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Incidence of most common cancers increases with age due to accumulation of damage
to cells and tissues. Stroma, the structure close to the basement membrane, is gaining
increased attention from clinicians and researchers due to its increasingly, yet incom-
pletely understood role in the development of age-related cancer. With advanced age,
stroma generates a pro-tumorigenic microenvironment, exemplified by the senescence-
associated secretory phenotype (SASP). Components of the SASP, such as cytokines,
chemokines, and high energy metabolites are main drivers of age-related cancer initiation
and sustain its progression. Our purpose is to provide insight into the mechanistic role
of the stroma, with particular emphasis on stromal fibroblasts, on the development of
age-related tumors. We also present evidence of the potential of the stroma as target
for tumor therapy. Likewise, a rationale for age-related antitumor therapy targeting the
stroma is presented. We expect to foster debate on the underlining basis of age-related
cancer pathobiology. We also would like to promote discussion on novel stroma-based
anticancer therapeutic strategies tailored to treat the elderly.
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Introduction

Aging is a complicated process associated with accumulation of damage to cells and tissues resulting
in attenuated or dysregulated function and increased risk of disease including cancer (1). Mech-
anisms underlying the molecular and/or cellular basis of age-related cancer are not completely
understood. Among them, accumulation of sequential mutations in genes essential for initiation
and progression of the multi-step processes of tumorigenesis is thought to be a main cause for
developing age-related cancer (2).Whether age-linkedmutations are sufficient to initiate the process
of tumorigenesis, so far, is not clear. Among components of the age phenotype, the stroma, involved

Abbreviations: BPH, benign prostatic hyperplasia; CAFs, cancer-associated fibroblasts; Cav, caveolin; CLL, chronic lym-
phocytic leukemia; CR, caloric restriction; ECM, extracellular matrix; GM-CSF, granulocyte/macrophage colony-stimulating
factor; Gro-1/Gro-α, growth-regulated oncogene; IFN-γ, interferon γ; IGFBP7, insulin-like growth factor binding protein 7;
IL, interleukin; M-CSF, macrophage colony-stimulating factor; MCT4, mono-carboxylate transporter 4; MDSCs, myeloid-
derived suppressor cells; mTOR, mammalian target of rapamycin; NAC, N-acetyl-cysteine; NK, natural killer; NKT, natural
killer T; NOX4, NADP oxidase 4; PCa, prostate cancer; PDGF, platelet-derived growth factor; ROS, reactive oxygen species;
SASP, senescence-associated secretory phenotype ; SCF, stem-cell factor; SR-A, scavenger class A; TAMs, tumor-associated
macrophages; TGF-β, transforming growth factor β; TH, T helper; TXNRD1, thioredoxin reductase 1; VEGF, vascular
endothelial growth factor.
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in the regulation of different cellular functions, stands up as a
very critical player in age-related carcinogenesis. This assertion
is supported by the ability of the senescent stroma to create a
tumor microenvironment via mechanisms, such as the contri-
bution of the senescence-associated secretory phenotype (SASP),
which triggers cancer initiation and sustains its progression (3, 4).

The purpose of this minireview is to provide insight into the
mechanistic role of the stroma in age-related cancer. Our focus
is on stromal fibroblasts, because of growing evidence suggesting
their role in many aspects of tumorigenesis. Understanding the
involvement of components of the stroma in the regulation of
age-related diseases, particularly cancer, may help to increase
our understanding of the basis underlining pathobiology of age.
Gained knowledge may also help us to envision novel therapeutic
strategies specially tailored to treat the elderly.

