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Place cells are important elements in the spatial representation system of the brain.

A considerable amount of experimental data and classical models are achieved in

this area. However, an important question has not been addressed, which is how the

three dimensional space is represented by the place cells. This question is preliminarily

surveyed by energy coding method in this research. Energy coding method argues that

neural information can be expressed by neural energy and it is convenient to model and

compute for neural systems due to the global and linearly addable properties of neural

energy. Nevertheless, the models of functional neural networks based on energy coding

method have not been established. In this work, we construct a place cell network model

to represent three dimensional space on an energy level. Then we define the place field

and place field center and test the locating performance in three dimensional space.

The results imply that the model successfully simulates the basic properties of place

cells. The individual place cell obtains unique spatial selectivity. The place fields in three

dimensional space vary in size and energy consumption. Furthermore, the locating error

is limited to a certain level and the simulated place field agrees to the experimental results.

In conclusion, this is an effective model to represent three dimensional space by energy

method. The research verifies the energy efficiency principle of the brain during the neural

coding for three dimensional spatial information. It is the first step to complete the three

dimensional spatial representing system of the brain, and helps us further understand

how the energy efficiency principle directs the locating, navigating, and path planning

function of the brain.

Keywords: place cells, three dimensional space, energy coding, spatial selectivity, locating system

INTRODUCTION

The spatial cognition function is one of the most important functions of the brain. Many types
of cells are contributing to the locating and navigating function. Among them, place cells in
hippocampus and grid cells in entorhinal cortex are the most fundamental and well-studied cells.
The colorful researches during the last few decades have revealed the representational function of
place cells in the hippocampus. Spatial receptive fields of spiking neurons in the rat hippocampus
are firstly reported by O’Keefe and Dostrovsky (1971). When the rat was in a certain place in the
local environment, these place cells fired intensively. The set consists of these responding spatial
locations is named the place field of a cell. Different cells firing at different locations, as a result, the
environment is represented by place cells population in hippocampus (Wilson and McNaughton,
1993). And a same place cell can participate in representations for different environments.
Representation of environment by place cells can be updated in a dynamic, continuous manner.
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Furthermore, place cell is the component of a more general
circuit dynamically representing the spatial information (Moser
et al., 2008). Resent experimental and modeling works find out
that in large environments, place cells in hippocampus express
multiple place fields (Park et al., 2011; Pilly and Grossberg, 2013;
Hedrick and Zhang, 2016). Another important part of this system
is the grid cell. It is found in the medial entorhinal cortex (MEC)
and neighboring limbic structures. Grid cells have firing fields
like the place fields, but the fields are multiply periodical which
regularly show a triangular grid pattern (Fyhn et al., 2004; Hafting
et al., 2005; Sargolini et al., 2006; Hasselmo et al., 2007). MEC
grid cells project to hippocampal place cells and are hypothesized
to play a role in path integration (Hafting et al., 2005; Barry et al.,
2007). The firing rate changes of grid cell may affect the place field
of the place cell (Kubie and Fox, 2015).The coordinate type of the
grid indicates grid cells as possible elements of ametric system for
spatial navigation (Hafting et al., 2005). Place cells and grid cells
form a quantitative spatial-temporal representation system for
location, path, and associated behavior, experience and memory.
Because these cells have remarkable activity patterns in non-
sensor systems, their firing structures may reflect the internal
operations of the system. The study of place cells, grid cells
and the spatial representation system of the brain can provide a
deeper understanding of cortical network dynamics (Yates, 2013;
Hayakawa et al., 2015; Pfeiffer and Foster, 2015; Bechtel, 2016;
Geiller et al., 2017; Kentros et al., 2017; Scaplen et al., 2017;
Trimper et al., 2017).

