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In the thorax, the extent of tumor may be more accurately defined with the addition of 18F-
fluorodeoxyglucose (FDG) positron emission tomography (PET) to computed tomography
(CT). This led to the increased utility of FDG-PET or PET/CT in the treatment planning of
radiotherapy for non-small cell lung cancer (NSCLC).The inclusion of FDG-PET information
in target volume delineation not only improves tumor localization but also decreases the
amount of normal tissue included in the planning target volume (PTV) in selected patients.
Therefore, it has a critical role in image-guided radiotherapy (IGRT) for NSCLC. In this review,
the impact of FDG-PET on target volume delineation in radiotherapy for NSCLC, which may
increase the possibility of safe dose escalation with IGRT, the commonly used methods for
tumor target volume delineation FDG-PET for NSCLC, and its impact on clinical outcome
will be discussed.
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INTRODUCTION
In recent years, 18F-fluorodeoxyglucose (FDG) positron emission
tomography (PET) has emerged to be an essential tool in the stag-
ing of non-small cell lung cancer (NSCLC) (1). Tumor imaging
through FDG-PET is achieved based on the difference in glucose
metabolism between malignant and normal tissue, which leads
to relatively increased FDG accumulation in tumor cells. FDG
undergoes positron emission decay, which ultimately leads to the
production of a pair of positron annihilation gamma (γ) rays
(511 keV each) traveling in opposite directions (2). These two
gamma rays are then detected by two opposing coincidence detec-
tors in a PET scanner for imaging (2). Because of the ability of
FDG-PET to detect malignancy prior to the development of any
noticeable anatomical changes, it was consistently found to have
superior sensitivity and specificity in the staging of lung cancer (3,
4). This is especially true for mediastinal staging. As shown in a
meta-analysis by Gould et al., FDG-PET has superior median sen-
sitivity and specificity over CT (85 vs. 61%, 90 vs. 79%, p < 0.001)
in the identification of lymph node involvement by NSCLC (5).
CT’s median specificity improves to be superior to FDG-PET in the
evaluation of enlarged lymph nodes in the same study (93 vs. 78%,
p= 0.002). However, FDG-PET may provide additional informa-
tion on the extent of tumor involvement at the primary site and
in the regional lymph nodes during target volume delineation for
radiotherapy planning in the treatment of NSCLC to avoid geo-
metric tumor miss, and unnecessary inclusion of normal tissue. In
the following sections, the impact of FDG-PET on radiotherapy
target volume delineation for NSCLC, which may increase the like-
lihood of dose escalation with IGRT, the commonly used methods
of defining gross tumor on FDG-PET, 4D-PET/CT imaging, and
FDG-PET’s impact on treatment outcome will be discussed.

IMPACT OF FDG-PET ON TARGET VOLUME DELINEATION
The incorporation of FDG-PET during target volume delineation
has frequently led to changes in the shape and size of the target
volumes; as well as the tumor stage when FDG-PET was not done
as a part of the initially staging evaluation in patients with NSCLC.
This fact has been well illustrated in multiple studies (6–14). As
shown in Table 1, changes in the target volumes of over 20%
and stage alteration of 20–50% have been consistently observed
when FDG-PET was incorporated in target volume delineation
and when FDG-PET was not a part of the initial staging studies.
Most prominent changes are often associated with the presence
of atelectasis in the treated areas (Figure 1), or the identification
of additional nodal disease, which is difficult to visualize on CT
(6–9, 11, 14) (Figure 2). This is well illustrated by Bradley et al.,
who demonstrated PTV and stage alteration of 58 and 31% in
patients with stage I-III NSCLC when FDG-PET was incorporated
in target volume delineation (9). Among 24 patients planned for
definitive three-dimensional conformal radiotherapy (3D-CRT),
PET led to a GTV reduction in 3 patients with atelectasis, and an
increase in GTV due to the identification of additional regional
nodal disease in 10 patients, and the identification of an addi-
tional parenchymal disease in 1 patient. GTV-reduction due to
the utilization of PET resulted in dose reduction to the normal
lungs and esophagus in patients with tumor-related atelectasis in
this study, which suggests a potential advantage in the sparing of
thoracic organs at risk (OAR) with the incorporation of FDG-
PET in target volume delineation. This is corroborated in similar
studies, which demonstrated similar PET-related target volume
alterations, and the resulting decrease in the dose to the heart,
esophagus, spinal cord, and the normal lungs (7, 8, 11, 12, 14). In
one study, PET-related exclusion of metabolically inactive lymph
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Table 1 | FDG-PET-related alteration of target volumes in NSCLC.