Components of the Tumor Stroma

Stroma is a collagen-rich support structure close to the base-
ment membrane where the tissue resides. The main components
of stroma and basement membrane are produced by stromal
fibroblasts (5); their activation results in subsequent production
of matrix-degrading enzymes, cytokines, and epithelial growth
factors. Those products are essential for processes, such as tissue
remodeling and repair (6). Like the majority of normal tissues,
solid tumors are composed of parenchyma and stroma. Cancer
cells belong to the parenchyma, whereas non-malignant cells and
the extracellular matrix (ECM) belong to the stroma (7). Apart
from its origin, whether stroma is normal ormalignant, it contains
different cell types and variable constituents, which support and
regulate the dynamics of the parenchyma (7). Components of solid
tumors, including parenchyma and stroma are shown in Figure 1.

In organs, stroma and parenchyma provide supportive frame-
work and key elements essential to normal functioning. Resi-
dent cells and structural factors stably occupy the stroma (8)
and eventually can become part of the cancer microenvironment.
For example, endothelial cells and pericytes, main components
that form blood vessels, can be critical constituents of the tumor
microenvironment (8). Constantly present in the tumor microen-
vironment, as extensively reported (8–11), fibroblasts, cancer stem
cells, and other locally or bone-marrow-derived stem and progen-
itor cells (8) are the major components of tumor stroma. Those
diverse cell types deposit and remodel ECM, release cytokines,
chemokines, adhesion molecules, growth factors, and other func-
tional and structural components of the tumor stroma. Those
components can become essential for tumor progression and
invasion (8, 12).

Among non-resident constituents of tumor stroma, immune
cells represent a substantial percentage (13). They include T and
B cells (13); natural killer (NK) and natural killer T (NKT) cells
(14); tumor-associated macrophages (TAMs) (15); and myeloid-
derived suppressor cells (MDSCs) (16) among others. Resident
and non-resident components of tumor stroma constantly interact
with each other contributing to progression and invasion. Con-
sequently, tumor stroma is an integral and vital component of
primary tumors and plays a critical role in the determination of
tumor cell fate (17). Together with the underlying genetic changes

FIGURE 1 | Components of solid tumors. Solid tumors are composed of
parenchyma and stroma. Cancer cells belong to the parenchyma, whereas
non-malignant cells and the extracellular matrix compose the stroma. Tumor
stroma consists of resident and non-resident cell types. Among resident
components, cancer-associated fibroblasts (CAF), endothelial cells and
pericytes (Pc), cancer stem cells, mesenchymal cells, and other locally or
bone-marrow-derived stem cells (BMDSC) and progenitor cells are depicted.
Non-resident constituents of the tumor stroma include various types of
immune cells [e.g., T and B cells, natural killer (NK), natural killer T (NKT),
myeloid-derived suppressor cells (MDSCs), and tumor-associated
macrophages (TAMs)]. Resident and non-resident components of tumor
stroma constantly interact with each other and with tumor parenchyma
contributing to progression and invasion. Cancer cell (CC), extracellular matrix
(EM), endothelial cell (EC), and metastatic cancer stem-like cell (MCSC).

in tumor cells, tumor stroma can determine whether the tumor
cells become aggressive.

Aging of Stroma

As a result of replicative exhaustion, normal diploid differenti-
ated cells become permanently arrested on the G1/G0 cell-cycle
phase (18). Although cell cycle-arrested, senescent cells remain
metabolically active, resistant to apoptosis, and do not respond
to mitogens (18, 19). Once senescent, the cells become enlarged
with evidence of splaying and increased granularity. Despite the
growing evidence that senescent cells accumulate with age (20),
the question whether senescent cells are causally implicated on
age-related cancer has been the matter of extensive debate. As
development of cancer metastases requires ECM remodeling, it
is possible that aging components of the stroma contribute to
tumorigenesis by increased expression of the factors facilitating
any of the mechanisms involved in tumor progression.

