al., 2012). The forward model consists of an intracellular stick
model and an extracellular compartment modeled by a zeppelin
to describe white matter (WM) and two distinct isotropic
components for gray matter (GM) and cerebrospinal fluid (CSF)
compartments.

The intracellular stick model was generated with a
longitudinal diffusivity of d‖ = 1.7 × 10−3 mm2/s. In
addition, in each voxel, a hindered contribution was included
for every unique FOD peak using the Zeppelin model, assuming
a perpendicular diffusivity of d⊥ = 0.5 × 10−3 mm2/s and a
longitudinal diffusivity of d‖ = 1.7 × 10−3 mm2/s. Lastly, two
isotropic compartments accounting for partial volume with GM
and CSF were modeled with diffusivities of d∈ {1.7, 3.0} × 10−3

mm2/s. The normalized diffusion signal was multiplied by the
voxel volume (in mm3) in order to ensure comparability across
resolutions and with gray matter surface area. Stopping criteria
for the convex optimization solver were set to either a maximum
number of 500 iterations or a minimum relative change between
two subsequent iterations of the objective function of 1× 10−4.

We refer to fiber weights as the optimized contributions (x̃IC)
of the intra-cellular stick model from the solution calculated by
COMMIT.

Fiber Weights vs. Gray Matter Parcellation
Each fiber contribution was projected onto GM regions by
intersecting every streamline of the tractogram with cortical
ROIs. Thereby, the weight of each streamline was assigned
to the intersecting cortical ROIs extracted from the freesurfer
parcellation, which is already part of the structural preprocessing
of the HCP pipeline, and based on the Destrieux atlas (Destrieux
et al., 2010). The parcellation scheme used during streamline
intersection includes deep gray-matter structures. In the ideal
case, each fiber contributes to exactly two ROIs. However, the
node assignment is far from perfect (Daducci et al., 2016; Yeh
et al., 2016). We tried to improve the mapping by allowing
the extension of each fiber start-/endpoint in the direction of
the first/last fiber segment for an additional stretch of 2 mm.
This approach is more restrictive compared to the radial search
proposed in Smith et al. (2015a) and further evaluated in Yeh
et al. (2016). Nevertheless, we were still unable to perfectly map
the tractogram onto the cortical parcellation. In order to measure
the severity of the error emerging from the node assignment, we
calculated and report the percentage of unassigned fiber weights
to the total sum of fiber weights.

We estimate the intra-axonal cross-sectional area of
streamlines entering a gray matter area which is equivalent
to the sum of streamline weights intersecting a particular
gray-matter ROI. The area coverage is calculated as the sum of
streamline weights divided by the surface area of the G-WMI.
This fraction characterizes the percentage of surface area which
is covered by axons entering or leaving the gray-matter. The
intra-axonal area coverage of the G-WMI is therefore indirectly
estimated by projecting the streamline weights resulting from
the tractogram optimization onto the G-WMI. The derivation of
the area coverage of the G-WMI is illustrated in Figure 1. Each
COMMIT fiber weight describes the intra-axonal cross-sectional
area represented by the particular streamline.

We calculated the Pearson correlation between gray
matter surface area and streamline weights across all subjects.
Furthermore, a permutation test was applied to test for statistical
significance by randomly interchanging the assignment of GM
surface areas to streamline weights. A total number of one
million random permutations was performed.

Replicability for Clinically Feasible
Sequences
We examined the intra-axonal area coverage at the G-WMI in
high-quality datasets from the human connectome scanner. In
order to test replicability in a clinically feasible setting, the high-
resolution multi-shell diffusion acquisitions were spatially down-
sampled by a factor of two to a voxel resolution of 2.5mm
isotropic using sinc-interpolation. Additionally, the gradient
scheme was under-sampled to single-shell acquisition schemes
(for b = 1,000, b = 2,000 and b = 3,000 s/mm2) with gradient
subsets of 45 and 64 directions (for each shell). The minimum
number of 45 directions was chosen to sufficiently characterize
the diffusion signal (Tournier et al., 2013). The gradient subsets
for each shell were selected with respect to the minimal
energy according to the electrostatic repulsion of the sampling
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points. However, it is important to mention that a subset
of a predefined sampling scheme will not sample the sphere
as uniformly as an optimal scheme in a separate acquisition.
Additionally, the full gradient scheme was also evaluated and
utilized as reference. The complete processing pipeline starting
from the constrained spherical deconvolution, tractography,
and COMMIT optimization was performed separately for each
gradient sampling scheme. The area coverage at the G-WMI was
determined for each dataset as described in section FiberWeights
vs. Gray Matter Parcellation.