Since the discovery of place cells, many models have
attempted to explain how this spatial selectivity arises within
the hippocampus (Samsonovich andMcNaughton, 1997; Hartley
et al., 2000; Káli and Dayan, 2000) and how the place
fields are formed. Their influence on navigation remains an
important experimental and theoretical question. Particularly,
little is known on how different sensory cues contribute to
place field formation and spatial navigation (Kulvicius et al.,
2008). During the four decades’ researches, different models
have been proposed for hippocampal place cell formation
including Gaussian functions (O’Keefe and Burgess, 1996;
Touretzky and Redish, 1996; Foster et al., 2000; Hartley et al.,
2000), back-propagation algorithm (Shapiro and Hetherington,
1993), auto-associative memory (Recce and Harris, 1996),
competitive learning (Sharp, 1991; Brown and Sharp, 1995),
neural architecture based on landmark recognition (Gaussier
et al., 2002), neuronal plasticity (Arleo and Gerstner, 2000; Arleo
et al., 2004; Krichmar et al., 2005; Sheynikhovich et al., 2005;
Strösslin et al., 2005), independent component analysis (Takács
and Lorincz, 2006; Franzius et al., 2007), self-organizing map
(Chokshi et al., 2003; Ollington and Vamplew, 2004), Kalman
filter (Bousquet et al., 1998; Balakrishnan et al., 1999), and
odor supported model(Kulvicius et al., 2008). However, neither
these theoretical researches nor other experimental researches
have focused on a basic but important question, which is how
the real three dimensional space is represented by place cells.
Almost all the animals are living in the three dimensional world
while the research of place cells remain in one (a line) or
two (a plane) dimensional space. Only a few known studies
reported how the three dimensional space is recognized by

animals (Hayman et al., 2011; Rowland and Moser, 2015).
Unfortunately, these results seemed to be contradictory. Hayman
believed that the animal applied different strategies in coding
the horizontal and vertical spatial information (Hayman et al.,
2011), suggesting an asymmetric coding property about three
dimensional space. Whereas, Moser supported that the place
code for the three dimensions is symmetric (Rowland andMoser,
2015). Obviously, this question has not been studied thoroughly
and the known results indicated that it is hard to reveal the
mystery of the three dimensional spatial cognition function only
by experimental studies. Theoretical modeling should also be
addressed to solve this problem. The difficulties of conducting
an experiment in three dimensional space are the limitation
of experimental techniques and data recording methods. They
may be the main reasons why the study is insufficient. For
example, it is hard to record data by electrodes in the brain
when a bat or bird is flying, a monkey is climbing or a fish
is swimming. Due to these limitations in studying place cells
mentioned above, it is important and convenient to investigate
this question theoretically in advance, and if the model proposed
is reasonable, it can provide guidance and predictions for future
experimental and theoretical studies.

The spatial representation of place cells is essentially a neural
information coding problem, which has been the core problem in
cognitive neural science (Amari and Hiroyuki, 2005; Gazzaniga
et al., 2009). The electrical activity of neuron is the basis of
neural coding. Classic coding theories such as phase coding,
frequency coding and group coding describe the electrical activity
of neurons by action potential or firing rate. Unfortunately,
these techniques are limited in scope and are difficult to
accomplish the global coding successfully (Borst and Theunissen,
1999; Purushothaman and Bradley, 2005; McLaughlin, 2009).
Currently, no complete theory for neural coding and decoding
can direct the research of global brain activities. Themain reasons
are that the cross-level influence of large-scale neural activities
are too complicated and the neurodynamics are nonlinear. These
properties will make it hard to perfectly analyze the neural coding
and decoding problem (Laughlin and Sejnowski, 2003; Singer,
2009). The major goal of neural code is to represent information.
However, under the selective pressure, the neural system of the
animal must make the best use of the energy. Both experimental
and computational evidences suggest that neural systems may
maximize the efficiency of energy consumption in processing
neural signals and neural code should be energy efficient (Yu and
Yu, 2017). So it is reasonable to regard the energy efficiency as a
constraint to the neural systems. A new alternative called energy
coding theory argues that neural information can be expressed
by neural energy, so that the neural information processing can
be placed within the framework of the global neural coding of
the brain (Wang R. et al., 2015; Wang Z. et al., 2015). Neural
networks are difficult to model and analyze because they are
high-dimensional nonlinear dynamical systems which composed
of large number of neurons. Nevertheless, the superimposing
property of neural energy can provide considerable convenience
for neural modeling and computational analyzing, which will
greatly reduce the cost of analytical research (Wang R. et al.,
2015). Furthermore, energy is a more fundamental variable than
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others such as spike number, firing rate or oscillation phase. So
neural energy may be an effective tool to study the global activity
of the brain. However, the research of neural energy coding is
still in its infancy. Although the energy properties of a single
neuron and the structural network have been surveyed (Wang
R. et al., 2015; Wang Z. et al., 2015), the appropriate functional
network model has not been fully established and studied. So
the energy method has not been used in modeling a certain
cognitive function of neural systems. Meanwhile, due to current
technical constraints, the corresponding experimental data for
neural energy are scarce.