For the purposes of our succinct revision, we focus our dis-
cussion in senescent fibroblasts as contributors of age-related
tumorigenesis. Mounting studies sustain our case. It is, however,
necessary to note that the quest for establishing the putative
role of senescent fibroblasts in promoting age-related tumorige-
nesis in humans is a very active topic of scientific discussion
and more work is needed to settle the debate. It is also neces-
sary to note that the effects of advanced age on other compo-
nents of the stroma, not analyzed in detail in this revision, must
be considered when discussing the complex microenvironmen-
tal interactions driving age-related tumorigenesis. For instance,
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immunosenescence affects adaptive and innate immune cells
(21). Along with those changes, a chronic inflammatory state,
“inflamm-aging” is observed in senescent individuals (22). This
last topic has received a great deal of attention, because it involves
many components of the age milieu and because of its association
with age-related pathology, including neoplasia (23).

Stroma-derived factors have the potential to influence tissue
phenotypes by changing the pattern of cell surface molecules and
the level of secreted soluble factors. Among such alterations is the
over secretion of factors thought to provide the basis of the so-
called SASP (4). SASP components have been implicated in the
regulation of senescence and malignant transformation. Effects of
the SASP in driving interaction between tumor-stroma as driver
of age-related cancer are exemplified in Figure 2. For instance,
cytokines, such as IL-6 and IL-8, function in an autocrine feed-
back loop to reinforce the senescence-associated growth arrest
(24, 25). Also, some factors secreted by senescent cells act in a
paracrine manner to trigger senescence or, conversely, stimulate
proliferation and/or in vitro transformation of fibroblast cell lines
(26). During aging, the accumulation of ROS, as consequence
of mitochondrial dysregulation, is associated with DNA damage
(27). The crosstalk between tumor cells and its microenviron-
ment results in the enhancement of ROS production. Particu-
larly on stromal fibroblasts, the aging process will conduce to
subsequent oxidative stress, mutagenesis by promotion of tumor
growth, and progression (27–29). Therefore, aging in response to
oxidative stress in adjacent stromal fibroblasts, promotes changes
in the phenotype of the fibroblast, such as mitochondrial dys-
function, hydrogen peroxide production, and aerobic glycolysis.
High energy metabolites, such as lactate, ketones, and glutamine,
produced by oxidative mitochondrial metabolism play a critical
operative role (30–32) and may lead to increased DNA damage
and random mutagenesis (33). In this process, ROS and aging
therefore can be coupled in a positive feedback mechanism that
accelerates age-related cellular damage and promotes a permis-
sive metabolic microenvironment for cancer development and
progression (27, 32, 34, 35).

Mechanisms of Stroma-Mediated
Carcinogenesis

Senescence of cancer stroma cells is fueled by numerous mecha-
nisms, which in turn, stimulate tumorigenesis and determine the
fate of tumors. For example, oncogenic RAS in malignant cancer
cells induces the chemokine known as growth-regulated oncogene
(Gro-1/Gro-α), which subsequently acts upon the stromal fibrob-
lasts and renders them senescent (36). This evidence is an example
of the contribution of oncogenic pathways tomodulation of senes-
cence in stromal cells. Additionally, Gro-1 has been reported (24)
to play another critical role in fostering senescence: senescent cells
exhibiting elevated levels of both Gro-1 and CXCR2 provide the
mechanistic basis for another positive feedback loop contribut-
ing to cellular senescence. Therefore, committed senescent cells
reinforce senescence by producing stromal mediators.

Although cellular senescence is a mechanism of aging, the
fact that senescent cells do not divide does not protect the
elderly against tumorigenesis. On the contrary, age-associated