Reference Stage Volume changes due to FDG-PET Dosimetric impact

Nestle et al.

(6)

IIIB-IV Change in size and shape of radiation fields: 35%

Field size reduction: 26% (median 19.3%)

More changes observed in the presence of atelectasis (p=0.03)

Erdi et al.

(7)

Unknown PTV increase (additional nodal disease): 19%a Mean heart dose decreased by 50% in the PET

plan in one casePTV reduction: 18%a

Mah et al.

(8)

III (2/7) Stage alteration: 23% Maximum spinal cord dose is decreased on

average with PET/CT-based planning (p≤0.01)PTV reduction and increase among three observers: 24–70 and

30–76%

Bradley

et al. (9)

I–III (65%

stage III)

Stage alteration: 31% Alteration of the GTV led to corresponding changes

in the dose to the esophagus and the normal lungsPTV alteration: 58%

GTV reduction (atelectasis): 12%

GTV increase (additional primary and nodal disease): 46%

van Der Wel

et al. (10)

III Nodal GTV decreased by 3.8 cm3 on average (p=0.011)

Radiation field change: 66.7% (decreased in 52.4%, increased in

14.3%)

Alteration of the GTV led to corresponding changes

in dose to the esophagus and the normal lungs

PET enabled dose escalation from 56 Gy to 71 Gy

on average (p=0.038) & increased TCP by at least

6% on average (p < 0.05)

Ceresoli

et al. (11)

66.7% III Stage alteration: 48%

≥25% change in GTV: 39%

Dose reduction to the spinal cord was observed in

PET plans (median 41.7 Gy vs. 45.7 Gy, p < 0.05)

Changes in GTV led to corresponding changes in

dose to normal lung tissue

5/7 with GTV increase (additional nodal disease)

2/7 with GTV reduction (PET negative enlarged LN and atelectasis)

Faria et al.

(13)

Stage alteration: 44%

GTV alteration: 56%

Decrease: 37.3%

Increase: 18.7%

Yin et al.

(14)

IIIb GTV alteration: 100% (≥25 in 40% of patients) PET led to significant changes in V20, V30 for the

lungs and V50, V55 of the esophagusDecrease: 73.3% (155.1–111.4 cm3c)

Increase: 26.7% (125.8–144.7 cm3c)

aAverage; TCP, tumor control probability.
bAtelectasis present in all patients.
cMedian.

node and atelectasis resulted in GTV reduction of 39 and 84%,
respectively, which led to the reduction of the mean lung dose
(MLD) and volume of the normal lungs receiving 20 Gy (V20) by
6.1 Gy and 12% on average (11). In the same study, the median dose
to the spinal cord was reduced from 45.7 to 41.7 Gy with the incor-
poration of FDG-PET in target volume delineation (p < 0.05). In
another study, GTV reduction was observed in 73.3% of patients
with stage III NSCLC in the presence of atelectasis, which possibly
led to statistically significant decrease in commonly used dosimet-
ric parameters, such as V20 for the normal lungs, and V55 for the
esophagus (14).