Due to the defects mentioned above, it is quite necessary to
study the three dimensional spatial representation function of
place cells by the energy method. In this research, we constructed
a network model for place cells to represent three dimensional
space on an energy level. The cells which have various place fields
achieved accurate locating function. Then we analyzed the energy
consumption properties and locating errors under the situations
of different field sizes. The results have shown that this model
captured the basic behaviors of place cells and revealed the energy
efficiency property of the neural system.

MODEL AND METHODS

The Energy Consumption of Place Cells
It is very difficult to directly measure the energy consumption
of a cell due to the limitation of current recording techniques.
However, it is possible to calculate the energy consumption of
a cell based on a proper model describing the ion currents
(Laughlin et al., 1998; Attwell and Laughlin, 2001; Crotty et al.,
2006; Moujahid et al., 2011). Notably, energy is supplied to ion
pump by the metabolism of adenosine triphosphate (ATP). The
energy is primarily used to transport the ions against the ion
concentration gradient. During electrical activity of a neuron,
ions are driven by concentration gradient to cross the cell
membrane and form the ion currents. The Joule heat due to
resistances of ion channel conductance can be a convenient
approach to understand neural energy based on an equivalent
electrical circuit of neurons. The Hodgkin-Huxley (H-H) Model
is the most successful model on the ion channel level. So the
neural energy can be calculated by H-H model.

The equations of H-H model are:

Cm
dVm

dt
= gl(El − Vm)+ gNam

3h(ENa − Vm)

+gKn
4(EK − Vm)+ I
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(1)

whereCm is membrane capacitance of a neuron,Vm is membrane
potential, ENa and EK are Nernst potentials of Na+ and K+,
and El is the potential while there is no leakage current. gl, gNa,
and gK are, respectively, the leakage conductance, Na+ channel
conductance, and K+ channel conductance. The typical values of
these parameters are: resting membrane potential Vr = 67.3mV,
maximum Na+ conductance gNa = 120 mS/cm2, maximum
K+ conductance gK = 36 mS/cm2, leakage conductance gl =
0.3 mS/cm2, and Nernst potentials are 50, −80, and −56mV,
respectively. Based on H-H model, we can theoretically calculate
the energy consumption of neuronal activity. The energy
consumed by a neuron during a certain period of time can be
deduced. The equation is shown as follows (Laughlin et al., 1998;
Attwell and Laughlin, 2001; Crotty et al., 2006; Moujahid et al.,
2011; Wang et al., 2017a),

Ec =

∫

t
[VmI + iNa(ENa − Vm)+ iK(EK − Vm)

+il(El − Vm)]dt (2)

Then it can be calculated that∼1.88× 10−7 J energy is consumed
by a typical neuron during an action potential (Wang et al.,
2017a). This value, which can transfer the number of spikes into
energy consumption, will be embedded into the network model
later to determine the power and energy consumed by the place
cell network. Then we can analyze the energy properties of the
place cell network during three dimensional space exploration
and localization.

Experiment Environment and Neural
Network Model
We set up a cube space with a side length of L (see Figure 1). A
bat or bird is placed randomly in a position of the environment,
setting a task of learning the environment in the experiment.
In this cube space, six borders are regarded as landmarks. The
animal perceives environmental cues by using its visual (bird) or
auditory (bat) system, then learns the sensory information by its
neural network made of place cells.

Sensory Model
In the experiment, the environment is a cube place without any

references other than the borders, where the animal can only get
visual or auditory information from six walls (landmarks). We

refer to the six walls as front (F), back (B), left (L), right (R), up

(U), and down (D). When study the locating function of place
cells in two dimensional space, researchers (O’Keefe and Burgess,
1996; Ollington and Vamplew, 2004) chose the distances to the
four walls (East, West, North, and South) as the input to the
sensory. We use the similar method but generalize it in the three
dimensional space. Meanwhile, since only three variables among
the six distances from the borders are independent, we choose the
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FIGURE 1 | Simplified three dimensional space model and the neural network.

distances from L, F, and D walls as the independent inputs to the
sensory.

