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The brain integrates streams of sensory input and builds accurate predictions,

while arriving at stable percepts under disparate time scales. This stochastic

process bears different unfolding dynamics for different people, yet statistical

learning (SL) currently averages out, as noise, individual fluctuations in data

streams registered from the brain as the person learns. We here adopt

a new analytical approach that instead of averaging out fluctuations in

continuous electroencephalographic (EEG)-based data streams, takes these

gross data as the important signals. Our new approach reassesses how

individuals dynamically learn predictive information in stable and unstable

environments. We find neural correlates for two types of learners in a

visuomotor task: narrow-variance learners, who retain explicit knowledge

of the regularity embedded in the stimuli. They seem to use an error-

correction strategy steadily present in both stable and unstable environments.

This strategy can be captured by current optimization-based computational

frameworks. In contrast, broad-variance learners emerge only in the unstable

environment. Local analyses of the moment-by-moment fluctuations, naïve

to the overall outcome, reveal an initial period of memoryless learning, well

characterized by a continuous gamma process starting out exponentially

distributed whereby all future events are equally probable, with high signal

(mean) to noise (variance) ratio. The empirically derived continuous Gamma

process smoothly converges to predictive Gaussian signatures comparable

to those observed for the error-corrective mode that is captured by

current optimization-driven computational models. We coin this initially

seemingly purposeless stage exploratory. Globally, we examine a posteriori

the fluctuations in distributions’ shapes over the empirically estimated

stochastic signatures. We then confirm that the exploratory mode of those

learners, free of expectation, random and memoryless, but with high signal,

precedes the acquisition of the error-correction mode boasting smooth

transition from exponential to symmetric distributions’ shapes. This early

naïve phase of the learning process has been overlooked by current models
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driven by expected, predictive information and error-based learning. Our work

demonstrates that (statistical) learning is a highly dynamic and stochastic

process, unfolding at different time scales, and evolving distinct learning

strategies on demand.

KEYWORDS

statistical learning, dynamic learning, exploration, stochastic process, error
correction, active inference learning, reinforcement learning

Introduction

At the start of life, human babies gradually become aware
of their bodies in motion and as they understand it, they
come to own the consequences of impending movements that
make up all their purposeful actions. Seemingly purposelessly,
neonates explore their surroundings as they expand their limbs
with antigravity motions and eventually learn to reach out
to their immediate space in a well-controlled, purposeful, and
intended manner. The type of highly dynamic, spontaneous,
exploratory learning that is at first driven by surprise and
curiosity, has no initial goal or desired target. At this early
stage of learning, all future events are equally probable to
the cognitive system. The learning is merely a wondering
process, “what happens if I do this?”, perhaps a guess, “if I
do this, then this (consequence) will ensue, otherwise, this other
(consequence) will happen. . .”. The current work offers evidence
to suggest that this endogenous and dynamic type of learning
in early life may scaffold how we learn in general. That is,
that before realizing that certain regularities are present in
the environment we collect information spontaneously, without
relying on prior knowledge, committing to some stimuli salient
feature, or using referencing goals. This stage, that has so far
been overlooked, is not well described by traditional models of
error correction learning. These models rely on expectation and
surprise minimization. However, there are situations whereby
the system does not yet have referencing information to generate
a prediction error or expected prediction error code.

Research about learning, whether in the perceptual, the
motor, or the cognitive domain, is primarily based on error-
correction schemas (Censor et al., 2012; Hasson, 2017; Frost
et al., 2019). These schemas are aimed at reducing the difference
between a desired configuration or goal to be learned, and
the current learning state (Hasson, 2017). Such goals tend
to be exogenous in nature, but implicit in them are rules
that the system must find. Somehow the spontaneous self-
discovery process that we relied on as babies, to learn about
sensing our body in the world and sensing the world in our
body, tends to fade away from our behavioral research. Indeed,
curious exploration seldom enters our experimental paradigms
in explicit ways (Frost et al., 2019). Some animal models of
exploratory behavior (Drai and Golani, 2001) have nevertheless

been successfully extended to characterize exploration in human
infants as excursions that separate segments of movements’
development from lingering episodes (Frostig et al., 2020). This
recent research suggests behavioral homology across species and
prompted us to hypothesize that at a finer temporal learning
scale, a wondering, exploratory code may hide embedded in the
fluctuations of our performance. We tend to average out such
fluctuations as superfluous noise, often referred to as gross data.
Certainly, when favoring a priori imposed theoretical means
under assumptions of normality and stationarity in the data
registered during the learning process, we miss the opportunity
to know what possible information lies in the gross data.

The exploratory code discussed above is not to be confused
with the exploration mode that is commonly addressed in
models of exploration vs. exploitation in reinforcement learning
(RL) (Sutton, 1992; Dayan and Balleine, 2002). Within this
computational framework, learning depends on a reward,
which is either intrinsically obtained, or extrinsically provided.
However, for both exploration and exploitation, the learning
is best described by error correction, as the system considers
information and aims to descent optimally along the gradient of
some implicit objective function, minimizing the error towards
a desirable configuration. The RL framework does not explain
how the objective (target) of the objective function is determined
neither does it say how the value of the target self-emerges
in different contexts. This includes more recent work on
intrinsically motivated RL, where “Curiosity thus seems to be a
matter of finding the right balance so that the agent is constantly
maximizing the rate of reducing the prediction errors” (Dubey
and Griffiths, 2020). Indeed, RL solves a different problem than
that of self-discovering the perceptual goal or objective of a given
situation.

We here focus precisely on how the system comes to self-
discover the task-goal or purpose by firstly opening information
channels welcoming surprise. More specifically, we isolate
the spontaneous exploratory mode of learning. This mode
without expectations, or referencing signals, leads to the self-
discovery of the goal or objective. To that end, we focus on the
cognitive processes known as implicit or statistical learning (SL).
While we recognize other influential computational frameworks
such as active inference and Bayesian RL contribute to our
understanding of learning in general (Friston et al., 2016, 2017),
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SL is ideal for the present study as it involves embedding and
manipulating the predictability of specific regularities within
the perceptual input, so that the emergence of expectations
and transitions between different learning modes can be
tracked online. We return to the relevance and implications
of our results on other computational frameworks that rely
on optimization and error-correction in the “Discussion”
section.

Implicit SL describes the ability of the brain to extract
(largely beneath awareness) regularities from the environment
(Hasson, 2017; Frost et al., 2019; Conway, 2020). Such capacity
has long been known to support a wide range of basic human
skills such as discrimination, categorization, and segmentation
of continuous information (Saffran et al., 1996; Romberg and
Saffran, 2010; Christiansen, 2019) and predictive aspects of
social interactions (Torres et al., 2013a; Sinha, 2014; Crivello
et al., 2018). Previous research has consistently shown that
regardless of the nature of the embedded regularity (motor,
perceptual or both), SL involves motor control systems, so
that when participants are required to respond, the presence
of predictive information modulates both response preparation
and response execution processes (Kunar et al., 2007; Schwarb
and Schumacher, 2012; Vaskevich et al., 2021). Yet work to
addresses the stochastic motor signatures of SL during motor
decisions communicating a preferred stimulus is sparse (Torres
et al., 2013a), particularly those involving different levels of
neuromotor control (Torres, 2011).

In this work, we reevaluate SL from the standpoint of
sensory-motor systems. We reasoned that the motor percept
that emerges from the sensations of our own endogenously
generated biorhythmic motions could serve to support the type
of SL that other perceptual systems would experience to gain
behavioral control. More specifically, we propose to reframe the
SL problem using recent advances in developmental research
of neuromotor control (Torres et al., 2016) that focuses on
time series of biorhythmic signals like those derived from

electroencephalographic (EEG) signals (Ryu et al., 2021). We
track the dynamic changes in stochastic signature of the learning
process, continuously evaluating an EEG signal recorded while
participants perform in a learning task that contained predictive
information (i.e., regularities).

To uncover the continuous dynamics of SL, we consider
multiple time scales (Figure 1A) within the context of a visual
search task (Figure 1B) whereby learning takes place across
millisecond, minutes, and hours. Furthermore, we view the
stochastic phenomena at a local and at a global level (Figure 1C).
At the local level, we start naïve, without empirical knowledge
of the stochastic process at hand. We do not make theoretical
assumptions about this process (e.g., that is Gaussian, stationary,
linear, etc.). Instead, we obtain moment by moment, the
stochastic signatures of data parameters (e.g., signals’ amplitude
and timing) and track how they evolve over time, as the learning
unfolds. At the global level, we then examine a posteriori, the
fluctuations in those stochastic signatures that we empirically
estimated, to gain insight into the overall dynamics of the SL
process that took place. For example, we track the evolution of
the empirically estimated probability distributions’ shapes.