PET-related increase in the GTV has been mainly due to the
identification of additional regional nodal disease (Table 1). This
has been shown to result in an increase in the dose to the sur-
rounding normal tissue (9, 11). However, this increase may not
be clinically significant in all patients. As shown by Ceresoli et al.,
PET-related increase in GTV only resulted in an increase of the

MLD by 1.08 Gy, and the V20 by 2.4% on average (11). In addi-
tion, incorporation of FDG-PET in the delineation of regional
nodal disease may lead to a decrease in the nodal GTV. This has
been demonstrated in patients with N2-N3 disease by van Der Wel
et al., who showed a PET-related decrease of the nodal GTV from
13.7± 3.8 to 9.9± 4.0 cm3 (p= 0.011) (10). It led to significant
decrease in radiation dose to the esophagus (V55 decreased from
30.6± 3.2 to 21.9± 3.8%, p= 0.004); and the normal lungs (V20

decreased from 24.9± 2.3 to 22.3± 2.2%, p= 0.012). As a result,
dose escalation from 56.0± 5.4 to 71.0± 13.7 Gy (p= 0.038)
became feasible, which led to improved TCP from 14.2± 5.6 to
22.8± 7.1% (p= 0.026) without accounting for geometric misses,
and improved TCP from 12.5 to 18.3% when that is accounted
for (p= 0.009). These findings further demonstrate the advantage
of incorporating FDG-PET information in target volume delin-
eation especially for stage III NSCLC, which makes dose escalation
possible.
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Chi and Nguyen FDG-PET in the treatment planning of IGRT for NSCLC

FIGURE 1 | Examples of PET-avid NSCLC in the presence of fibrosis
(recurrence after chemo-radiation, top) and atelectasis (bottom).

To further investigate the accuracy of FDG-PET in identify-
ing nodal disease, 73 NSCLC patients with known positive lymph
nodes by CT, or PET and pathology data for all suspected lymph
nodes were further assessed by Vanuytsel et al. (12). Using PET-CT
data, inclusion of pathological nodes in the nodal GTV was found
to increase from 75% with CT alone to 89% (p= 0.005). In their
study, PET-related GTV alteration was observed in 62% of the
patients. Among them, PET-related GTV increase was observed
in 16/45 patients. While 11 of these 16 patients’ GTV increase
was supported by pathologic findings, it was unnecessary in five
patients. PET incorporation resulted in GTV reduction in 29/45
patients. Twenty-five of them were correlated with pathological
findings. Overall, 80% of all the PET-related GTV alterations were
correct and inappropriate changes often were due to low tumor
burden that is beyond the resolution of FDG-PET, or misinter-
pretation of the location of nodal disease. Pathology correlation
in this study supports the utilization of FDG-PET in the delin-
eation of nodal disease for NSCLC, which is shown to be more
accurate than CT alone. The improved accuracy in identifying
nodal disease with FDG-PET was shown by Faria et al. as well
(13). However, how to improve the accuracy of PET-based identi-
fication of nodal disease from NSCLC remains to be investigated
in the future. PTV reduction due to PET-related GTV reduction
was again demonstrated in the study by Vanuytsel et al. in 10

FIGURE 2 | Normal sized mediastinal lymph nodes (2R) that were PET
avid and were biopsied positive in a patient with stage IIIB
adenocarcinoma of the right lower lobe.

selected stage III NSCLC patients, which led to a decrease of V20

of the normal lungs by 27± 18% (p= 0.001) (12). Thus, further
demonstrates an advantage in OAR sparing with incorporation of
PET information in target volume delineation for NSCLC, which
may increase the likelihood of dose escalation in the treatment of
loco-regionally confined NSCLC with definitive radiotherapy.

METHODS OF TARGET VOLUME DELINEATION ON FDG-PET
Given the multiple variables that exist in PET imaging for NSCLC
(2, 3), there is no consensus on how to best delineate gross tumor
on FDG-PET at the current time. Visual interpretation of the
PET or PET/CT images with an expert nuclear medicine physi-
cian remains to be a frequently used approach when delineating
the GTV. The maximum standardized uptake value (SUVmax) was
quantitatively used to determine FDG-PET activity because it is
the most consistent and reliable parameter used to assess tumor
activity in clinical practice. It is defined as the maximum tumor
concentration of FDG divided by the injected dose of FDG, cor-
rected for the body weight of the patient [SUVmax=maximum
activity concentration/(injected dose/body weight)]. In 87 patients
with malignant and benign focal pulmonary lesions who had a
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firm pathological diagnosis and at least 2 years of follow up, the
sensitivity, specificity, and accuracy of 97, 82, and 92% were found
when a SUV threshold of 2.5 was used for the diagnosis of lung
cancer (15). This SUV threshold of 2.5 was proposed to be used
as a cut-off for GTV delineation in radiotherapy planning (16).
Slightly lower SUV threshold of 2± 0.4 has been proposed based
on the PET/CT of 19 patients with stage II-III NSCLC, which could
be distinctively visualized (17). Alternatively, fixed threshold from
36 to 44% of the SUVmax based on the source-to-background ratio
for volumes larger than 4 mL has been shown to accurately identify
the tumor volume in phantoms (18).

