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Alpha7 nicotinic acetylcholine receptors (α7 nAChR) are widely distributed throughout the
central nervous system and are found at particularly high levels in the hippocampus and
cortex. Several lines of evidence indicate that pharmacological enhancement of α7 nAChRs
function could be a potential therapeutic route to alleviate disease-related cognitive deficits.
A recent pharmacological approach adopted to increase α7 nAChR activity has been to iden-
tify selective positive allosteric modulators (PAMs). α7 nAChR PAMs have been divided into
two classes: type I PAMs increase agonist potency with only subtle effects on kinetics,
whereas type II agents produce additional dramatic effects on desensitization and deac-
tivation kinetics. Here we report novel observations concerning the pharmacology of the
canonical type II PAM, PNU120596. Using patch clamp analysis of acetylcholine (ACh)-
mediated currents through recombinant rat α7 nAChR we show that positive allosteric
modulation measured in two different ways is greatly attenuated when the temperature is
raised to near physiological levels. Furthermore, PNU120596 largely removes the strong
inward rectification usually exhibited by α7 nAChR-mediated responses.
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INTRODUCTION
It has long been appreciated that activation of central nervous
system (CNS) nicotinic receptors can produce a variety of behav-
ioral changes, including improvements to cognitive function. The
most abundant nicotinic acetylcholine receptor (nAChR) subtypes
in the mammalian brain are α7-subunit containing homomers
(α7 nAChRs) and α4β2 heteromers. Expression of α7 nAChRs
receptors is predominantly, but not exclusively, observed in cortex
and hippocampus, whereas α4β2 receptors have a somewhat more
widespread distribution (Lindstrom, 1996). At the cellular level α7
nAChRs are reported to be found on both neurons and glial cells
(Gotti et al., 2006).

Pharmacological and molecular manipulation of both α7- and
α4- containing nAChRs has indicated that they both potentially
play a role in cognitive processes (Leiser et al., 2009). As a con-
sequence of such findings, both receptors have become enthu-
siastically pursued drug targets, particularly for those seeking to
normalize the cognitive deficits that contribute to the phenotype of
devastating CNS diseases, such as schizophrenia and Alzheimer’s
disease (Olincy et al., 2006; Leiser et al., 2009; Hajos and Rogers,
2010; Haydar and Dunlop, 2010; Thomsen et al., 2010). These
research efforts have produced a growing number of receptor
subtype-selective compounds active at either α7 nAChRs or α4β2
nAChRs receptors.

Our own research focus is the α7 nAChR. Evidence specifi-
cally implicating this particular nAChR in disease pathophysiology
comes from a number of studies. Decreased α7 nAChR expres-
sion has been reported in brains from schizophrenia sufferers
(Freedman et al., 2001a,b). Genetic linkage studies in schizophre-
nia implicate the region of the α7 nAChRs gene promoter where

polymorphisms result in diminished promoter efficacy to drive
receptor expression in vitro (Leonard et al., 2002). Selective α7
nAChRs receptor agonists have also been shown to normalize sen-
sory gating deficits in animal models of schizophrenia (Stevens
et al., 1998; Simosky et al., 2001; Hajos et al., 2005), and a recent
human study has provided proof-of-concept for the normalization
of auditory gating deficits in schizophrenics (Olincy et al., 2006).

The α7 nAChRs is a homomeric Ca2+-permeable ligand-gated
channel. It is activated by ACh, choline, and (−)-nicotine and is
antagonized by α-bungarotoxin and MLA. Kinetically, α7 nAChRs
both activate and deactivate with fast kinetics, they also exhibit
a very rapid and profound desensitization that is likely to have
important functional consequences. Behavioral experiments sug-
gest that increasing activation of α7 nAChR generates improved
cognition in rodents (Arendash et al., 1995a,b; Levin et al., 1999).
Recent efforts have lead to the discovery of a number of novel full
and partial α7 nAChR agonists that exhibit good selectivity over
both other nicotinic receptors and a wide range of other targets
(reviewed in Hajos and Rogers, 2010; Haydar and Dunlop, 2010).