We analyze fluctuations of a continuous EEG signal,
recorded during the visual search task. While we leverage the
precise time stamping of the events in the data acquisition
system and the use of stable and unstable implicit-learning
environments (Vaskevich et al., 2021), we empirically estimate
anew, moment by moment, the probability distribution function
(PDF) that best fits fluctuations in the data and obtain the
continuous family of PDFs describing the overall learning
process. We let these fluctuations that are often discarded as
gross data, reveal the primordial way of curious, exploratory
learning, preceding the self-discovery of regularities conducive
of a goal and eventually defining the error in the error-correction
mode. We reframe SL from the point of view of a developing,
nascent motor system that spontaneously transitions from
purposeless to purposeful behavior.

FIGURE 1

Dynamic statistical learning. (A) Different time scales of learning are accompanied by different types of learning supporting each level. From a
level at sub-second time scales, to the scale of 40 min, different levels of granularity in the data afford different levels of precision to describe
learning phenomena. Averaging out fluctuations in the system’s responses may eliminate gross data containing important information on
learning mechanisms. These may be varying from trial to trial and from block to block at each level. (B) Visual search task: the target was a letter
T rotated either left or right that appeared among rotated Ls (distractors). Across trials, the spatial configurations of target and distractors (i.e.,
layouts) could repeat (correlated group), be generated randomly (random group) or repeat on half of the trials (mixed group). (C) Micro-Local
vs. Macro-Global signatures of variability are extracted from fluctuations in EEG signals recorded while participants searched for the target and
pressed the corresponding response key as fast as possible.
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Materials and methods

This study involving human participants was reviewed
and approved by the Institutional Review Board of Tel Aviv
University. The participants provided their written informed
consent to participate in this study. Behavioral and ERP analyses
of these data were previously published (Vaskevich et al., 2021).
Here we focus on the continuous EEG signal, without taking
data epochs and averaging data parameters under theoretical
assumptions of normality, linearity, and stationarity. Instead,
we empirically estimate the continuous family of PDFs that in a
maximum likelihood (MLE) sense, best fits what is traditionally
discarded as superfluous gross data. This novel approach
enabled us to isolate phenomena that cannot be observed when
data is analyzed with conventional methods, leading to the
uncovering of entirely new results.

Participants

Data from 70 participants (48 female, mean age, 23.7)
was analyzed in this study: 24 in the random group, 23 in
the correlated, and 23 in the mixed groups. There were no
differences in age or gender between the three experimental
groups. Two participants (one in the mixed group and one in
the correlated group) were removed from the analyses due to
incomplete data: their EEG recording started late, missing the
first few trials. As we focus here on continuous data analyses of
the full learning experience, these two subjects were excluded.

Stimuli and procedure

All participants gave informed consent following the
procedures of a protocol approved by the Ethics Committee at
the Tel Aviv University. The EEG signal was recorded during
the visual search task. This task was followed by an explicit
memory test during which EEG was not recorded. A more
detailed account of the procedure can be found in Vaskevich
et al. (2021).

Stimuli in the visual search task and the explicit memory
test were white T’s and L’s (Figure 1B). All stimuli were made
up of two lines of equal length (forming either an L or a T).
From a viewing distance of approximately 60 cm, each item
in the display subtended 1.5◦ × 1.5◦ of visual angle. All items
appeared within an imaginary rectangle (20◦ × 15◦) on a gray
background with a white fixation cross in the middle of the
screen (0.4◦ × 0.4◦). Targets appeared with equal probability on
the right or left side of the screen.

Visual search task
Participants searched for a rotated T (target) among

heterogeneously rotated L’s (distractors) while keeping their eyes

on the fixation cross. Each trial began with the presentation
of a fixation cross for 2,100, 2,200, or 2,300 ms (randomly
jittered) followed by an array of one of two possible targets
(left or right rotated T) among seven distractors. Participants
were instructed to press a response key corresponding to the
appropriate target as fast as possible -i.e., the goal of the
task was to be accurate as fast as possible. Each participant
was randomly assigned to one of three groups, with the
degree of regularity in the task varying along a gradient. At
one extreme the participants searched for the target within
a highly predictable environment where predefined spatial
configurations of target and distractors (layouts) were repeated
from trial to trial (correlated group). Presumably, the embedded
regularity can be easily and systematically confirmed by the
system. At the other extreme, participants experienced the
least amount of regularity, as from trial to trial, the layouts
of the display were generated randomly (random Group). For
the third group, consistent and random layouts were mixed
throughout the task (mixed group). Any regularity cumulatively
built from random guesses and confirmations, thus creating
the ground for self-emergence of the overall goal or purpose
of the task. This task is ideal to investigate the dynamic
progression of SL. The gradient of predictability enables to
examine, moment by moment, stochastic variations in learning
between environments that differ in the reliability of predicting
and confirming a guessed regularity. Depending on the group,
the visual search contained the consistent mapping condition
(correlated group), the random mapping condition (random
group), or both (mixed group).

In summary, the three groups corresponded to predictable
predictability (consistent group), predictable unpredictability
(random group) and unpredictable predictability (mixed
group). We were particularly interested in learning in the mixed
group relative to the other two (predictable) groups.

For the consistent mapping condition, spatial configurations
of targets and distractors were randomly generated for each
participant (8 layouts for the mixed group and 16 layouts for the
correlated group). In the random mapping condition targets and
distractors appeared in random locations throughout the task.
The order of layouts was randomized every 16 trials (in the case
of the mixed group 16 trials correspond to eight consistent and
eight random trials presented in a random order). The identity
of the target (left or right rotation) was chosen randomly on each
trial and did not correlate with the spatial regularity. Participants
completed 512 trials in the experiment. Only correct trials were
included in the analysis.

Explicit memory test
Participants were not informed of the regularity in the visual

search task. Upon completing the task, participants in the mixed
and correlated groups (when the task contained regularity)
completed an explicit memory test, designed to reveal explicit
knowledge of the regularity: participants saw the layouts that
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were presented to them during the search task mixed with new,
randomly generated layouts. For each layout participants had
to indicate whether they have seen the layout during the visual
search task or not. We then computed an Explicit Memory
Test (ET) score (hit rate/false alarm rate) that is considered to
reflect each participant’s explicit knowledge of the regularity,
so that higher scores correspond to better explicit knowledge
(Vaskevich et al., 2021).

EEG recording
Electroencephalographic signals were recorded inside a

shielded Faraday cage, with a Biosemi Active Two system
(Biosemi B.V., Amsterdam, Netherlands), from 32 scalp
electrodes at a subset of locations from the extended 10–20
system. The single-ended voltage was recorded between each
electrode site and a common mode sense electrode (CMS/DRL).
Data was digitized at 256 Hz (for a more detailed account
see Vaskevich et al., 2021). We rely on continuous recordings,
without averaging epochs of the data. In this work, we focus on
the electrodes that do not reflect strong eye muscle activity either
through blinking or the jaw movement. The analyzed subset
Fp1, Fp2, AF3, AF4, F3, F4, F7, F8, Fz, FCz, C3, C4, Cz, T7, T8,
P1, P2, P3, P4, P5, P6, P7, P8, Pz, PO3, PO4, PO7, PO8, POz,
O1, O2, and Oz), includes all the electrodes that were previously
analyzed (P7, P8, PO3, PO4, PO7, PO8, C3, C4). We use the
EEGLAB PREP pipeline (Bigdely-Shamlo et al., 2015) to clean
the EEG signals.

Cross-coherence analyses and network
representation

The statistical analyses described in the next sections were
done for a hub channel, chosen continuously for each time
window (5 s of recording) with 50% overlap of the sliding
window. Here we describe the process by which these hub
channels were selected. Based on previous work with the same
approach we bandpass filtered the data at 13–100 Hz using
IIR filter at 20th order (Ryu et al., 2021). Two sample leads,
taken pairwise across all sensors of the EEG cap were then
used to instantiate the analyses. We used cross-coherence to
quantify the similarity between any two leads (Phinyomark et al.,
2012). For each pair, the maximal cross-coherence was obtained,
with corresponding phase and frequency values at which the
maximum was attained. The maximal cross-coherence matrix
was used as an adjacency matrix to build a weighted undirected
graph representation of a network (Supplementary Figure 1).
Next, network connectivity analyses were used to obtain the
maximum clustering coefficient representing the hub within
each time window at the selected frequency band. The stochastic
signatures of the moment-by-moment fluctuations in neural
activity were then tracked in each overlapping window for the
identified hub.