Various approaches of PET-GTV delineation of the primary
tumor were compared in a study by Nestle et al. (19). The fixed 40%
thresholding method was found to be inadequate especially in the
setting of inhomogeneous FDG-uptake within the tumor. How-
ever, PET-GTV contoured based on direct visualization, the SUV
≥2.5, and an algorithm accounting for the source-to-background

FDG-uptake ratio all correlated well with GTV of the primary
tumor contoured on CT. The poor correlation between CT-based
GTV and PET-GTV generated with percent thresholding was also
demonstrated in a study by Devic et al. (20). Upon further analysis
of 20 peripheral NSCLC, the optimal threshold was found to be
dependent on tumor size: 15± 6% for tumors >5 cm, 24± 9% for
tumors 3–5 cm, 42± 2% for tumors <3 cm (21). Larger SUVmax

was found in larger tumors in this study. Thus, a single fixed
percent-threshold method of GTV delineation appears to be inad-
equate and this may be due to multiple factors, such as the back-
ground FDG-uptake, heterogeneous FDG-uptake in the tumor, as
well as respiratory motion and tumor size.

Multiple studies have attempted to investigate how well dif-
ferent GTV delineation strategies correlate with the true tumor
volume in surgical specimens for NSCLC (Table 2). In correlation
with surgical pathology findings, PET/CT has been shown to be
more accurate than CT or FDG-PET alone in the estimation of

Table 2 | Methods of GTV delineation on PET in correlation with surgical specimens.

Patient no. Method of GTV delineation on PET Correlation between CT, PET, PET/CT, and pathological tumor size

Lin et al.

(22)

37 Halo for tumor observed in fused PET-CT

images

Stronger correlation between GTV and pathological tumor dimensions

were observed with PET/CT

Mean SUV of the external margin of halo was 2.41±0.73

T stage and histology significantly influenced SUV at the edge of the halo

Yu et al. (23) 52 SUV of 2.5 FDG-PET/CT has significantly better correlation with surgical specimens

than CT or PET alone, especially in the presence of atelectasis

Yu et al. (24) 15 Best correlation between PET GTV and the actual tumor was found at

the SUV threshold of 31±11%, and absolute SUV cut-off of 3.0±1.6

Wu et al.

(25)

31 Thresholding with 20–55% of SUVmax Maximal primary tumor dimension was more accurately predicted by CT

at the window-level of 1,600 and −300 HU than PET GTVs (best

correlation with pathological tumor volume at 50% SUVmax)

Schaefer

et al. (27)

15 Tumor threshold=A*mean

SUV70%+B*background

Pathological tumor volume: 39±51 mL

PET tumor volume: 48±62 mL

CT tumor volume: 60.6±86.3 mL

Both CT and PET volumes are highly correlated with pathological

volumes (p < 0.001).

Increased variation between PET and pathological tumor volumes were

observed in lower lobes

van

Baardwijk

et al. (28)

33 Source-to-background ratio auto-segmentation Maximal tumor diameter of the PET GTV is highly correlated with that in

surgical specimens (CC=0.90). Auto-segmented GTVs are smaller than

manually contoured GTVs on PET/CT

Wanet et al.

