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The first advance in the history of studies on prostate cancer (PCa) and androgens was
the development of treatment with castration and administration of estrogen by Charles
B. Huggins, who won the Nobel Prize in Physiology and Medicine. Since then, and for
70 years, androgen deprivation therapy has been the standard therapy for advanced PCa
and the center of studies on PCa. However, recent advances have shed light on the relation-
ship between androgens and the development or the progression of PCa. The use of 5AR
inhibitors to prevent progression of PCa continues to be widely discussed. Discussion has
been fueled by the findings of two large randomized, placebo-controlled trials: the Prostate
Cancer PreventionTrial with finasteride and the Reduction by Dutasteride of Prostate Can-
cer Events trial. Does the development of PCa or progression to castration-resistant PCa
depend on dihydrotestosterone (DHT)? Here, we summarize and discuss recent topics of
local androgen production of DHT in PCa.
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INTRODUCTION
Prostate cancer (PCa) is a malignant tumor that has high morbid-
ity in Europe and the United States, i.e., the first among the male
cancers and the second leading cause of death due to cancer in the
United States. The morbidity of PCa has also been increasing also
in Japan, partly because of the widespread practice of checkup
using prostatic-specific antigen (PSA). Thus, huge amounts of
research funds are directed to studies given for studies on PCa
and this very competitive field has made remarkable advances.

The first progress in the history of studies on PCa and andro-
gens was the development of treatment with castration and admin-
istration of estrogen by Charles B. Huggins, who won the Nobel
Prize in Physiology and Medicine (1). Since then, and for 70 years,
androgen deprivation therapy (ADT) has been the standard ther-
apy for advanced PCa and the center of studies on PCa. However,
accumulating evidence has shed light on the relationship between
the development and progression of PCa or castration-resistant
prostate cancer (CRPC) and androgen–androgen receptor axis
(AR axis) (2–7).

On the other hands, the use of 5α-reductase inhibitors (5AR):
finasteride or dutasteride among the AR axis targeting drug to pre-
vent development or progression of PCa continues to be widely
discussed. Controversies have been fueled by the results of two
large randomized, placebo-controlled trials: the Prostate Cancer
Prevention Trial (PCPT) with finasteride (8) and the Reduction
by Dutasteride of Prostate Cancer Events (REDUCE) trial (9).

Here, we summarize and discuss recent topics of local androgen
production and 5α-reductase in PCa.

AR AXIS: ANDROGEN RECEPTOR IN PROSTATE CANCER
TISSUES
Prostate-specific antigen is a tumor marker commonly used in
clinical practice to screen patients with PCa. Consequently, the
percentage of men in whom localized PCa has been detected has

been increasing; these men are expected to receive complete treat-
ment, including radical prostatectomy and various radiotherapies.
However, unfortunately until now, there are many patients with
advanced cancer and poorly differentiated carcinoma of high Glea-
son score and patients who develop a recurrent tumor or metasta-
sis after radical treatment. Most of these patients are treated with
ADT (10). However, this therapy has a transient effect, and patients
develop hormone-refractory prostate cancer (HRPC), which is
resistant to ADT, within several years. AR plays an important role
in the advancement of PCa even in patients who undergo castra-
tion (11, 12). Since AR is considered to be substantially involved
in the pathophysiology of HRPC, this PC is also called CRPC.

The results of studies using cell lines and those on AR expression
in patients with PCa showed that AR expression was maintained
or enhanced even after ADT in many patients and there is evi-
dence of AR expression in CRPC. Gene expression was analyzed
using xenograft models of different PCas and enhanced AR mRNA
expression was found to be a common factor of acquired ADT-
resistance in many cancer cell strains, showing that cells also
respond to a low concentration of androgen (13). On the other
hand, reduced AR expression may be controlled epigenetic con-
trol by DNA methylation in promotor region may be involved in
the mechanism of advanced CRPC (14). It was found that muta-
tions occurred in highly expressed AR and the AR structure was
changed downstream of the IL-6 and EGF signaling pathways via
STAT3/MAPK-mediated phosphorylation, resulting in AR activa-
tion (15–17). It was also found that the expression of co-activators
enhancing AR transcriptional activity increased in CRPC, leading
to enhanced AR transcriptional activity (7).

AR AXIS: ANDROGEN PRODUCTION IN PROSTATE CANCER
TISSUES
Recent progress has revealed intratumoral conversion of adrenal
androgens; namely de novo steroid synthesis has been proposed
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as potential causes of PCa progression (18, 19). Results of these
studies provide the molecular basis for the inhibition of andro-
gen production and nuclear import of mutated AR in CRPC
tissues, leading to actual drug discovery and clinical trials (20–27).
The reported high intratumoral testosterone and dihydrotestos-
terone (DHT) concentrations left in CRPC patients with castrated
serum androgen levels have suggested that CRPC maintains a clin-
ically relevant dependence on AR signaling axis. AR activation by
androgens converted from adrenal androgens or synthesized intra-
tumorally via the de novo route has been proposed as one of the
mechanisms of castration resistance (19, 28–31). Some studies
using CRPC cancer tissue have investigated intraprostatic testos-
terone or the active metabolites in quantities, which is thought to
be sufficient to stimulate AR-mediated gene expression (32–34).
Recent papers have reported that men with a Gleason score of
>7 had lower intraprostatic DHT than men with a Gleason score
of <6, suggesting that a low-androgen microenvironment predis-
poses to development or progression for high-grade PCa or CRPC
(35–37).