Note that the actual location of the animal at time t is
described by vector X(t) = (x1(t), x2(t), x3(t)), where xi(t) is the
actual distance from wall i(i = 1, 2, 3) corresponding to L, F, D
(Figure 1). However, it is important and reasonable to assume
that sensory neurons of the animal are unable to acquire accurate
perception of its own locations. So the perception input model is
given by the following equation:

{

X (t)′ =
(

x1 (t)′ , x2 (t)′ , x3 (t)′
)

xi (t)
′
= xi (t) (1+ αη) , i = 1, 2, 3

(3)

where α represents the error rate of the sensory (visual or
auditory) perception, which is dependent on the individual
animal. η is a randomnumber from a uniform distributionwithin
the interval [−1, 1], that is η∼U(−1,1) (Yan et al., 2016).

Energy Model for Place Cells and Learning
Rule
The place cells are considered to receive the geometric inputs of
boundary vector cells, each of which responds when a boundary
is at a particular distance to the animal (Hartley et al., 2000;
Kulvicius et al., 2008). So the firing of place cells can be seen as
the sum of inputs received from boundary vector cells (Kulvicius
et al., 2008). And these boundary vector cells perform the
sensory function. Then a feed-forward network can be applied
to construct a model to describe the locating system constituted
of place cells and sensor neurons, similar as the studies in two
dimensional space (O’Keefe and Burgess, 1996; Hartley et al.,
2000; Kulvicius et al., 2008; Yan et al., 2016). Sensory neurons
input to place cells with X (t)′. This is a fully-connected network
between layers where every sensory neuron is connected to every
place cell with weights matrix W (t) = [wij(t)]3×N, where i = 1,
2, 3 represent three sensory neurons, j= 1, 2, . . . , N represent the
N place cells. Three sensory neurons perceive the distances from
boundary L, F, and D. W (t) is a 3 × N matrix, and wij(t) is the
connection weight from the ith sensory neuron to the jth place

cell at time t. Weights are initialized by the following functions
(Kulvicius et al., 2008),

wij(0) =

(

1+ exp(
γ − E(γ

)

2σ 2
)

)−1

(4)

Where γ is a random number uniformly distributed on the
interval [0, 1], that is γ ∼ U (0, 1). E(γ ) which equals to 0.5 is
the expectation of the uniformly distributed random number γ .
The weights distribution is shown in Figure 2 after initialization
(Kulvicius et al., 2008).

This is a histogram of the initial weights distribution.
The horizontal axis represents the synaptic strength, and
the vertical axis represents the number of synapse with the
corresponding strength. Since γ is uniformly distributed and
Equation (4) is central symmetric, the distribution of synaptic
strength is symmetric about 0.5. Such a distribution rather
than a uniform distribution is that all place field centers
will be located around the center of the environment and
the model will fail to obtain place fields near the boundary
of the environment if the uniform distribution is applied
(Kulvicius et al., 2008). Weights are the basis vectors in the
model, which are used to compute firing powers of place
cells. When competitive learning rule is employed, place cells
become tuned to a specific input, which leads to the spatial
selectivity.

Inspired by the firing rate model in two dimensional space
proposed byO’Keefe and Burgess (1996) andHartley et al. (2000),
we construct the following model which combines the neural
energy method to represent three dimensional space as follows,

Pj(t) = CRm exp(−

(

1
n

∥

∥

∥

X(t)′

L −Wj(t)
∥

∥

∥

)

2σ 2
j

2

) (5)

Where Pj(t) is the firing power of the jth place cell at time t, C is
the energy consumption by a place cell during an action potential.
As introduced earlier, ∼188 nJ energy is consumed to transmit
a spike. In order to reflect the diversity of place cells’ metabolic
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FIGURE 2 | Initial weights distribution.

environment, C is normally distributed from N (188, 10) nJ. Rm
is the maximum firing rate of a single place cell, which is about
20Hz (Hartley et al., 2000). n is the number of sensory inputs and
Wj(t) is the jth row ofW(t). The norm is the Euclidean distance.
And σj is a random number from a normal distribution which
initially affects the range of place field. As a result, the random
number σj∼N (0.03, 0.005) is another parameter to reflect the
diversity of place cells.