Finally, the root mean square error (RMSE) of the area
coverage at the G-WMI between the high and low-resolution

datasets and the different gradient subsets was calculated per
subject.

Myelin Maps
The human-connectome structural pre-processing pipeline does
provide myelin maps derived from the anatomical T1 and T2–
weighted images (Glasser and Van Essen, 2011; Glasser et al.,
2013). We extracted the myelin maps from the same subjects
and calculated a group averaged myelin map based on the same
parcellation scheme. Furthermore, we calculated the correlation
between themyelinmap and the area coverage for all subjects and
the group average.

FIGURE 1 | A schematic illustration of the area coverage of the G-WMI is shown. The streamline weights are interpreted as intra-axonal cross-sectional area.

FIGURE 2 | The correlation between the COMMIT weights and the GM surface area is shown for 10 subjects in 150 ROIs of the Destrieux atlas. The thin colored lines

represent the linear regression for each subject, the solid black line depicts the regression across all subjects.
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RESULTS

Fiber Weights and Cortical Parcellation
In Figure 2, the correlation between the COMMIT weights and
the cortical ROI surface area for the high-resolution, full gradient
scheme is shown. Each color depicts a separate subject. The mean
area coverage resulted in 11.01 ± 2.57% of the G-WMI (see also
Table 1). The Pearson correlation between COMMIT weights
and GM surface is 0.935. The p-value of 10−6 obtained by one
million random permutations of the ROI areas demonstrates a
statistically significant correlation.

The percentage of fiber weights which was not taken into
account due to the fact that the corresponding streamline could
not be assigned to any of the cortical ROIs resulted in 21.41 ±

TABLE 1 | Mean intra-axonal area coverage and standard deviation of the G-WMI

and percentage of unassigned fiber weights are listed for different resolutions and

gradient sub-sets.

Resolution

(mm) isotropic

Gradient set Mean and standard

deviation of area

coverage (%)

Unassigned fiber

weights (%)

1.25 Multi-shell, full 11.01 ± 2.57 21.41 ± 1.47

2.5 Multi-shell, full 13.41 ± 2.91 17.61 ± 1.11

2.5 b = 1,000, 45 dirs 19.77 ± 3.93 14.40 ± 1.21

2.5 b = 2,000, 45 dirs 15.28 ± 3.23 16.06 ± 1.26

2.5 b = 3,000, 45 dirs 13.45 ± 3.01 17.37 ± 1.26

2.5 b = 1,000, 64 dirs 19.09 ± 3.87 14.67 ± 1.12

2.5 b = 2,000, 64 dirs 15.04 ± 3.29 16.19 ± 1.21

2.5 b = 3,000, 64 dirs 13.11 ± 2.96 17.52 ± 1.18

1.47%. In order to examine the deviation of the regression, we
show the mean ratio across the 10 subject for each ROI projected
onto the standardized brain parcellation in Figure 3, where four
different views of the cortical regions are depicted. Besides a very
high symmetry between the left and right hemisphere, the notable
regions with an increased intra-axonal area coverage are the
primarymotor, visual, and auditory regions. The primary sensory
cortex is also slightly elevated. A decrease in area coverage of the
G-WMI can be observed in e.g., the temporal poles.

Subsampling of the Gradient Scheme
The RMSE of the ratio for different resolutions and gradient
subsets is shown in Figure 4. Figure 4A depicts the RMSE of
the low-resolution dataset, including all diffusion directions
(low res, full set), in comparison to the result of the high-
resolution dataset, including all diffusion directions (high res,
full set), as a reference. In Figure 4B, the RMSE of the gradient
subsampling schemes for the different shells is depicted with the
low-resolution full gradient set as reference. The error-bars in
both subplots show the standard deviation across the 10 subjects.
The error can be interpreted as the deviation of the surface area
which is covered by the cross-sectional intra-axonal surface area
in comparison to the respective full set (reference).

Figure 5 shows the influence of down-sampling the resolution
and of subsampling the gradient set with respect to variations of
the absolute intra-axonal area coverage of the G-WMI across the
brain. The identical coloring scheme was used for each subplot.
The gradient subsets with lower b-values tend to overestimate the
area coverage in comparison to the high b-value and multi-shell
acquisition. The normalized area coverage (percentage deviation

FIGURE 3 | Four different views of the group mean ratio between the COMMIT weights and the ROI areas. Group mean ratios are projected onto the standardized

cortical parcellation.
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FIGURE 4 | The root mean square error of the area coverage at the G-WMI is shown for the down-sampled spatial resolution (A) using the high-resolution as a

reference and (B) the subsampled gradient schemes with the low-resolution full set as reference.