Dihydrotestosterone is the most active androgen, and it was
observed that its concentration in PCa tissues did not decrease
to the concentration after castration even during ADT and that
DHT was produced from adrenal androgen (18, 19). Although
5AR, which is essential for DHT biosynthesis, was identified at the
mRNA level in human CRPC metastases (29–31, 38), physiologi-
cally relevant 5AR activity in human CRPC has not yet been fully
demonstrated.

Recently, authors have just reported a useful experimental
model of human CRPC (39–44). We cultured AR positive, PTEN-
null, and PSA producing CRPC cell line C4-2 for more than
6 months under androgen ablation media. We were able to estab-
lish stable cell line and named it C4-2AT6. These cells seem to
harbor aggressive angiogenic properties and elevated phosphory-
lated Akt expression. These two cell lines may reproduce some
part of clinical human CRPC progression and offer an excellent
experimental model system with which to investigate complicated
biology of CRPC. Using this experimental model, we examined
the sequential biosynthesis of DHT from each androgen and were
able to find the decreased biosynthesis of DHT in CRPC. To ascer-
tain the 5ARI activity, we co-cultured C4-2 and C4-2AT6 cells with
the 13C labeled steroid precursor: 13C-Adione. We examined the
sequential biosynthesis of the androgens 13C-T and 13C-DHT,
and obtained direct evidence of de novo sequential biosynthesis of
androgens in both human CRPC cells. CRPC cells were found to
express 5AR activity and the activities were thought to be changed
under androgen ablation and 5AR activity was not necessarily par-
alleled by SRD5As expression. To determine whether finasteride
and dutasteride have inhibitory effects of the conversion into DHT
in CRPC cells, we investigated the concentration of 13C-DHT after
treatment with finasteride and dutasteride. LC/MS/MS analysis
could not identify 13C-DHT in human CRPC cells. These results
indicate that finasteride and dutasteride were able to abrogate the
conversion into 13C-DHT in CRPC cells, although finasteride and
dutasteride themselves did not have an inhibitory effect on human
CRPC (45).

Recently, evidences have shed light on the relationship between
AR axis and the PCa development or acquisition of castration

resistance (2–5). The use of 5ARIs to prevent progression of PCa
is controversial because of the results from recent two large ran-
domized, placebo-controlled PCPT (8) and REDUCE trials (9).
The PCPT trial was the first large-scale study to examine the effect
of finasteride in relation to PCa development. PCa detected in
patients treated with finasteride were of a higher grade than those
in patients administered a placebo. High Gleason scores between
7 and 10 were found in 6.4% of the tumors in the finasteride
group, compared with only 5.1% of those in the placebo group.
The REDUCE trial revealed an overall reduction in the num-
ber of PCa patients with a low Gleason score of 5–6 in those
receiving dutasteride versus those given a placebo (19.9% com-
pared to 25.1%, respectively). However, during 4-year periods,
PCa with high Gleason score of 8–10 were more continual in the
dutasteride-treated group than in the placebo group. The FDA
analyzed these trials and cited the fact that the obligate increased
incidence of tumors with Gleason scores between 8 and 10 by
0.7% with finasteride and by 0.5% with dutasteride. The US
Food and Drug Administration’s Oncologic Drugs Advisory Com-
mittee voted against recommending 5ARI for the indication to
decrease PCa risk in December 2010, because the risk of induc-
tion of aggressive PCa outweighed their potential indication for
PCa chemoprevention (4). These observations still cannot be fully
explained from the view point based on mechanistic analysis.
These results suggest that finasteride or dutasteride has little or
no effect on more aggressive tumors with high Gleason scores.
The decision by FDA not to approve the use of 5ARIs to pre-
vent PCa indicates that further basic and clinical investigations
are warranted.

Does the process to CRPC from androgen-dependent PCa
depend on DHT produced by 5α-reductase from testosterone?
Is it still clinically achievable to treat CRPC using 5ARIs? The
efficacies of 5ARIs on metastatic CRPC have not yet been
evaluated.

The decreased 5AR activity that we observed in C4-2AT6 cells
with the property of human CRPC raised an important critical
question: does the death or alive of C4-2AT6 cells depend on
DHT? Thus, we examined the effects of DHT on C4-2 and C4-
2AT6 cells (40, 43, 45). These human CRPC cells exhibited reduced
cell viability when treated with DHT at the dose-dependent man-
ner (45). C4-2 and C4-2AT6 cells exhibit elevated and functional
AR expression and produce PSA in response to DHT in a dose-
dependent manner; however, C4-2AT6 cells showed significantly
lower cell viability. The suppressive effect of DHT on PCa cells
is not limited to these in vitro results. Some recent clinical stud-
ies showed that CRPC could be treated with androgens because
of the inhibitory effect of excess androgens (40, 46–49). Accu-
mulating data has represented that AR has a finite ability to bind
to T or DHT. However, at higher concentrations, T or DHT has
no further additive effect on PCa cell viability when all ARs are
bound to T or DHT (40, 46–50). These events are termed as a sat-
uration point. Because of this saturation point, excess DHT may
result in the suppression of androgenic-induced proliferation of
these cells. We think that CRPC cells have an unknown regulatory
system to protect themselves from the excessive androgen with
suppressive effects by 5AR activity, although further investigation
is needed.
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CONCLUSION
We reviewed in this article a large number of studies on PCa,
which are selected and reviewed from the viewpoint of the
authors. For other topics, other valuable articles are available for
references.

To resolve many clinical problems and give benefit to the
patients, we should actively join basic studies, which lead to
multilateral understanding of many valuable basic and clinical
studies.
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