According to a classical learning rule with a winner-takes-all
mechanism, the connections to the cell with the maximal firing
rate wins the learning chance (Kulvicius et al., 2008). Obviously,
efficiency of this mechanism is low because only the weights of
one winning cell are changed at every step. Meanwhile, the firing
rate learning model is inconvenient to generalize to multiple
levels. Therefore, learning rule is modified not only in a batch
manner (Yan et al., 2016) but also on an energy level as follows,

dWJ(t)

dt
= µ(

X(t)′

L
−WJ(t))

J =
{

j
∣

∣Pj(t) > Pthr
}

(6)

Where µ is the learning rate, Pthr is the responding threshold
represents the minimum firing power of cells that are activated.
J is the response set. And every place cell responding to the
current location with a firing power above threshold will modify
the weights from sensory neurons.

The firing power of place cell j can also be viewed as the
function of spatial location X(t)′ according to Equation (5). Then

the place field of cell j can be defined as the set of all the location
X(t)′ with firing power larger than Pthr . After firing powers are
calculated, place field centers can be defined by analyzing the
positions within the corresponding place fields. Furthermore,
the center of place field related to cell j is defined during this
dynamical process as follows,

Cj =

∫

+∞

0 Pj(t)X(t)
′dt

∫

+∞

0 Pj(t)dt
(7)

Then the location of the animal will be estimated by the weighted
average of place field centers according to the response set:

Loc(t) =

∑

J
Pj(t)Cj

∑

J
Pj(t)

(8)

J =
{

j
∣

∣Pj(t) > Pthr
}

Where, Loc(t) is the location of the animal at moment t
determined by this locatingmodel. AndCj is the place field center
of cell j, while Pj(t) is the activity power of cell j at moment t.

Frontiers in Neuroscience | www.frontiersin.org 5 April 2018 | Volume 12 | Article 264



Wang et al. Place Cell in 3D Space

RESULTS

Energy Consumption of an Action Potential
of a Place Cell
According to the described method, we calculate the neural
energy consumed by place cell firing an action potential and
perform the numerical simulation first.

Figure 3 shows the electric power of each ion channel during
an action potential of a place cell. Green line is the total power

and red, black, yellow, and fuchsia lines are powers of Na+, K+,
leakage, and stimulus currents, respectively. By integrating the
power over time, we can get that one action potential costs about
188 nJ energy.

Exploration Results in Three Dimensional
Space
The exploration is performed in three dimensional space by the
model. The size of the cube space is 20 × 20 × 20 units, number

FIGURE 3 | Energy consumption by a place cell during an action potential (Wang et al., 2017a).

FIGURE 4 | Random exploration trajectory in three dimensional space.

Frontiers in Neuroscience | www.frontiersin.org 6 April 2018 | Volume 12 | Article 264

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. Place Cell in 3D Space

of place cells is 200, number of sensory neurons is 3, sensory error
rate α = 0.1, learning rate µ = 0.001, maximum firing rate Rm =

20Hz, and Pthr = 0.3 Pm, where Pm is themaximum firing power.
During the experiment, the animal initiated the random search
in the cube space. The number of steps is set to be 10,000, and
step length is 1. The trajectory of one random search is shown in
Figure 4. The coordinates of three dimensions are labeled as x,
y, and z. The highly random trajectory covered most of the cube
space. This behavior is reasonable for an animal in the absence
of food or water reward. Due to the different initial weights,

the preliminary responses of the place cells are not the same.
Then according to the batch competitive learning rule, each place
cell acquires unique spatial selectivity, and form its own place
field.

Various Three Dimensional Spatial Tunings
of Place Cells
After the spatial exploration and learning, place cells activities are
tuned to specific spatial locations to form the place fields.

FIGURE 5 | Firing powers of place cells in three dimensional space.

FIGURE 6 | Distributions of maximum firing power and size of place field. (A) Maximum firing power distribution among 200 cells. Vertical axis is number of neurons

and horizontal axis is maximum firing power. (B) Size distribution of place fields among 200 cells. Vertical axis is number of neurons and horizontal axis is size of place

field. The size is represented by the number of locations at which the cell is activated.