FIGURE 2 | Stromal cell aging and cancer, the senescence-associated
secretory phenotype (SASP), and cancer. Age-associated intrinsic and
external factors impact stromal fibroblasts and render them senescent.
Stromal fibroblasts reactivation leads to subsequent production of different
cellular mediators, constituents of the SASP. The figure illustrates different
possible outcomes: some SASP components such as the chemokine (CXC2)
will contribute to the maintenance of the senescent stromal fibroblast.
Production of IL-6, IL-8, extracellular matrix (ECM), and matrix
metalloproteinases (MMP)-3 leads to tumor invasion, angiogenesis, tumor
growth, tumor remodeling, altered tumor differentiation, and tumor
progression. Insulin-like growth factor binding protein (IGFBP7), IL-6, and
plasminogen activator inhibitor 1 (PAI-1) trigger cellular senescence, therefore
promoting tumor suppression. The production of chromatin assembly factor 1
(CAF1), chemoattractant protein-1 (MCP1), CXC, and IL-15 mediated by
innate immune responses leads to tumor clearance (24, 63–68).

microenvironmental alterations seem to be the main driver of
tumor development (37). Accordingly, in comparison to the
young, stroma in the elderly is pro-tumorigenic (37). In the young,
stroma provides an inhibitory environment that may suppress
tumorigenesis. This dual effect evidences themainstream hypoth-
esis of antagonistic pleiotropy (38). The incidence of epithelial
tumors rises with age; however, tumors in very old individuals
seem to be less aggressive when compared with old or middle-
aged individuals (39). We may speculate that one of the causes for
the reduction of tumor aggressiveness in the elderly may result
from aging of stromal cells. In that scenario, effects of advance
age would affect, for instance, the progression of angiogenic pro-
cesses that, in turn, defeat stimulated formation of new blood ves-
sels, an essential process for tumor development and progression
(40). Our speculations are supported by evidences showing that
malfunction of angiogenesis with advanced age impairs tumor-
derived signaling and represents an antitumor mechanism (41).

Despite recent advances presented herein, the mechanistic role
of stromal cells in modulation of age-related cancer is still contro-
versial reflecting the limited studies in this area to date. Although
considerable progression has been made in recent years, there are
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still numerous key questions that need to be addressed. Some of
these questions pertain to the regulation of stromal senescence,
microenvironmental changes that initiate age-associated stromal
senescence and outgrowth of cancer, and the mechanistic role
of senescent stromal fibroblasts in the modulation of cancer ini-
tiation and progression in the elderly. Whether senescence of
specific components of the stroma is sufficient by itself to initiate
carcinogenesis still remains to be determined. However, the ability
of senescent fibroblasts to create a tumor microenvironment by
their SASP may serve as a model to explain in part how increased
tumor incidence is observed in aged individuals.

Stroma as Target for Tumor Therapy

Intervention of the complex tumor stroma interactions will not
necessarily lead to tumor banishment, but it may reduce tumori-
genicity. For instance, CD8+ T cells engineered to deliver IL-12
within tumor stroma triggered an acute inflammatory environ-
ment, improved antigen presentation by myeloid-derived cells
within tumors, increased infiltration of adoptively transferred
antigen-specific CD8+ T cells, and eventually induced regres-
sion of an established murine melanoma (42). As part of the
involved mechanisms, it was recently found that IL-12, capable
of directly eliciting functionality of numerous immune cells effec-
tors, promoted the upregulation of Fas-mediated proapoptotic sig-
nals within tumor-infiltrating macrophages, dendritic cells, and
MDSCs (43). The described IL-12-mediated antitumoral effects
involving intervention of the stroma highlight the potential of
targeting its specific components as a potential therapeutic anti-
tumor strategy. The local and intratumoral delivery of IL-12,
specifically designed to target immunosuppressive mechanisms
of the tumor stroma, has been tested in numerous clinical trials
(44). Despite initial setbacks, technological improvements allow-
ing controlled in situ expression of IL-12 (44) have improved the
efficacy of this therapeutic approach targeting tumor stroma. The
stromal compartment does not only provide plenty of factors,
which are essential for cancer initiation and progression, but can
also be targeted as means to provide therapeutically effective
antitumor interventions. In support of this notion, the δ-isoform-
specific PI3K inhibitor CAL-101, with promising preclinical and
clinical activity (45), acts in chronic lymphocytic leukemia (CLL)
as amicroenvironment disrupting drug. CAL-101 activity ismedi-
ated by routes including inhibition of CLL patient cell chemotaxis
toward CXCL12/13 (46). CAL-101 also reduced CLL cell migra-
tion beneath marrow stromal cells; down-regulated chemokine
secretion, and inhibited the BCR pathway by decreasing phos-
phorylation of key downstream targets of PI3K, such as AKT and
MAPK (ERK), in stromal cocultures (46). These findings suggest
a mechanism by which stroma-disrupting agents might facilitate
improved clinical response when used in combination with other
therapies.