FIGURE 5 | Absolute intra-axonal area coverage at the G-WMI for different resolutions (Top) and gradient sub sets (Bottom).

of the mean) is shown in Figure 6. All subsets show similar
deviations (increase and decrease) from the mean area coverage
in the same anatomical regions.

In Table 1, we report the intra-axonal area coverage of the G-
WMI as percentage coverage of the intra-axonal cross-sectional
area of the total gray matter surface area at the G-WMI for
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FIGURE 6 | Percentage deviation of the mean area coverage at the G-WMI for different resolutions (Top) and gradient sub sets (Bottom).

the different resolutions and gradient subsets (range 11.01–
19.77%). The standard deviation of the area coverage describes
the variance across different ROIs. In comparison, the deviation
of the averaged intra-axonal cross-sectional area coverage across
subjects for a particular ROI is much smaller. Additionally,
we also report the percentage of unassigned fiber weights
in order to estimate errors from the node-assignment (range
14.40–21.41%).

In Figure 7, we present a scattering plot comparing the area
coverage to myelin maps provided by the human connectome
structural pre-processing pipeline. Figure 7A shows all subjects
and ROIs with a moderate correlation of r = 0.4920.
Figure 7B shows the group averaged comparison with a
slightly higher correlation of r = 0.5457. The range of
deviation of the mean (−50%, 50%) is higher for the area
coverage in comparison to the myelin percentage deviation
(−18%, 18%).

Figure 8 shows a comparison of the area coverage (Figure 8A)
with the averaged myelin maps (Figure 8B) provided by the
human connectome structural pre-processing pipeline from the
10 subjects. The same parcellation scheme was applied. The
percentage deviation of the mean is shown to illustrate deviations
in the area coverage and myelination.

DISCUSSION

In this work, we tested the hypothesis of a homogeneous intra-
axonal cross-sectional area coverage of the G-WMI by correlating
tractography fiber weights from the COMMIT optimization
with the gray matter surface area at the interface. Analysis was
performed on the high-resolution datasets of 10 healthy subjects
from the HCP using the full multi-shell diffusion gradient
sampling scheme. We found a high correlation (p = 0.935)
between the intra-axonal cross-sectional area (represented by the
fiber weights) and the gray matter surface area across different
ROIs and subjects. However, we also noted consistent deviations
in various structures across all subjects.

The positive correlations indicate that, as expected, a larger
ROI might intersect with more streamlines than a smaller
ROI. Nevertheless, the magnitude of the correlation and the
accordance of the ratio of fiber-weights to ROI area across all
10 subjects is remarkable. During the COMMIT optimization,
the intra-axonal volume is calculated by multiplying the fiber-
weights with the fiber segment length. Hence, dividing the fiber
volume by the fiber length, results in a cross-sectional area (the
fiber weight). It is thus tempting to directly interpret the fiber-
weights as a sum of intra-cellular cross-sectional areas of axons,
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FIGURE 7 | The correlation between area coverage and myelin is shown for 10 subjects in 150 ROIs of the Destrieux atlas in subplot (A). Subplot (B) shows the

correlation averaged across the 10 subjects for each ROI.

represented by a particular streamline. However, it is important
to keep in mind that we assign the MR visible signal to a voxel
volume, which is only an approximation (e.g., myelin is ignored
completely). Regardless, following this assumption, the ratio of
fiber-weights to GM area represents the intra-cellular cross-
sectional area coverage of the G-WMI. The variance of this ratio
among different cortical ROIs is visualized in Figures 3, 5, 6, and
the standard deviation across ROIs is listed in Table 1. Besides
a high symmetry of the left and right hemispheres, the primary
visual, motor and auditory areas exhibit an increased density at
the G-WMI. The communality between these regions is that they
all directly process external “inputs” (and also “outputs” in case
of the primary motor cortex).