New data type: The micro-movement
spikes

The analysis that is at the heart of the current work relies
on the micro movements (MMS) spikes. This type of data and
analytical platform, developed in the Torres lab (Torres et al.,
2013a), and patented by the US Patent office (Torres, 2018a),
was used in the current work to examine the change in stochastic
variations of an EEG signal over time. To obtain the MMS
of the EEG-hub biorhythmic signal, for each participant we
take the peaks of the original EEG-hub waveform, derive the
empirical distribution of the peaks and using the empirically
estimated mean, we obtain the absolute deviation of each time
point in the EEG-hub time series, from the empirically estimated
mean. In the present data, the continuous Gamma family of
probability distributions best fitted the peaks data, in an MLE
sense. The Gamma family has well defined moments. We
used the empirically estimated mean amplitude (µV) in our
computations, to track the moment-by-moment fluctuations
away from the empirically estimated mean. This builds a time
series of micro-movements’ spikes (MMS) which consists of
periods of activity away from the mean interspersed with
quiet period of mean activity. Importantly, we retained the
original times where those fluctuation peaks occurred and
built normalized spike trains using the deviations from the
mean amplitude using equation (1). An example is shown in
Figures 2A,B.

Equation 1 scales out allometric effects owing to anatomical
differences (Lleonart et al., 2000). Each local peak (max) of these
series of fluctuations is divided by the sum of its value and
the averaged values of points between the two local minima
surrounding it

MMS =
max

max + avgmin−to−min
(1)

The result is then plotted, reflecting the unitless standardized
MMS (Figure 2C), which describe the minute fluctuations
in the original waveform (the EEG-hub), away from the
empirically estimated mean (Figure 2C). Sweeping through
the MMS trains, the values of the peaks (ranging now
between 0 and 1) are gathered into frequency histograms
for windows of 5 s with 50% overlap between each two
consecutive windows (Figure 2D shows the corresponding
histograms from the sampled blocks and windows in
Figure 2C). We explored between 1- and 5-s-long windows
(with 50% overlap) and settled on 5 s as the minimal time
unit that gave us acceptable 95% confidence intervals in
the empirical estimation process requiring 100 peaks or
more.
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FIGURE 2

Transforming continuous analog signals to digital spikes: micro-movement spikes MMS. (A) Sample electroencephalographic signal from one
hub channel determined through network connectivity analyses, zooming into one segment. Sweeping through the signal, windows of 5 s with
50% overlap are taken to scale each peak value deviated from the empirically estimated mean (µV). (B) For each participant, the original peaks
are used to empirically estimate the mean amplitude across the session, and obtain, for each point in the time series, the absolute deviation
from the mean. This series of fluctuations are then used to scale out possible allometric effects from e.g., anatomical head differences, using
equation 1 in the methods. (C) The unitless, standardized MMS are plotted as time series conserving the original peaks’ timing, shown here for
two sample states in some window of blocks 1 and 8. (D) The peaks (red dots) are gathered into a frequency histogram to obtain the histogram’s
difference, from window to window (block by block), using the earth movers’ distance, a similarity metric used in transport problems. We then
obtain the amount of effort that it takes to transform one frequency histogram into the other. (E) Using maximum likelihood estimation (MLE)
the best continuous family of probability distributions fitting the frequency histogram is obtained, shown here for different time windows.

A similarity metric for abstract
probability spaces

The Earth Mover’s Distance, EMD (Monge, 1781; Rubner
et al., 1998) was used to obtain the scalar difference from
moment to moment between the frequency histograms. This
built a time series of such scalar quantity and enabled
quantification of the dynamically changing stochastic
trajectories. Figure 2D shows two sample histograms that
can serve as input to the EMD metric expressing this (abstract)
distance notion in probability space. Figure 2E shows an
example of the empirically estimated Gamma PDFs across
windows, contrasting blocks 1 and 8 for two quadrants of
the Gamma parameter plane where these points are to be
represented (see next section).

Local analyses: Empirical estimation of
gamma scale and shape parameters

Upon deriving the MMS, we proceed to sweep through them
using 5-s-long windows of MMS activity, with 50% overlap. This
gives us a local estimation (at each window) of the stochastic

process. Using MLE, we empirically estimate the shape and
scale of the best PDF in an MLE sense. Examples of frequency
histograms are shown in Figure 2D for different sample blocks
and windows. Examples of PDFs are shown in Figure 2E. We
found that the continuous Gamma family of PDFs were the best
MLE fit for these windows of normalized MMS activity. Among
distributions that we tested were the Lognormal, the normal, the
exponential, the Gamma and the Weibull.

The Gamma was the best continuous family fitting the
MMS in a MLE sense. The Gamma (a) shape and (b) scale
parameters were then plotted on the Gamma parameter plane
(Figures 3A,B). The Gamma family choice confirms previous
work, as it has been found to be the optimal for representing
MMS derived from human biorhythmic data registered from the
face, eyes, whole body, heart, EEG, fMRI signals (e.g., Torres
et al., 2013a; Ryu et al., 2021). This section is dedicated to
explaining the empirical meaning of the Gamma parameter
plane. We note here that at this level of analyses we are naïve as
to the overall stochastic process and are empirically estimating
its moment-by-moment evolution according to our unit of time
(5 s window) chosen to yield tight confidence intervals.

The continuous Gamma family spans distributions of
different shapes and different scales. Prior research has
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FIGURE 3

Stochastic analyses of the MMS derived from hub’s activities. (A) Upon determination of the lead the MMS are obtained and MLE used to
determine the parameters of the best continuous family of probability distribution functions (PDFs) describing their fluctuations. In this case the
Gamma family. The Gamma shape and scale parameters thus estimated, are then plotted with 95% confidence intervals, on the Gamma
parameter plane. (A) Each point represents the signatures of a 5-s window with 50% overlap. Colors represent arbitrary order. (B) The log–log
Gamma parameter plane is obtained to track points according to the quadrants spanned by the median shape and median scale, taken across
each block. The Right Lower Quadrant (RLQ) contrasts with the Left Upper Quadrant (LUQ). (C) The Gamma moments are obtained to visualize
the points in (B) on a parameter space whereby the Gamma mean is represented along x-axis, the variance along the y-axis, the skewness along
the z-axis and the size of the marker is proportional to the kurtosis. The color corresponds to the direction of the shift, where the point lands,
red is from the LUQ to the RLQ, or from the RLQ to itself, whereas blue is from the RLQ to the LUQ, or from the LUQ to itself. (D) Empirical
interpretation of the Gamma plane and the quadrants. Along the shape axis, the distributions change from the shape a = 1 memoryless
exponential to the Gaussian range, with skewed distributions with heavy tails in between. (E) The EMD is used to track the magnitude of the shift
from each estimated PDF in windows at t and t + 1, while the direction is tracked by the quadrant landing. This curve represents the evolution of
the stochastic process and serves to determine, e.g., critical points of transitions for each block of the session.

empirically characterized maturation of human neuromotor
development, showing over the human lifespan a tightly linear
relationship between the log shape and log scale of this family
(Torres et al., 2013a; Ryu et al., 2021). As humans mature,
distributions of the fluctuations in biorhythmic activities
measured from their central and peripheral nervous systems
grow more symmetric while the scale (dispersion) decreases.
This characterization has reduced the parameters of interest to
one (the shape or the scale) since knowing one, we can infer the
other with high certainty. Focusing here then on the ranges of
PDF shapes, we track the SL evolution. These parameters reflect
different degrees of randomness and different levels of noise to
signal ratio NSR (which in the Gamma family is given by the
scale parameter of (equation 2).

NSR =
0σ

0µ
=

a · b2

a · b
= b (2)

We will use in our descriptions 1/NSR = SNR and will refer
to it as the signal (empirically estimated mean over empirically
estimated variance). Figure 3A shows the Gamma parameters

estimated for each window in blocks 1 and 8, while Figure 3B
shows the log-log Gamma parameter plane with a division
into quadrants that reflect different empirical properties of the
stochastic process. We take the median of the shape values and
the median of the scale values and draw a line across each
axis (Figure 3B), to break the Gamma parameter plane into
quadrants that shift from window to window. Quadrants reflect
the evolution of the stochastic process. Figure 3C shows the
corresponding Gamma moments space following the color-code
of Figure 3Bwhereby points that fall on the right lower quadrant
(RLQ) are those representing symmetric distributions with low
NSR (low dispersion), while those in the left upper quadrant
(LUQ) represent distributions closer to the exponential range
and having high NSR.