Frontiers in Neuroscience | www.frontiersin.org 7 April 2018 | Volume 12 | Article 264

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang et al. Place Cell in 3D Space

Figure 5 displays the activity patterns of 16 randomly selected
cells. The scatter plots in space represent the different locations
of the animal in the random search trajectory, and the colors
indicate the firing power of place cells at the corresponding
position. We can further know if a certain location belongs to the
place field of a cell, that is, whether the cell has spatial selectivity
for this location. It can be seen from Figure 5, due to individual
differences of place cells, the distribution and size of place fields
as well as firing powers vary among different place cells. These
facts can further be obtained from the histograms in Figure 6

which illustrates the distributions of maximum firing power (left)
as well as the size of place field (right) among the 200 place

FIGURE 7 | The distribution of place field centers in three dimensional space.

cells. The vertical axes both represent number of neurons and the
horizontal axes representmaximumfiring power and size of place
field respectively. Note that the size of place field are reflected
by the count of locations at which the cellular activity is above
threshold. Maximum power is about 3,000 nW among these
16 random selected cells in Figure 5. Larger place fields usually
have higher maximal power. This may be the consequence of
competitive learning rule.

Normally the place field centers are near the locations
with maximum powers. Two hundred place field centers are
summarized in Figure 7. As can be seen from the figure,
the 200 field centers are scattered throughout the space. The
phenomenonmentioned by Kulvicius et al. (2008) that place field
centers may concentrate near the spatial center is not occurred.
The density of place field centers is quite uniform. Plenty of place
field centers are near the space borders.

Figure 8 shows the energy place fields of four randomly
selected place cells. From this figure, the individual differences
and the unique spatial selectivity are clearly revealed. Place cell
a has a smaller place field near wall B, R, and U. Place field of
cell b is larger, which is one of the neurons with higher energy
consumptions.

Locating Error and Energy Consumption of
the Place Cell Network in Three
Dimensional Space
The various spatial selectivity and the corresponding place fields
indicate that the model simulated the basic features of place cells
in three dimensional space. As soon as the place fields are formed
and field centers are defined, the locating function of the network

FIGURE 8 | Spatial selectivity of place cells. (A–D) are place fields of four randomly selected cells numbered 40, 163, 50, 81 respectively. They have various

responding locations and different sizes.
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FIGURE 9 | Locating errors in three dimensional space of place cells. (A) shows the relative locating errors of the last 100 steps of the exploration. (B) shows all the

relative locating errors of the 10000 exploration steps.

can be performed. As described in section Energy Model for
Place Cells and Learning Rule, the location of the animal will be
determined by the weighted average of place field centers belong
to the response set. We compared the locating results and the
actual spatial positions of the animal to analyze the locating error
of this network model. In Figure 9A, we chose the last 100 steps
during the random exploration and calculated the locating errors
for these 100 locations. As the figure shows, the error between
locating and actual position fluctuates under an acceptable low
level. Errors of all 10,000 steps during the exploration are shown
in Figure 9B.

Two sources account for the locating error. One is the
systematic error of the network model. This is a model using
a finite number of place fields to determine infinite even
uncountable infinite number of locations in three dimensional
space. This will cause inevitable error. And the degrees of
freedom for spatial location is three, but after receiving three
sensory inputs, place cell integrates this three dimensional
information into one dimensional variable, which is firing
power. Restoring the three dimensional information from
one will clearly cause error. This is systematic error for
the model. The other source of error is the inaccuracy of
sensory. In order to simulate the inaccurate estimation of
distance to landmark of the animal, we add the error term
to the sensory model. This will also lead to the locating
error. Excluding this term could reduce the locating error
to a lower level. However, the final locating errors are
limited under a certain boundary. So this network model can
successfully perform the locating function in three dimensional
space.

The total energy consumed by these 200 place cells during
the exploration process is illustrated in Figure 10. The horizontal
axis is number of place cells, and vertical axis is the total energy
consumption. The maximum energy consumed by a single cell is
close to 1.7 × 106 nJ. And the minimum is close to zero. Many
cells remain a low energy cost while preforming the locating
function, this implies that during the spatial representation
process, the neural system complies with the energy efficiency
principle. It means to code the neural informationwithminimum
energy consumption (Wang R. et al., 2015).

FIGURE 10 | Total energy consumption during exploration of place cells.