A Rationale for Age-Related Antitumor
Therapy Targeting Tumor Stroma

Given the increasing understanding of the mutual dependence of
the stroma and tumors in the senescent milieu, the question arises

which of the underlying mechanisms could provide novel targets
for effective cancer therapy. Dietary supplementation with antiox-
idants would target the effects of combined aging and cancer on
the stroma and thereby reduce incidence of age-associated tumors.
Fibroblasts export mitochondrial fuels, such as -lactate and
ketone bodies, using the monocarboxylate transporter 4 (MCT4).
In turn, cancer cells import these compounds via theMCT1 trans-
porter (47). This example of metabolic coupling represents a way
to energy transfer optimization in the tumor microenvironment.
Antioxidant therapy with N-acetyl-cysteine (NAC) increases the
lifespan in different experimentalmodels (35, 48).When a sponta-
neously immortalized human epithelial keratinocyte cell line was
incubated with NAC, the intervention inhibited the induction of
stromal MTC4 by preventing oxidative stress (35). Aging through
DNA damage and mitochondrial dysfunction progressively con-
duces to increased production of ROS, which in turn affects the
stroma. This effect is also observed in cancer cells. NAC-mediated
blockage of stromal induction of MCT4 suggest a therapeutic
strategy with potential to alleviate oxidative stress, inflammation,
metabolic reprograming in the aged stroma, and subsequently
cancer.

Age-associated increased myofibroblast activation in the reac-
tive stroma results in increased incidence of fibrosis-associated
diseases, such as benign prostatic hyperplasia (BPH) and prostate
cancer (PCa) (49). Growing evidence has suggested that redox
signaling downstream TGFβ is a critical factor in age-related
fibrogenic tumor development. In fact, elevated TGF-β expression
and signaling have been found in BHP and PCa lesions (50). Using
in vitro models of fibroblast-to-myofibroblast differentiation in
PBH, it has been found that TGF-β mediates its physiopatholog-
ical effects in part by inducing the expression of NADP oxidase
4 (NOX4)-derived ROS (51). Similarly, NOX4 mRNA correlated
specifically with myofibroblast phenotype in primary human pro-
static stromal cells (51). Despite the long-standing notion consid-
ering that fibrosis and fibroblast-to-myofibroblast differentiation
cannot be reverted, supplementation of prostatic fibroblasts with
selenium, trace element needed for ROS-scavenging enzymes,
restored expression of ROS scavengers, increased thioredoxin
reductase 1 (TXNRD1) activity, depleted NOX4-derived ROS lev-
els, and inhibited myofibroblast differentiation (51). These results
are consistent with reported data in animals indicating benefi-
cial effects of selenium supplementation in reducing tumor inci-
dence (52). However, a recent meta-analysis calls cautions for the
relevance of the inverse association between selenium exposure
and the risk of some types of cancer (53). Moreover, conflicting
results including inverse, null, and direct associations reported
for some cancer types, including PCa (53), suggest that well-
designed studies are required to define the effects of selenium sup-
plementation in preventing cancer in humans. Additional studies
will test the value of this intervention in controlling age-related
cancer.