As an example, in Figure 3D, we summarize these results
for empirical interpretation and inference in block 8. Generally,
at the leftmost extreme, when the Gamma shape is 1, we have
the special case of the memoryless exponential distribution (no
points appear in this range for this example). This is the case
of having a random process whereby events in the past do not
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inform more about events in the future than current events
would. All future events are equally probable. The information
is coming from the here and now. At this level of randomness,
prior research has shown corresponding highest levels of NSR
(We note that the signal to noise ratio SNR = 1/NSR will be
used henceforth). Such distributions are typical to the motor
code at the start of neurodevelopment (Torres et al., 2013a,
2016). Around 4–5 years of age, when the system is (on average)
mature enough to start schooling, receive instructions, and
sustain longer attention spans, a transition into heavy tailed
distributions is observed. By college age these distributions are
tending to Gaussian, so that the shape parameter is at the other
extreme of the shape axis on the Gamma parameter plane and
the SNR is at its highest value (Figure 3D).

Prior work has also revealed that in systems where
maturation is compromised (e.g., autism across the lifespan)
these global signatures remain in the exponential range,
randomly relying on the here and now and manifesting very low
SNR. In this case, the system does not progress into acquiring a
predictive code (Torres et al., 2013a).

For each Gamma PDF derived from the MMS in each
window, the shape and scale parameters are plotted with 95%
confidence intervals as points along a stochastic trajectory, on
the Gamma parameter plane. Figure 3E makes use of the EMD
to quantify the stochastic shifts from moment to moment in
each learning block, as points transition from quadrant to
quadrant.

Dynamically tracking the stochastic
signatures of the data

As the stochastic signatures (a,b) shift quadrants from
moment to moment, they describe probability-positions over
time (the dynamics of the stochastic process) on the Gamma
parameter plane. Differentiation of this probabilistic positional
trajectory yields an abstract velocity field whereby each velocity
vector tangent to the trajectory, expresses the direction and the
magnitude of the stochastic shift. To track the direction, we
use the location of the landing point on the quadrants (the
LUQ or the RLQ). The shift may leave the process in the same
quadrant, or it may shift it away to the other quadrant. As shown
in Figure 2D, to track the magnitude of the shift, we use the
EMD scalar quantity representing the difference between the
frequency histograms of amplitude fluctuations (MMS) derived
from the EEG-hub channel activity. This is shown in Figure 3E
for one participant’s activity in blocks 1 and 8. That is, the
EMD value on the y-axis represents the difference between the
histogram at time t and the histogram at time t + 1, taken at
consecutive windows of activity. Notice that this is not physical
distance. It is abstract distance in probability space. Likewise,
this is not physical time, but time that depends on the length

of the window and the overlapping % of the sliding window
process.

Global analyses

As we accumulate the above discussed stochastic
trajectories, we are locally tracking the shapes of the PDFs
over the empirically estimated Gamma parameters. We use
EMD to trace the moment-by-moment evolution of the
stochastic Gamma process, as it unfolds across all trials and
blocks. But initially we are naïve to the fluctuations in this
process. It is then as we contemplate the full stochastic profile,
a posteriori, that we can track the spikes of the EMD at a
global time scale, i.e., across the entire session. This is shown in
Figures 4A–D using the MMS and Gamma process once again,
this time, the empirically estimation is on the fluctuations of the
Gamma shape parameter representing the stochastic shifts of
the distributions of the Gamma shape.

The general formula for the PDF of the Gamma distribution
is shown below (equation 3), where a is the shape parameter and
b is the scale parameter.

f (x) =
1

0 (a) ba
xa−1e−

x
b (3)

Although the continuous Gamma family of PDFs can
be parameterized with two parameters (a shape and b scale
parameter), we can also obtain its statistical moments. We will
use this alternative description of the distributions later to help
visualize the results. The moments (µ, σ, skewness, kurtosis) are
a·b,a·b2 ,2/√a,6/k

respectively.

Results

Behavioral results

The results from the analyses of the behavior and averaged
potentials were previously reported (Vaskevich and Luria, 2018;
Vaskevich et al., 2021). For completeness we summarized here
the main behavioral result. Participants in the mixed group
reached significantly slower reaction times than participants
in both the correlated and random groups, even though the
task contained a potentially beneficial regularity on half of the
trials. This result replicated previous findings and highlights the
crucial issue of validity: when the regularity is valid, applying
this statistical information results in facilitation to both the
search and response processes (correlated group). However,
when the regularity is mixed with random trials, thus appearing
within a relatively unreliable and unstable environment, a
global interference effect emerges, so that the reliance on all
prior information is attenuated. Previously proposed theoretical
interpretation for these highly counterintuitive results were
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FIGURE 4

Global analyses (A) performed by pooling the MMS across trials and blocks and taking 5-s-long windows with 50% overlap (B) to obtain
frequency histograms that can be compared using the EMD metric (C). (D) Sweeping through the full trajectory of a condition gives the EMD
sequence to obtain the peaks in red and gather them into a frequency histogram tracking the fluctuations in amplitude of the EMD variation (i.e.,
how the distribution change shape and dispersion) and the rate at which these changes occur as the inter peak interval intervals measuring the
distances as well across peaks representing the PDF transitions. These histograms are used in MLE estimation of the distribution parameters best
describing this global process.

reported in Vaskevich and Luria (2018, 2019) and Vaskevich
et al. (2021).

Explicit memory test

In the mixed group, participants correctly classified
previously seen layouts as familiar on 57% of the trials (hit rate),
and incorrectly classified new layouts as familiar on 50% of the
trials (false alarm rate). In the correlated group, participants
correctly classified previously seen layouts as familiar on 55%
of the trials (hit rate), and incorrectly classified new layouts as
familiar on 48% of the trials (false alarm rate). For both the
correlated and the mixed groups the differences between hit rate
and false alarm were not significant, F < 1. The random group
did not complete the explicit memory test as there was nothing
to test for- there was no regularity in the task.

To assign a memory score (ET) we calculated the ratio
between hit rate and false alarm rate for each participant. Higher
scores correspond to better explicit memory of the visual layouts
presented during the search task. The Overall memory scores of
the correlated group (M = 1.37, SD = 0.9) and the mixed group
(M = 1.25, SD = 0.7) were not significantly different, F < 1.

Local level of the stochastic process

For all three groups (correlated, random, mixed) we isolated
the MMS from the continuous EEG data. We converted the
fluctuations in the EEG amplitude (peaks µV) and inter-
peak-interval timing (ms) to unitless, standardized MMS trains
that were then analyzed using a sliding window of 5 s with
50% overlap (see section Methods). The window-by-window
analyses for each participant revealed two subgroups in the
mixed group. On the Gamma moments parameter space, along
the Gamma variance dimension, one subgroup of learners
(subgroup A of broad-variance learners) expressed higher
variance of the fluctuations in the MMS amplitudes at the start
of the experiment. This departure from the other subgroup (B
of narrow-variance learners) can be appreciated individually for
each participant over the entire experiment in Figure 5.

The fluctuations in the empirically estimated Gamma
variance were then unfolded over blocks for each participant
(Figures 6A,B). After the second block of trials, the levels
of variance derived from the MMS-amplitude in subgroup A
systematically decreased, eventually converging to the much
lower level of the subgroup B. As such, subgroup A, with the
initially much higher variance, expressed a higher bandwidth of
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FIGURE 5

Local learning evolution captures two classes of learners in the unstable environment (i.e., mixed group). Empirically estimated Gamma
moments span a parameter space whereby each participant represents a point by the moments of the probability distribution. The coordinates
are the mean (x-axis), the variance (y-axis), the skewness (z-axis). The color represents the target orientation (left or right). (A) Mixed case (i.e.,
group) whereby trials intermix random and correlated conditions, spanning a relatively unstable learning environment. In this group two
self-emerging distinct subgroups of participants. (B) Correlated group, for which layouts are consistent from trial to trial, spanning a stable
learning environment. (C) Random group, for which layouts are generated randomly from trial to trial, spanning a stable learning environment
where no regularity is present. (D) Corresponding frequency histograms of the distribution of the variance across trials, target types and
participants.

overall variance values than subgroup B, which started out with
much lower variance and remained in that regime throughout
the eight blocks of the experiment. This was the case for
both target types. Furthermore, this low range of variance in
subgroup B was comparable to the ranges of variance observed
in the random and correlated groups. This can be appreciated
in Figures 6C,D for the random case and Figures 6E,F for the
correlated case.