(31)

10 Gradient-based method Comparison of both CT and PET GTV

Fixed threshold at 40 and 50% of the SUVmax. Gradient-based method led to the best estimation of the GTV

Adaptive thresholding based on the

source-to-background ratio

PET GTVs were smaller than CT GTVs in general

Cheebsumon

et al. (32)

19 Absolute SUV cut-off (2.5) Adaptive 50% and gradient-based methods generated the most

consistent maximal tumor dimension, which had a fair correlation with

the pathological tumor size

Fixed threshold at 50% and 70% SUVmax

Adaptive thresholding 41–70% SUVmax

Contrast-oriented algorithm

Source-to-background ratio

Gradient-based method
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tumor size for NSCLC (22, 23). In a study of 37 patients, the mean
SUV at the edge of the PET tumor halo which corresponded to the
edge of the tumor on pathology was 2.41± 0.73 (22). In a different
study, GTV delineated on PET/CT using a SUV cut-off value of 2.5
resulted in the best correlation with the pathological tumor volume
(23). In an analysis of 15 lobectomy specimens after PET/CT imag-
ing, the most optimal percent threshold, and absolute SUV cut-off
that correlated with the pathologic tumor volume (GTVpath) were
found to be 31± 11%, and 3.0± 1.6, respectively (24). Only the
SUV percent threshold was correlated with the GTVpath and the
tumor diameter in this study (p < 0.05). However, limitations have
been observed with both approaches of GTV delineation based on
pathological correlation. The SUV cut-off at the edge of the tumor
on PET has been shown to be dependent on tumor size and histol-
ogy by Lin et al. (22). In their study, higher mean SUV is observed
with tumors over 3 cm and of squamous histology. In contrary to
the studies described above, thresholding has been shown to be
less accurate than CT in predicting the maximal tumor dimension
in pathological tumor specimens in 31 patients who underwent
lobectomy shortly after PET/CT (25). The uncertainties associated
with percent thresholding or the use of an absolute SUV cut-off for
GTV delineation appear to be influenced by the background FDG
concentration and the tumor size, which are reflected by the mean
SUV. To minimize the impact of these factors, it was proposed
to adjust percent thresholding based on the mean target SUV in
order to accurately define the gross tumor (26).

To account for the effects of tumor volume and background
FDG concentration, a contrast-oriented thresholding algorithm
(COA) was proposed for the delineation of PET GTV for NSCLC
(27). This approach was shown to reduce the GTV volume when
compared to CT alone. Also, it was shown to be highly correlated to
the pathological tumor volume. Similar findings were obtained in
a study of 33 patients with NSCLC when a source-to-background
ratio based auto-segmentation approach was used (28). These
studies demonstrate the feasibility of an adaptive thresholding
approach for GTV delineation on PET. However, higher varia-
tion between pathological and PET tumor volumes were observed
in the lower lobes with the COA, suggesting respiratory motion to
be a source of inaccuracy in GTV delineation on PET (27).

A gradient-based approach for PET-GTV delineation has been
proposed to minimize the statistical noise, and resolution blur
(more pronounced in the setting of large respiration induced
tumor motion) (29). When compared to other methods of GTV
delineation on PET, this method was found to be the most accurate
in a phantom study by Werner-Wasik et al. (30). This approach was
also compared with other methods of GTV delineation in surgical
specimen correlations studies (31, 32). It was found to be superior
to manual, fixed thresholding at 40 and 50%, and the source-to-
background ratio methods of PET-GTV delineation, and manual
CT GTV delineation on 4D-PET/CT in 10 patients with stage I-II
NSCLC who underwent lobectomy (31). In another study of 19
patients who underwent free-breathing PET/CT prior to surgery,
the gradient method was found to be highly correlated with the
maximal tumor size in surgical specimens as well (32). Thus,
the gradient-based method is highly promising, which warrants
further investigation in future trials. While the various methods
discussed are shown to be feasible, they are often confounded by

factors, such as statistical noise, blurring effect due to respiratory
motion, and uncertainties in the estimation of pathological tumor
size in surgical correlative studies. Thus, further studies need to be
conducted to explore what would be the best method for the most
accurate GTV delineation on PET.