Caloric restriction (CR) reported to increase the lifespan in
different models lowers the risk of various age-related diseases
including cancer (54). Similarly to CR, the anti-aging drug
rapamycin prolongs lifespan, prevents aging-related changes, and
delays cancer independently of CR (55). The effects of rapamycin
are mediated by its antagonism on the mammalian target of
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rapamycin (mTOR) pathway, a specific metabolic sensor (56).
Antitumoral effects of rapamycin have been described to be
mediated in part by suppressed senescence of cancer-associated
fibroblasts (CAFs). As an example, orthotopical implantation of
mammary tumor cells in caveolin (Cav)-1 knockoutmice, amodel
of accelerated host aging, had increased stromal content relative
to those cells implanted into control microenvironments [Cav-
1(+/+) versusCav-1(−/−) age-matched young femalemice] (57).
Likewise, mammary tumors grown in a Cav-1-deficient tumor
microenvironment were more aggressive than tumors grown in a
wild-type microenvironment (28, 56). In this context, rapamycin
significantly decreased the stromal content in Cav-1-deficient
CAFs and inhibited tumor growth (57). Since stromal loss of Cav-
1 is a marker of aging and stress in the tumor microenvironment
(58), it can be anticipated that Cav-1 can be used as biomarker for
therapeutic stratification when treating tumors with rapamycin
or other mTOR inhibitors. Hence, mTOR inhibitors by targeting
a critically relevant pathway involved in nutrient sensing in the
stroma and in aging should be considered as examples of a poten-
tial pharmacological intervention for the treatment of age-related
cancer.

Exposure to low concentrations of dietary flavonoids and
polyphenols is known to modulate the lifespan in different
experimental models, by actions that are independent of their
antioxidant properties (59). The “Mediterranean diet” increases
lifespan (60) and reduces the incidence of age-related diseases
including carcinomas (61). Secoiridoid polyphenols, present in
extra virgin olive oil, a core component of the “Mediterranean
diet” promoted cytotoxicity in human cancer cells. These effects
were associated, in part, to a decrease in gene expression of
metabolic enzymes, such as lactate dehydrogenase (LDH) (62),
defined as a critical branch point in the metabolism of major
nutrients and critically involved in the Warburg effect in tumor
cells (63). In addition, weakened cellular senescence in normal
humandiploid fibroblastswas observed (62). Antagonized cellular
senescence was evidenced by marked reduction in age-related
alterations in the morphology of fibroblasts and significantly
fewer β-gal-positive cells in extra virgin olive oil secoiridoid
polyphenols-treated human diploid fibroblasts (62). Use of crude
extra virgin olive oil extracts provide an example of anti-aging
and anti-cancer strategies that mediate their effects by tar-
geting specific component cell types of the stroma and their
interactions.

Conclusion

Among the mechanisms underlying the molecular and/or cellular
basis of age-related cancer, stroma stands up as a very critical
player. Components of the senescent stroma, such as fibroblasts,
contribute to create a tumor microenvironment through mecha-
nisms including the contribution of the SASP, and resident and
non-resident stromal component cell types. Our growing knowl-
edge of the common chronic effects of stroma-derived factors on
the promotion of aging and cancer has resulted in the character-
ization of molecular pathways in the stroma driving age-related
cancer. Since these molecules have been explored as targets for
tumor therapy, we may anticipate potential anticancer therapeutic
strategies targeting the aging stroma. Yet interesting advance has
been achieved, we need to know more about critical points of
inhibition, disruption, or activation in metabolic pathways oper-
ating on the aged stroma. Specifically, the potential use of dietary
supplementation with antioxidants, use of CR mimetics, or sec-
oiridoid polyphenols, all of them with proven anti-tumor effects
targeting metabolic components of the stroma, should be further
explored. Identification of cancer and age-associated mutations in
genes controlling the complex mechanisms governing the inter-
action between stromal components in normal aging is needed.
Gained knowledge will increase our understanding of the mecha-
nistic role of the stroma in the development of age-related cancer
and will provide novel treatments for cancer in the elderly.
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