To show the overall differences in stochastic signatures of
each case, we pooled the Gamma variance data from all blocks
and for each mixed, correlated, and random group respectively
(Figure 5D). The mixed group is indeed significantly non-
unimodal, according to the Hartigan dip test of unimodality,
p < 0.01 (Hartigan and Hartigan, 1985). The PDF derived from
the MMS amplitude of the mixed group significantly differed
from those in the random and correlated groups, according to
the Kolmogorov Smirnov test for two empirical distributions
(p< 0.01).

Relationship between behavioral
outcomes and stochastic results

The two subgroups broad-variance A and narrow-variance
B of the mixed group did not differ in reaction times or accuracy,
suggesting that all participants were able to reach the same

level of online performance. Instead, they were differentiated
by their explicit knowledge of the regularity imbedded in
the task, as reflected by their memory scores in the explicit
memory test: 10 subjects in the broader variance subgroup A,
M = 0.94, SD = 0.4 vs. 13 subjects in the narrow variance group
subgroup B, M = 1.52, SD = 0.75, p < 0.01 non-parametric
Wilcoxon ranksum test (Figure 7A). The subgroup A with
broader bandwidth of variability showed low test scores, thus
exhibiting less explicit knowledge of the regularity. In contrast,
the subgroup B with the narrow, steady bandwidth of variability,
gained a higher level of explicit knowledge, as reflected in
higher explicit memory test scores (Figure 7B). We coined the
process showing higher variance with low explicit memory score
(subgroup A) “exploratory mode.” In contrast, we called the
process showing lower variance and high explicit memory score
“error-correction mode” (subgroup B). Here the mode refers to
learning mode or phase and in the next results, we provide a
stochastic characterization of these two fundamentally different
modes of learning which, nevertheless, converged in block 8 to
a similar variance range.

For completeness, the memory scores of the correlated
group were also examined. Overall, memory scores (M = 1.37,
SD = 0.9) were like the scores observed in subgroup B of
the mixed group. This result is consistent with the similar
stochastic learning signatures of the correlated group and this
high memory subgroup (observed in the variance trajectories of
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FIGURE 6

Broad- and narrow-variance groups according to the empirically estimated Gamma variance parameter block by block. (A,B) Two subgroups in
the mixed group are revealed for right- and left-oriented targets (each curve represents the trajectory of a participant within the group). The
subgroup with lower variance and narrower bandwidth of values throughout the experimental session separate from those in the subgroup with
high variance and broader bandwidth of values. However, both subgroups converge to similar variance levels toward the 8th block of learning.
Target types show different trajectories but similar convergence trend. (C,D) Random group shows similar levels of variance and stable learning
throughout the experimental session, as does the correlated group (E,F) (with two outliers).

Figure 6). We here infer that as the regularity in the correlated
group was highly reliable, with layouts repeating on all trials, it
seems that all participants reached some minimal level of explicit
knowledge, therefore no subgroups emerged.

Global a posteriori stochastic analyses
of distribution shapes

Analyses of the stochastic signatures derived from pooling
all trials, block by block, across all participants allowed
us to examine the evolution of the distribution of the
empirically estimated Gamma shape parameter, i.e., as the
system experienced the learning and the PDFs shifted shape.
The moment-by-moment fluctuations in the shape parameter
provide insights into the dynamics of the stochastic process.
Notice here that in our local computation (i.e., the MMS
distributions at each window), we were naïve to the global
dynamic nature of the stochastic Gamma process, as we were
locally estimating the Gamma parameters (shape and scale) and
the Gamma moments. Upon estimation of the full stochastic
trajectory across the entire session, trial by trial and block by
block, we are no longer naïve to the process. As such, we can
make a global statement at the time scale of the entire session.

Among the moments of the distributions of the shape
parameter, the variance of the evolving Gamma PDF shape
parameter revealed the separation of the mixed group from
the random and from the correlated groups (Figure 8A).
Furthermore, a distinction is also observed for the mean
parameter of the distribution of Gamma shapes (Figure 8B). As
such, the SNR shows the highest signal content for the mixed
group (Figure 8C). For both the correlated and random groups,
the distribution shape has an increasing trend, consistent in
both cases for the right- and left-oriented targets. However, in
the mixed group, there is an initial increase in the shape that
decreases and stabilizes by the 4th to 5th block, at much lower
values of the variance, so that the SNR of the mixed group is
much higher than that of the random or correlated groups. This
elevated SNR indicates that the mixed environment is much
more effective for learning than environments that contain
purely random or purely correlated trials alone. Its information
content is higher.

Unfolding the gamma process for each
learning mode

We show the stochastic shifts of each of the error
correction (lower Gamma shape variance and higher explicit
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FIGURE 7

Self-emerging subgroups in the mixed group are differentiated by the scores of the explicit memory test. (A) The horizontal axis comprises the
minimum value of the variance, while the vertical axis comprises the maximum value of the variance for each participant. Thus, the graph
depicts the full range of variance values. The size of the marker is proportional to the explicit memory test score and the color represents the
subgroup, with no overlapping between the two sets of participants. (B) Empirically estimated Gamma variance parameter unfolded block by
block as in Figures 6A,B, for the two subgroups of the mixed condition. The group with less explicit knowledge [lower scores on the explicit
memory test (ET score M = 0.94, SD = 0.4)] starts out with higher variance of the fluctuations of the MMS amplitudes (broad-variance group A),
eventually converging to the much lower variance level of the subgroup that showed higher explicit knowledge of the regularity (ET score
M = 1.52, SD = 0.75) (narrow-variance group B).

FIGURE 8

Learning evolution taken globally across participants and full session, shows the unstable environment (mixed group) to provide the most
efficient conditions for learning, as indicated by the highest SNR. (A) Tracking, block by block, the empirically estimated variance of the
distribution of gamma shape values obtained from the fluctuations in MMS amplitudes for each type of stimulus and target. Correlated and
random groups trend upward with a steeper rate for correlated, while the mixed group stabilizes after 1/2 the session. The variance separates the
correlated and random groups from the mixed group, with a marked reduction on the variability of distribution shapes and an overall trend to
increase the variability in distribution shape toward the final blocks. (B) Tracking, block by block, the empirically estimated mean value of the
distribution of shape values from the fluctuations in MMS amplitudes. (C) The signal to noise ratio (mean/variance) then shows the highest signal
for the mixed trials, with a downward tendency after 1/2 the total session.

memory test score) and exploratory (higher Gamma shape
variance and lower explicit memory test score), as they unfold
across the blocks.

The empirically estimated Gamma family shape parameters
of the subgroup with high explicit memory scores (subgroup B)
starts in the symmetric Gaussian range but trends down and
converges towards the skewed, heavy tailed distributions, shown
in Figure 9A for the mean Gamma shape and in Figure 9B for
the variance Gamma shape of the two types of learners [the SNR
(mean/var ratio) for the two subgroups is shown in Figure 9C].
The trajectory on the Gamma parameter plane (Figure 9D)
confirms the departure from a memoryless random state (i.e.,
when the Gamma shape value is 1). To better visualize these

processes, we zoom in and unfold the two types of learning
modes of Figure 9D. Figure 9E focuses on the exploratory
process. As time progresses, the learning generally evolves from
memoryless (Gamma shape 1) towards skewed, heavy tailed
distributions and more symmetric distributions of the shape.
Figure 9F focuses on the error correction process. Here we
see the opposite trend whereby initially the distributions have
symmetric shape (in the Gaussian range of the Gamma family)
but as time progresses, the distribution shapes approach values
closer to those observed for the exploratory process: skewed,
heavy tailed distributions.