The Impact on Locating Error, Energy
Consumption, and Distribution of Place
Field Size
We have constructed an energy model of place cells to perform
the locating function in three dimensional space. In this model,
an important parameter is σj, as mentioned in section Model and
Method, which is a random variable complying with Gaussian
distribution, which influences the size of place fields (Kulvicius
et al., 2008). The expectation of this distribution affects the
mean size of place fields, and the standard deviation affects the
variability of different place fields. Figure 11 depicts two groups
of place fields with greater size. As showed in the figure, the
enlargement the place fields can expand the spatial range of high
power activity of place cells (Figure 11B). Notably, the field size
and selectivity will still evolve dynamically as the exploration and
learning proceed. While the place fields are too large, place fields
belong to different cells will have more overlapped part. During
coding a position in space, several place cells will be activated
at the same time and are more likely to response with higher
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FIGURE 11 | Larger place fields and higher energy consumptions. (A) Spatial responses and energy consumption of slightly larger place fields of 16 randomly

selected cells. (B) Spatial responses and energy consumption of much larger place fields of 16 randomly selected cells. The enlargement the place fields can expand

the spatial range of high power activity of place cells.

powers. This is not economical or reasonable from the energy
perspective. So the spatial representation system of the brain is
possible the balancing result between spatial coverage (accuracy)
and energy efficiency.

Meanwhile, higher energy consumption and larger place
fields imply that during the spatial learning process, more place
cells obtain highly overlapping place fields, place cells with
similar initial weights may become more alike, resulting in the
correlations of place fields become higher. This phenomenon is
shown in Figure 12. Two hundred field centers show a strong
linear correlation, and concentrate in the center of space. This
suggests that in the case of high power consumption, place
cells have a high redundancy coding the spatial information
and consume too much unnecessary energy. This result once
again confirms the economic principle of the energy usage in the
information coding of the brain.

Another evidence can be seen in Figure 13. Total energy
consumed by 200 place cells with larger place fields (Figure 13B)
and the corresponding locating errors (Figure 13D) are shown in
this figure. Unlike Figure 13A, all the cells consumed more than
4 × 106 nJ energy, while the locating errors are larger than the
small field situation (Figure 13C). This suggests that the energy
consumption in the neural system is not the more, the better.

More simulations with a larger range of place field sizes
suggest that the final locating error was not simply monotonously
increasing as the place field enlarging. There always exists a
minimum localization error when the place field is of the
medium size (Figure 14). So the place field with a reasonable
optimal size will most accurately preform the localization
function.

When place field is small, the total energy consumption is not
normally distributed among 200 place cells whereas the normal
distribution hypothesis is failed to be rejected in large-place-
field situation (α = 0.01) (See Figure 15). Energy of larger place
field cells is closer to normal distribution. Since information can

FIGURE 12 | Linear correlation of place field centers.

be seen as the degree of unexpectedness, it will not be totally
random. So the difference between neural energy distribution
and the normal distribution may be crucial to understand neural
information coding. And cells with moderate smaller place fields
consumed less energy possibly contain more spatial information
(Brown and Backer, 2006).

Experiment Support to the Model Results
The three dimensional spatial tuning of this network model is
comparable with the valuable experiment recordings. Figure 16
illustrate the comparison between model result and experiment
data recorded from bat (Yartsev and Ulanovsky, 2013).
Figure 16A shows the spikes (red dots) overlaid on bat’s position
(gray lines), and Figure 16B is the three dimensional color-
coded rate map, with peak firing rate of 15Hz. Figure 16C is the
model simulation of the typical activity pattern of a place cell.
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FIGURE 13 | Energy consumed and locating errors. Total energy consumption (A) and the locating errors of the last 100 steps (C) of 200 place cells with smaller

place fields. (B) and (D) are similar with A and C except that the size of place field is larger.

FIGURE 14 | Mean locating errors with respect to place field sizes.
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FIGURE 15 | Total energy consumption distribution of place fields. Histogram (A) and normal probability plot (C) of total energy consumption of small size place fields,

which are not normally distributed. (B) and (D) have the same meaning with A and C except that the place fields are larger and the energy consumption is normally

distributed.

FIGURE 16 | Model result compared with experimental recording (Yartsev and Ulanovsky, 2013). (A) and (B) show the experiment results from the work of Yartsev

and Ulanovsky. (A) is the spikes (red dots) overlaid on bat’s flying trajectory (gray lines). (B) is the three dimensional color coded rate map, with peak firing rate of

15 Hz. (C) is the model simulation result of the typical activity pattern of a place cell.

By comparing these figures we can find out that the simulation
result is similar with the experimental result morphologically. In
this point of view, the behavior of this model is matched with the
experimental data.