The comparison of area coverage to myelin in Figure 8 reveals
a similar pattern of increased (or decreased) areas of the brain.
Slight asymmetries between hemispheres are consistent across
both modalities, e.g., an increase in the left frontal cortex in
comparison to the right side. The primary motor, visual, and
auditory cortices are elevated in both modalities, whereas the
temporal poles are lowered in both measures. Most notable
differences besides scaling are revealed in the axial view in
Figure 8, especially in the inferior posterior part of the brain.
The primary sensory cortex is also more prominent in myelin.
A resemblance between intra-axonal area coverage and myelin
is partly explicable—a local increase in axonal connections
would also lead to an increase in myelin if the degree of
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FIGURE 8 | Four different views of the area coverage (A) are compared to the myelin map projected onto the standardized cortical parcellation (B). Both modalities

are group averaged and the percentage deviation of the mean is shown to visualize spatial variations. The range of area coverage in (A) is larger (−50%, 50%) in

comparison to the variation in of myelin in (B) (−18%, 18%).

myelination is constant. However, myelination might also vary
independent of the axonal density. Furthermore, the spatially
varying distribution of axonal diameter and myelin thickness
(g-ratio) will also influence the direct relation between axonal
cross-sectional area and myelination. These factors might also
explain the only moderate correlation of around 0.5 presented in
Figure 7. Nevertheless, the coherence between high and low area
coverage/myelination is even more convincing by considering
that both measures are extracted from different modalities and
processing steps.

The reproducibility of our findings was also tested for
clinically feasible acquisition schemes. We therefore artificially
reduced the spatial resolution and subsampled the diffusion
gradient scheme to single-shell subsets and different b-factors
with different number of gradient directions.

Similar intra-axonal area coverage distributions across the
complete G-WMI were found in all subsampled datasets.
Nevertheless, especially for lower b-values, the absolute area
coverage was over-estimated in comparison to the full diffusion
gradient scheme, whereas distributions based on high b-value
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(b = 3000) sets with 45 or 64 directions were almost identical
to the full multi-shell dataset.

The use of larger ROIs may cancel out local variations in the
tractogram due to spatial averaging. Hence, a more finely grained
parcellation scheme could potentially reveal further differences
between the different gradient schemes.

Additionally, the high-resolution dataset exhibited a slightly
decreased area coverage in comparison to the down-sampled
low-resolution dataset, however, this might also be caused by
the increased number of unassigned fiber weights during the
node-assignment.

We found a conforming intra-axonal cross-sectional area
coverage at the G-WMI across different areas and subjects,
however there were also marked variations in area coverage
in some cortical areas. Whilst this effect is stable across
subjects and across multiple gradient schemes with varying b-
values and spatial resolutions, it is difficult to determine the
cause of these fluctuations. The deviation from the mean area
coverage could be caused by biological differences or intrinsic
properties of the processing pipeline (e.g., choice of tractography
algorithm).

However, the comparison to myelin reveals a similar spatial
pattern, even though the two measures are derived from different
acquisitions andmethodologies. Therefore, it is less plausible that
these fluctuations are caused by the applied diffusion processing
pipeline.

Additionally, the evaluation of cortical thickness and surface
area based on anatomical scans is an approximation e.g., due
to limited resolution and might also suffer from artifacts and
inaccuracies (Zilles and Amunts, 2015).

Furthermore, the node-assignment remains an issue and
might also have influenced results. If we compare the percentage
of unassigned fiber-weights, a higher spatial resolution and
improved angular resolution due to higher b-values or more
diffusion directions negatively impact the node-assignment. We
chose to use a more restrictive method to prevent incorrect
assignments of streamlines to ROIs. A different strategy would
be to remove unassigned streamlines prior to the COMMIT
optimization, although this might lead to missing atoms in
the dictionary (Daducci et al., 2016). However, as presented

in Yeh et al. (2017), the mesh-based anatomically-constrained
tractography where unified tissue priors are used for tractography
and parcellation will be better than any heuristic node assignment
strategy.

Unfortunately, the beneficial effects of improved tractograms
(at higher spatial and angular resolution) might be mitigated
in the applied analysis. Apart from the need of an accurate
and reliable assignment of streamlines to GM ROIs, it is also
crucial to observe and minimize problems and pitfalls during
the optimization as discussed in Daducci et al. (2016) and
Sommer et al. (2017). Additionally, it is still unclear if the fully
sampled multi-shell acquisition scheme is ideal for the fitting
of the utilized microstructure model for the global tractography
optimization or if each q-space sample should be weighted
according to e.g., the signal-to-noise ratio or the number of
sampling points during optimization.

Regardless, a striking resemblance is observed between the
axon packing density at the G-WMI and intra-cortical myelin
maps derived from T1, T2, and proton-density weighted images
(Glasser and Van Essen, 2011; Rowley et al., 2015).

In conclusion, we presented a novel method that allows
the indirect quantification of the axonal packing density at
the G-WMI, based on fiber weights derived from tractography
optimization. Furthermore, the hypothesis that the intra-axonal
cross-sectional area is proportional to the cortical surface area is
supported by the presented experiments and can be replicated
with clinically feasible spatial resolutions, even with a single
shell acquisition scheme.
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