Notice here that we are capturing the distribution of the
fluctuations in the estimated Gamma shape parameter with
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FIGURE 9

Stochastic characterization of exploratory vs. error correction modes across blocks by subgroups. (A) The evolution of the empirically estimated
mean based on the distribution of Gamma shape values extracted from the MMS. (B) The evolution of the empirically estimated variance of the
distribution of Gamma shape parameters. (C) The SNR (mean/var ratio) for the exploratory and error-correction subgroups. (D) Block by block
evolution of the empirically estimated shape and scale parameters of the continuous Gamma family of probability distributions. Block number is
proportional to the marker size, with earlier blocks having smaller size and later blocks increasing in size. The exploratory mode is confined to
the gamma shapes close to the memoryless exponential distribution, while the error corrective mode evolves from higher to lower values of the
Gaussian regime of the Gamma family. Unfolding each case [exploratory (E) and error corrective (F)] shows their convergence to a regime away
from the memoryless exponential and tendency to more Gaussian like distributions. This convergent global behavior is congruent with the
convergent local behavior of Figure 3.

a Gamma process as well. We are referring to the Gamma
shape and Gamma scale parameters of the distributions derived
(globally a posteriori) from the fluctuations in Gamma shape
of the MMS derived from the EEG hub channels. On this
Gamma parameter plane, the dispersion (Gamma scale of
the fluctuations in Gamma shape value of MMS) along the
y-axis, is larger as learning occurs, broadening the bandwidth
of distribution shapes as learning takes place. The switch
from exponential to heavy tailed to Gaussian distributions
reflects the more systematic confirmation of a regularity in
the stimuli. Initially, all future stimuli are equally probable
(exponential regime), but in time, correct prediction of futures
events increases, consistent with the transition from a detected
regularity to a systematic goal. Once a goal is in place, error
correction is the learning regime reflecting Gaussian predictive
process embedded in this overall Gamma process. Here is
where we see a tendency to symmetric shapes approached by
both modes along the horizontal axis of the Gamma parameter
plane. One mode (the exploratory) approaching it from the left,
away from the memoryless exponential. The other approaching
it from the right.

The stochastic transition depicted in Figures 9E,F confirms
the separation between two fundamentally different learning

styles with initially different stochastic regimes. It also
highlights a phase transition approximately midway of the
learning progression. Notwithstanding the initial differences,
these regimes converged to similar signatures in the end.
This transition from memoryless exploration (exponential) to
predictive error-correction (heavy-tailed to Gaussian) surfaces
in correspondence to midway of the session, blocks 3–4. Likely
the regularity then self-emerges and eventually, through guess
and systematic confirmation, transitions to a steady goal, one
that serves to compute an error from.

In Figures 9E,F we see the system transitioning from an
initial purposeless search to a search that then acquires a
clear purpose, i.e., self-discovery of a task goal that was not
instructed to the system. Our results suggest that this transition
from memoryless into error correction-based learning depends
on some minimum level of explicit knowledge. Examining
this global process, we presume that in one subgroup enough
explicit knowledge to trigger this transition was acquired much
earlier than in the other subgroup. The group boasting an
initial exploratory mode, for which the search was in the
here and now, did not acquire distributions of the shape
parameter away from the exponential range until around blocks
3–4. This was when the system shifted to a Gaussian mode
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(Figure 9E larger markers) and when locally the variance of
the MMS shrunk (Figures 6A,B), thus spiking (globally) the
SNR of the fluctuations in shape parameter (Figure 8C). In this
exploratory scenario, the system does not immediately progress
into acquiring a predictive code. In other words, because of
not yet committing to regularities in the perceptual input,
the predictive processing that underwrites exploitative or goal-
directed behavior is initially precluded in favor of broadening
the bandwidth of information that enables surprise and self-
referencing towards the self-discovery of a goal. Only then, does
the system transitions into an error-corrective regime.

Dynamic statistical learning

At a global timescale (i.e., stochastic trajectory of the
empirically estimated parameters examined a posteriori, across
the entire experimental session) we assessed the change in
stochastic variations of the signals over time. To do so, we
examined the evolution of the fluctuations in the change of
Gamma distributions’ shapes using the Earth Movers Distance
(EMD) metric (see trajectories in the Supplementary Figures 2–
4). We compared from trial to trial, and block to block,
across participants, the fluctuations in the amplitude of the
change in distributions of the Gamma shape parameter (as
measured by the EMD). We also assessed the rate of the
change in peaks (inter peak intervals related to the physical
timing of the overall global process by our unit of time, 5-s
windows with 50% overlap). These parameters are analogous
to a kinematic “speed temporal profile” of the PDFs’ shape
trajectory (Torres and Lande, 2015; Torres et al., 2016). As the
Gamma process shifts stochastic signatures per unit time on
the Gamma parameter plane, we obtain enough MMS peaks
and estimate the Gamma parameter of each window with tight
95% CI. The EMD scalar profile over time, measuring how
the histograms used in the estimation process change from
window to window, reflect the dynamic nature of the stochastic
shifts that occur as the participants perform the task and
learn in exploratory, or in error correction mode, converging
toward the signatures of the latter at the end of the learning
process.

The analyses revealed that the system clearly distinguishes
the rates at which the distributions change shape from the
random to the correlated groups and between those and
the mixed group. Figure 10A shows this on the log-log
Gamma parameter plane where each point with 95% confidence
intervals, represents the performance for the right target
(left not shown for simplicity but has similar patterns, see
Supplementary Figure 5). The corresponding PDFs for both
right and left oriented targets are shown in Figure 10B. We can
appreciate that the mixed case yields the most toward-Gaussian-
predictive shifts in distribution change, with the highest shape
value. This is accompanied by the highest SNR (i.e., at the

lowest Gamma scale value). Furthermore, these rates of change
in the two subgroups of the mixed case, clearly distinguish the
left from the right oriented targets, with comparable rates of
shifts in distribution shape for the exploratory and the error
corrective subtypes. These are shown in Figure 10C (estimated
Gamma parameters) and Figure 10D (corresponding Gamma
PDFs). Different neural correlates of the learning process are
shown in Supplementary Figure 6. These comparable shifts
in distribution dynamics for exploratory and error correction
stochastic regimes, hint at a smooth process whether the system
is curiously wondering in exploratory mode, or aiming for a task
goal, in error corrective mode.

Discussion

This study evaluated online dynamics of SL using a new data
type and analytical approach. This new platform relies on the
moment-by-moment fluctuations in the signal of interest, which
are traditionally discarded as gross data. Within the context of
a visual search paradigm that manipulated, trial by trial, the
reliability of stimulus regularities, while registering EEG signals,
we examined the continuous stochastic process reflecting SL.
We first isolated the EEG hub lead, maximally connected to
other leads, and then proceeded to apply our new statistical
analyses to this continuous data stream.

We found that SL is a highly dynamic and stochastic
process, sensitive to the reliability of the incoming information.
Moreover, we discovered that embedded in the gross data,
traditionally discarded as superfluous noise under assumptions
of normality, lies a code that describes different modes
of learning. Based on our stochastic characterization of
the learning phenomena at different local vs. global scales,
we equate this distinction with two fundamentally different
types of learning processes. These are the commonly studied
error correction mode linked to stimulus regularity, and the
newly characterized exploratory mode. This exploratory mode,
stochastically characterized here for the first time, is likely
reflecting surprising contextual variations that lead the system
to eventually self-discover the purpose of the task with (i)
the self-discovery of a goal through self-referencing and (ii)
transitioning to the error-correction mode. Eventually the
latter can lead to fast and accurate performance. To aid
interpreting these results, we leverage prior research on the
broad characterization of human biorhythmic activity (Torres
et al., 2013a; Ryu et al., 2021) and reframe SL from the vantage
point of neuromotor control, where spontaneous (seemingly
purposeless) and deliberate (highly purposeful) motions coexist
in any natural behavior from the start of life (Torres, 2011;
Torres et al., 2016).

Two main results emerged from the current analyses. First,
we show that unstable environmental conditions (i.e., mixing
reliable and unreliable stimulus regularities) provide the most
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FIGURE 10

Global statistical learning dynamics. Unfolding the global rate of change in distribution shapes, as the system transitions from PDF to PDF, using
the EMD to ascertain distribution differences from moment to moment. (A) Right target case is shown for the three groups with 95% confidence
intervals for the empirically estimated Gamma shape and scale parameters. Each point represents a different distribution. Here the mixed group
shows the maximal values of log shape (Gaussian) and SNR (1/log scale). (B) The PDFs corresponding to the maximum likelihood estimation
(MLE) distributions in (A). (C) Investigating the differentiation between targets for the two subgroups of the mixed condition at the global level
reveals similar rate of change in the interpeak intervals, suggesting smooth transitions in both exploratory and error corrective cases.
(D) Corresponding PDFs for (C).

opportunity for learning, as characterized by higher SNR on
both the global and local levels of analyses. Next, we show
that on an individual basis, this unstable environment may give
rise to different learning profiles: within this mixed group, two
subgroups of participants self-emerged from the analyses. For
one subgroup-B, coined error correction mode, the learning
profile shows narrow variance in the MMS from start to
finish and higher explicit memory test scores, reflecting better
recall of the regularity. However, for the second subgroup-
A, coined exploratory mode, the learning profile reflected an
early stage of broad variance and memoryless learning which
later converged into the signatures of the error correction
mode. Crucially, this subgroup showed lower scores in the
explicit memory test, as they did not recall the regularity with
the degree of accuracy of the other subgroup. In their initial
learning performance, all future events were equally probable,
without a bias towards a particular regularity being reliably
noted or recalled. We now turn to discussing each of these
results in detail, while considering their implications on our
understanding of SL in general.