DISCUSSION

Energy efficiency is one of the most remarkable features of the
neural systems. In mammalian brains, 1,000 trillion operations
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per second are carried out while only several watts of energy
is consumed (Kandel et al., 2000). This feature should be
addressed while modeling the function of brain. As a scalar
and a more fundamental physical variable than others such as
spike number, firing rate, or oscillation phase, neural energy
has been proved to be an effective tool for neural modeling
and computational analyzing due to its global and multi-level
superimposing properties, which will greatly reduce the cost
of analytical research (Wang et al., 2017b; Zhu et al., 2018).
Using energy rather than firing rate model for place cell will
emphasize cognitive function as well as neural cost and the
tradeoff between these two aspects can be revealed. It will help
us verify the principle of minimizing the energy consumption
while maximizing the signal transmission efficiency in the
brain (Laughlin and Sejnowski, 2003). Besides, energy provides
a mutual code for neural activities on every level from ion
channels to global brain. This energy model will be conveniently
embedded into a more macroscopic model unified by energy.

Energy consumption is positively related to the place field
size. If the place field is too small, the locating system will
fail to cover the local space and provide spatial information
insufficiently. On the contrary, large place field will convey
adequate even redundant spatial information at the cost of much
more energy consumption. So the locating system has to balance
the spatial coverage and energy consumption, which leads to a
moderately medium place field size as this model shows. And
the balanced field size and energy consumption jointly regulate
a more accurate locating function. A coupling energy model of
grid cell and place cell could be constructed in future study,
which will help us understand the energy efficiency principle in
medial entorhinal cortex-hippocampus circuit and further the
whole spatial cognition system of the brain.

This is a preliminary model for three dimensional spatial
representation system and certain factors are simplified. For
example, it is known that animal rely on visual, auditory,
olfactory, or somatosensory stimuli for orientation. While in
this model, the sensory input to place cell network is in an
abstract form without addressing the type of the cues. And the
neural energy consumed by synaptic transmission is neglected in
this model for simplification. These shortages will be interesting
topics for future modeling study. However, this model, which
emphasizes the three dimensional locating function and takes
energy efficiency into consideration as well, may be the initial step
to complete a comprehensive energy model for the brain’s spatial
representation system in realistic three dimensional world.

CONCLUSION

Aiming at improving the defects of the studies of place cells
and energy coding, we constructed a place cell network model
representing three dimensional space on an energy level. Then
we defined the place field, place field center by energy. The
spatial representation and locating functions of this model
have been analyzed and the energy consumption properties
related to place fields and locating accuracy have been studied.
The computational results showed that the model successfully
simulated the basic features of place cells. The spatial selectivity

and sizes of place fields vary among individual place cells, and
the locating error can be limited under an acceptable low level
by choosing the reasonable parameters. Then we demonstrated
the relationship between energy consumption, place field size,
and locating error. Furthermore, we found that the minimum
value of locating error will be obtained when the place field is of
moderate small size. This may suggest that the place cell network
balance the spatial coverage and the energy consumption to
achieve an accurate locating function, which implied the energy
efficiency feature of the neural systems. The simulation results
matched with experimental data (Yartsev and Ulanovsky, 2013).
In conclusion, this is an effective model to represent three
dimensional space by energy method. It is a generalization model
for higher dimensional space on a more fundamental energy
level. The research verifies the energy efficiency principle of the
brain during the neural coding for three dimensional spatial
information. It is the preliminary step to complete the model
of three dimensional spatial representing system of the brain,
and will help us further understand how the brain’s locating,
navigating and path planning function are performed in the
realistic three dimensional space.

Besides the locating function, path-planning and navigation
are also the crucial functions of the brain’s spatial representation
system. Other cells such as grid cell, border cell, and head-
direction cell should be introduced in future studies. These
models of different types of cells can also be generalized into
three dimensional space by this similar energy method. Then the
system error of locating may be reduced significantly and the
model will acquire the path integrating and navigation function
in three dimensional space. Moreover, whether the degree of
freedom of the sensory input is higher in three dimensional
space than on a plane remains to be testified by physiology
experiments. If it can be verified that there is a certain group
of cells in the brain responding solely to altitude information,
the dimension of integrated signals can be extended and the
locating accuracy can be improved in the model. These future
works will help us understand and explain the three dimensional
spatial representation system of the brain, and will further
reveal how the energy efficiency principle would guide the
brain to execute the locating, path planning and navigating
functions. It will be a new view to study the mystery of the
brain.
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