IMPROVING PET-GTV DELINEATION WITH 4D-PET/CT
Respiratory motion often causes blurring and alteration of the
FDG-uptake within the tumor, which lead to uncertainties in the
delineation of the gross tumor volume on PET (33). These uncer-
tainties may potentially be minimized with 4D-PET/CT imaging
for more accurate identification of the true extent of the tumor
in various portions of the respiratory cycle, and low volume dis-
ease, which may be missed on free-breathing PET/CT (34, 35).
As shown by Lamb et al., tumor volumes delineated on 4D-PET
not only correlates better with that delineated on 4D CT, but also
enhances the estimation of the true extent of tumor in the vicin-
ity of similar density soft tissues, such as the diaphragm, chest
wall, and the heart (36). Thus, the GTV delineation on PET can
be improved with 4D-PET/CT imaging. This is, especially, helpful
in image-guided radiotherapy (IGRT) due to the very small PTV
margins used, which allows for dose escalation to the gross disease
without significantly increase the risk of severe toxicities to nor-
mal thoracic structures. Therefore, 4D-PET-based tumor target
delineation should be used as often as possible when a high dose
of radiation is delivered in the thorax.

DELINEATION OF NODAL DISEASE ON PET
The delineation of regional nodal disease on PET has been con-
ducted in similar ways as that for the primary tumor. Various
methods were compared by Nestle et al., who again demonstrated
that an algorithm accounting for the source-to-background FDG-
uptake ratio was superior to direct visualization, 40% threshold-
ing, or the SUV≥2.5 cut-off methods (37). Furthermore, the nodal
volume delineated on PET tends to be larger than that delineated
on CT, which was felt to be possibly caused by respiratory motion.
This was corroborated in a study on 4D-PET-based nodal dis-
ease delineation (38). As shown in this study, a 3D nodal internal
target volume (ITV) expansion of over 1 cm is required to cover
91% of the lymph nodes while accounting for respiratory motion.
While it is still inadequate in situations of highly mobile lymph
nodes. On the contrary, 4D-PET-based ITV was able to not only
adequately encompass nodal disease in the setting of respiratory
motion, but also sparing additional normal tissue (45± 34 cm3)
when compared with 3D nodal ITV generated with large margins
that would be required to account for respiratory motion in the
majority of the cases. Thus, 4D-PET imaging may improve precise
and accurate localization of mediastinal disease over CT, which can
potentially improve targeting in the mediastinum for the delivery
of IGRT in the treatment of lung cancer.

CLINICAL OUTCOME FOLLOWING PET-BASED PLANNING
In recent years, two studies have reported the clinical outcome fol-
lowing concurrent chemo-radiation for stage II-III NSCLC when
the target volumes were delineated based on FDG-PET findings
(39, 40). In a pilot study of 32 patients, only one regional failure
and one local progression were observed shortly after concur-
rent chemo-radiation when only PET-avid disease was included
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in the target volume (39). The nodal failure was later identified
to be a missed PET-avid lymph node that was not included in
the target volume. In another study of 137 patients with stage
III NSCLC, local-regional recurrence alone as the first event was
only 14.6%, while that combined with distant metastasis as the
first event was 16.8% following concurrent chemo-radiation to a
median dose of 65± 6 Gy when only PET-avid disease was treated
(40). These findings suggest that PET-based planning may lead
to at least equivalent clinical outcomes when compared with CT-
based planning (41). However, additional normal tissue sparing
may be achieved with PET-based GTV delineation, which may aid
dose escalation to the primary tumor to improve the local control
of locally advanced NSCLC. As suggested in a meta-analysis, this
may potentially improve patient survival (42).

NOVEL PET TRACERS FOR DOSE PAINTING
Residual disease at the primary tumor site can often be identified
on the pre-radiotherapy PET, which may be treated with a higher
dose with dose painting through IMRT to enhance local control of
the primary tumor (43). To better identify radio-resistant tumor
cells within the primary tumor, hypoxia imaging with PET has
been explored in recent years. PET with hypoxia tracers, such as
F-MISO, 18F-FAZA, or 18F-HX4, have been shown to be able
to identify areas of hypoxia in multiple cancers, including lung
cancer (44–46). This may help identify areas at a higher risk for
tumor recurrence, which may need to be treated with a higher
daily dose than the remaining portions of the gross tumor with
dose painting (47, 48). As of current, dose painting to deliver
a higher dose to areas of higher radio-resistance remains to be
further investigated.
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