Unpredictable environments provide
more opportunity for learning,
corresponding to a more efficient
learning process than predictable
environments

When comparing the stochastic signature of learning
within an unstable environment mixing the stimulus regularity
between random and correlated trails (mixed group) with
stable conditions providing reliable regularity (correlated and
random groups), the process proved to be less stationary,
more predictable in nature, and was characterized by higher
SNR. These characteristics suggest that complex environments
provide higher opportunity to learn than reliable environments.
Moreover, within our theoretical framework, higher SNR
corresponds to more efficient learning. These results are
consistent with neuroimaging studies that have identified brain
systems that track uncertainty in a curvilinear U-shaped
function (Nastase et al., 2014; Hasson, 2017). Within these
systems, full randomness or full regularity are alike in terms of
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informativeness and provide less information than the mixed
case. As such, these systems seem to be especially sensitive to
tracking relatively unreliable information in the environment.

Given that the real world is indeed complex, with
our cognitive system continuously bombarded with variable
regularities, it seems natural that we should be more
attuned to learning under relatively unreliable (yet richer in
information) conditions. However, suggesting that learning
under such conditions is more efficient may seem to contradict
the behavioral pattern previously observed in these data:
participants in the mixed group reached slower RTs than both
in the random and correlated groups (for a detailed account see
Vaskevich et al., 2021). To resolve this issue, one must bear in
mind that efficiency of learning is not necessarily manifested in
online performance. That is, more complex learning conditions
may hinder online reactions, but be beneficial for the long term.
We propose that to gain further insight on SL, future studies
should combine the methods introduced in the current work
with experimental designs that involve changing regularities
online and considering multiple sessions of learning. Indeed,
such designs are becoming common within the field (Makovski
and Jiang, 2010; Zellin et al., 2013; Vaskevich and Luria, 2019).
However, so far, they lack the perspective of evaluating the
dynamic and stochastic online evolution of the learning process,
which is enabled by the methods used in the current work.

Learning dynamics at multiple time
scales

Within the SL domain, focusing on the dynamics of
the learning process itself, with the specific consideration of
multiple time scales, has been recently suggested as the next
necessary step in SL research (Hasson, 2017; Frost et al., 2019;
Conway, 2020). Experts in the field agree that to understand
the neural substrates underlying behavior it is necessary to
view it, and to measure it, as a continuous process, evaluating
learning trajectories of its stochastic variations and learning
stability. However, so far, this direction has not matured into
meaningful research, largely due to limitations of the standard
analytical techniques. To date, several measurements, such as
rhythmic EEG entrainment (Batterink et al., 2019; Moser et al.,
2021), functional connectivity (FC) analysis (Toth et al., 2017),
and divergences in EEG activity in the beta-band (Bogaerts
et al., 2020) have been used to assess the online signature of
SL. Collectively, these studies show that during different tasks
with embedded regularities the EEG signal changes over time
to reflect SL. They provide insight into the mechanisms that are
going through a transition during SL, such as task automaticity
(Toth et al., 2017), and word representation (Batterink et al.,
2019), thus complementing behavioral measures that rely on
reaction times and accuracy. In the context of the present work,
they provide solid justification for the choice of EEG recordings

as the data used to assess the stochastic profile of SL. However,
none of the previously proposed measurements are informative
regarding the ongoing dynamics of the learning process itself, as
in all the above-mentioned studies the signal is segmented into
periods, with the relevant measurement averaged across many
trials for each period, under the assumption of normality.

The present work goes beyond assumptions of normality,
linearity and stationarity in the data and exploits the moment-
by-moment fluctuations that prior work discards as gross data.
Embedded in that gross data we uncovered the phase transitions
in probability space that distinguished two fundamentally
different modes of learning and revealed one (memoryless
exponential) that converges to the other (predictive Gaussian).
Both modes are well characterized by the continuous Gamma
family of PDF s at the local level, when we are naïve to
the upcoming moment-by-moment distribution, and at the
global level, when a posteriori, we can see the fluctuations
in the (Gamma) distribution shape unfolded through the
Gamma process itself.

Exploratory versus error correction
modes differentiated by explicit
knowledge of the embedded regularity

For a cohort of participants, the unstable environment
(mixed group) triggered an initial stage of memoryless
exploratory learning. During this stage, the stochastic signature
of the process reflected a type of learning whereby initially all
future events were equally probable. The stochastic signature
unveiled in this initial period of learning for the broad-variance
subgroup A of this cohort, suggests that the system was not
relying on prior knowledge but was instead gathering as much
information as possible from the “here and now.” Presumably,
this exploratory stage was elicited by the high levels of surprise
in an environment that contained rules that were not followed
consistently over time. Crucially, this subgroup A also exhibited
low scores in the explicit memory test. We posit that for
participants in the narrow-variance subgroup B showing higher
level of explicit knowledge, the stochastic signature reflected
an error correction mode of learning throughout, from the
beginning to the end of the task.

The behavioral differentiation between subgroups A and B,
suggests that the transition from exploratory behavior into error
correction depends on some minimal level of explicit knowledge
that needs to be obtained. This conclusion contradicts the
current assumption that both explicit and implicit SL always
reflects error correction (Hasson, 2017; Frost et al., 2019). For
instance, within theories arguing that both explicit and implicit
learning systems operate simultaneously (i.e., dual-system
approach), it has been suggested that during a learning episode,
implicit associative learning occurs initially, which leads to the
formulation of predictive “wagers” that steadily become more
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correct, leading to explicit awareness of the learned patterns
(Dale et al., 2012). The initial stage of exploratory, memoryless
sampling from the perceptual input that has emerged from our
analyses has so far been overlooked.

The new methodology introduced in this work is grounded
on deliberate vs. spontaneous movement classes (Torres, 2011),
with different classes of temporal dynamics. Framed in this way,
the error correction code would correspond to the deliberate
movements intended to a goal. Such movements are well
characterized by paths that can be traversed with different
temporal dynamics and remain impervious to changes in speed
(Atkeson and Hollerbach, 1985; Nishikawa et al., 1999; Torres
and Zipser, 2004; Torres and Andersen, 2006). Within such
learning, the path to the goal is independent of how long it takes
to attain it and remains stable despite the moment-by-moment
temporal structure of the stimuli, which must be learned and
transformed into physical, motoric action (Torres and Zipser,
2002). This invariance is akin to timescale invariance in models
of temporal learning, strongly supported by empirical data
(Gallistel and Gibbon, 2000). In contrast, exploratory learning,
would correspond to the class of spontaneous movements,
i.e., highly sensitive to contextually driven variations in
temporal dynamics of the stimuli (Torres, 2011; Brincker and
Torres, 2018). These different dynamics can be distinguished
in the variance profile of the learners in the mixed group
of Figure 6A. They respond dynamically different across
blocks, depending on target type. In this sense, exploratory
trajectories with higher variance, lower explicit memory scores
and fundamentally different target responses, are contextually
more informative than error correcting trajectories. According
to their initial exponential distribution signature, during this
exploratory mode, all events are equally probable. The system
samples without restriction. This mode may increase the
chances of surprise, grabbing the system’s attention to some
context-relevant events, perhaps self-discovering (through guess
and confirmation of the regularity) the transition toward a
consistent, ever more systematic state that may eventually
result in a desirable, stable task-goal. At this point the system
seems to enter and guide the error correction mode under a
Gaussian regime. Such smooth transition across memoryless
exponential, heavy tailed, skewed distributions to Gaussian
modes are evident in the convergence of the variance profiles
of the two subgroups in the mixed group to a common regime
(locally obtained for the MMS Gamma variance in Figure 6A
and globally computed in Figures 9E,F for the Gamma family
of fluctuations in Gamma distribution shapes). Their smoothly
evolving transition dynamics were also unveiled in the stochastic
signatures of their rates of change (Figure 10).

We propose to trace back the newly characterized
exploratory mode to the neonatal stages of learning. Such
stages appear prior to the maturation of perceptual systems and
are guided by endogenous bodily fluctuations that the infant
senses from self-generated movements (likely heavily involving

central pattern generators already operating at birth; Grillner
and El Manira, 2020). To that end, we cite how neonates learn,
perhaps supporting our idea that humans’ mental strategies and
the different learning modes discovered here, are embodied,
grounded on the types of learning that we ontogenetically
transitioned through during early infancy, when seemingly
purposeless movements preceded intentional ones (Thelen,
2001).

Studies of infants exploring an environment where the
mother serves as an anchoring reference place, find that
the babies explore using interleaving segments of progressive
movements with lingering episodes (Frostig et al., 2020).
They confirm that such exploratory behavior is homologous
across species and situations (Drai et al., 2000; Frostig et al.,
2020). Furthermore, a recent study from the SL domain
demonstrated that infants prefer to attend to events that are
neither highly unpredictable nor highly predictable (Kidd et al.,
2012). The authors suggest that this effect is a characteristic
of immature members of any species, that must be highly
selective in sampling information from their environment to
learn efficiently. We add to these interpretations a concrete
stochastic model and suggest that infants attend to relatively
unpredictable environments because these are ideal for the
exploratory behavior that dominates early stages of surprise-
and curiosity-driven motor learning in neonates (Torres et al.,
2016) and infants (Torres et al., 2013a). Across early stages of
life, when altricial mammals generally mature their somatic-
sensory-motor systems (More and Donelan, 2018), human
infants acquire a stable motor percept. As they undergo
motor milestones (myelination, acquisition of motor, and
sensory maps, etc.), the families of PDFs that are empirically
estimated from their bodily biorhythmic motions, transition
from spontaneously purposeless, memoryless exponential to
intentionally purposeful, highly predictive Gaussian (Torres
et al., 2013a).

Given our results, it appears that the exploratory type of
learning is preserved throughout adulthood, and that there
are conditions in which this exploratory, memoryless learning
with high SNR, emerges on demand, and is likely extremely
advantageous. An open question is, when is this type of learning
beneficial? One possibility is that it supports flexibility within
the system, as it provides it with a broader range of information
that would have been missed by a premature systematic biasing
toward a regularity, without allowing/evoking wondering
behavior. That is, in changing, unstable environments, it may be
best to initially gather as much information as possible, before
committing to an error correction, goal-targeted mode. This
direction, which is beyond the scope of the present work, may
be tested by examining whether exploratory periods emerge
during processes that require flexibly extending an existing
solution to new context, known in motor control as transfer and
generalization (Krakauer et al., 2006; Torres et al., 2013b; Wu
and Smith, 2013; Tanaka and Sejnowski, 2015), but such studies
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are rare. This research may bear important implications for
clinical programs that are currently grounded in animal models
of conditional reinforcement that do not address the possible
benefits of an exploratory mode of learning, whereby the value of
a reward self-emerges internally from the self-discovery process,
rather than externally given and a priori set by an external agent.

Related to these proposed processes, are recent models
of human and machine learning that emphasize the role of
curiosity within the learning system (Pathak et al., 2017; Dubey
and Griffiths, 2020). These models suggest that the causal
environment determines when curiosity is driven by novelty or
by prediction errors. In an environment where the past and
future occurrences of stimuli are independent of each other,
the optimal solution for gaining a future reward is to explore
novel stimuli. This novelty mode, that has been referred to
as novelty-error-based (Dubey and Griffiths, 2020), and the
standard prediction-error-based approaches have at their heart
the same computational problem: optimize by minimization of
an error that depends on a given targeted goal, while using
prior information. Though also fueled in part by curiosity,
the exploratory mode suggested in our present results is
computationally different from the error correction mode. As
explained, in our exploratory mode initially, all future events
are equally probable, the SNR of the stochastic process is high,
and the system does not yet operate with a goal in mind. In
fact, it must self-discover it, gathering as much information as
possible in a memoryless way, without yet committing to an
objective function, a value function, a policy, or a reward. In this
case, opposite to RL, Bayesian Reinforcement leaning and active
inference, the system does not minimize surprise.

We argue that to characterize learning properly, this
additional type of endogenous, curious unexpected exploration
should be incorporated into future models of inference and
learning. Indeed, intrinsic motivation and curiosity has become
a dominant theme in machine learning and artificial intelligence
over the past years (Daw et al., 2006; Baranes and Oudeyer,
2009; Schmidhuber, 2010; Still and Precup, 2012; Little and
Sommer, 2013; Friston et al., 2017; Schwartenbeck et al., 2019).
Perhaps the best example of this is active inference and learning
(Friston et al., 2011, 2016). Active inference provides an account
of optimal behavior in terms of maximizing the evidence for
forward, world or generative models of engagement with the
world. In other words, instead of learning to maximize reward,
agents maximize model evidence or marginal likelihood (as
scored with evidence bounds or variational free energy; Winn
and Bishop, 2005).

In active inference, behaviors are chosen to maximize both
expected value and expected information gain (i.e., expected
free energy) (Parr and Friston, 2019). Statistically speaking,
this ensures that behavior complies with both the principles of
optimum Bayesian decision theory (Berger, 1993) and Bayesian
design (MacKay, 2003; Parr and Friston, 2019). This leads
naturally to an initial phase of exploratory behavior driven by

expected information gain (a.k.a. expected Bayesian supplies,
intrinsic value, epistemic affordance, etc.), which then gives
way to exploitative behavior driven by expected value (a.k.a.,
prior preferences, extrinsic value pragmatic affordance, etc.).
Our results speak of a different facet of this transition, namely
one where the system has no expectation whatsoever. Instead,
all future events are equally probable and signal information
is at its highest, maximizing surprise. There is at this point,
no gradient direction pointing the system towards descending
error. During this initial naïve learning phase, the system casts
a broad net over all incoming information that enhances the
chance for a surprising event, before committing to any salience
or regularity. This is precisely opposite to (complementary of)
the minimization of predictive error or the consequences of
predictive error. Crucially, the fact that the transition between
the memoryless exploration mode and the error correction
mode could be predicted from an independent assessment of
behavioral data (i.e., explicit knowledge) lends a predictive
validity to our analysis of the neuronal correlates of a new
aspect of learning. Only after a goal self-emerges it can be
incorporated into an objective function or model, transitioning
from trial-and-error model-free, to error-correction model-
based learning, as an objective function gets defined. At that
stage, minimizing expected surprise, as in active inference,
fits well with the error-correction phase that all participants
eventually converged to. However, active inference, as other
learning frameworks, will need to be modeled differently from
its current conceptualizations of optimal expectation-driven
exploration to include the newly discovered spontaneous and
memoryless stage of learning.

Through the motor control lens, we posit that the new
(expectation-free) exploratory mode described here, scaffolds
the emergence of what we have coined spontaneous autonomy
(Torres, 2018b), different from deliberate autonomy (i.e.,
derived from targeted error-correction). It will be critical
to include random-memoryless, expectation-free exploratory
learning with high signal content, in the future design
of autonomous robots/agents. This type of autonomy can
be realized through the self-referenced discovery of the
relationships between actions and their consequences. The latter
leads to the sense of action ownership and to the volitional
control of physical acts that are congruent with one’s own mental
intent (Torres et al., 2013b). We posit that only then, after
acquiring this selectively adapted balance between autonomous
and controlled acts, will others understand one’s intent and
contribute, through co-adaptation, to the person’s agency.

We have in summary shown that using new analytical
techniques, we can get a precise characterization of the dynamic
nature of SL, the rich stochastic signal embedded in fluctuations
that are traditionally treated as gross data and the differential
nature of contrasting learning modes. Investigation is warranted
on whether these results generalize to other SL paradigms,
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and to the acquisition of predictive information in learning
in general. Of particular interest, are questions of individual
differences, and the degree to which the exploratory and error
correction learning modes may be differently recruited on
demand by the same learner under different contexts. We here
offer methods that allow to investigate these and many new
questions in future SL research from the perspective of the
nascent, developing motor systems and their richly layered
dynamic and stochastic motor percepts.
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