An additional pharmacological approach to increasing α7
nAChR activity is through positive allosteric modulation
(Bertrand and Gopalakrishnan, 2007). Broad spectrum positive
allosteric modulators (PAMs) of nicotinic receptors have been
available for some time. More recently agents with good selectivity
for α7 nAChRs have been described. Based on their characteriza-
tion in electrophysiological studies it has recently been proposed
that α7 nAChRs PAMs can be subdivided into two classes. Type I
PAMs predominantly affect apparent agonist affinity but can also
enhance maximum responsiveness, whereas type II PAMs, such as
PNU120596 (Hurst et al., 2005), additionally produce profound
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changes to receptor kinetics, in particular desensitization and
deactivation (Gronlien et al., 2007). Recent studies have extended
the evaluation of PNU120596 potentiation of α7 nAChRs in some
detail to suggest the presence of two distinct desensitization states,
one PNU120596 sensitive and the other insensitive to PNU120596
(Williams et al., 2011), although the in vivo significance of such
findings remains to be determined. The emerging behavioral prop-
erties of α7 nAChRs PAMs in vivo (Hurst et al., 2005; Gronlien
et al., 2007; Ng et al., 2007; Timmermann et al., 2007; Dunlop
et al., 2009) indicate they share the cognitive-enhancing and nor-
malization of sensory gating properties previously described for
α7 nAChR agonists.

In this study we have analyzed in detail the actions at recombi-
nant rat α7 nAChRs of the canonical type II PAM PNU120596. We
show for the first time that the pharmacology of these molecules
has striking temperature dependence. Furthermore, PNU120596
largely removes the strong inward rectification usually exhibited
by α7 nAChRs.

MATERIALS AND METHODS
CELL LINE AND CELL CULTURE
GH4C1 cells stably transfected with rat α7 nAChRs (GH4C1-rα7
cells) were cultured and passaged in standard tissue culture flasks
before being transferred to, and cultured on, glass coverslips. The
culture medium consisted of Dulbecco’s Modified Eagles Medium
(DMEM, Cambrex) supplemented with 10% heat-inactivated fetal
bovine serum (FBS, Biosera), 1% penicillin–streptomycin, and
200 μg/ml hygromycin B (Invitrogen) at 37˚C in a humidified
atmosphere composed of 95% air and 5% CO2.

ELECTROPHYSIOLOGY
A cell-bearing coverslip was broken into numerous pieces and a
single shard placed into a continuously perfused chamber on the
stage of an inverted microscope (Nikon Eclipse TE300). The extra-
cellular solution was a standard HEPES-buffered saline (HBSS)
consisting of: (in mM) NaCl, 135; KCl, 5; HEPES–NaOH, 10;
MgCl2, 1; CaCl2, 2; d-glucose, 30; pH 7.3.

Standard whole-cell patch clamp recordings were made using
an Axopatch-200B amplifier (Axon Instruments Inc.) under the
control of the pClamp 9.2 software suite (Axon Instruments Inc.).
Patch clamp electrodes were of resistance of 3–5 MΩ when filled
with the intracellular solution which consisted of (in mM): CsCl,
120; HEPES–CsOH, 10; EGTA, 10; QX314-Br, 5; ATP disodium
salt, 4; GTP-disodium salt, 0.3; MgCl2, 4; (pH 7.3). The pair-
ing of this solution with HBSS resulted in a calculated liquid
junction potential error of 5 mV, which was arithmetically cor-
rected for in analysis. Whole-cell voltage clamp recordings were
established in GH4C1-rα7 cells using standard methods. The
holding potential was −75 mV except during the determination
of current–voltage relationships where the membrane potential
was increased stepwise from −75 in 20 mV increments. To per-
mit rapid solution exchange cells were detached from, and lifted
above the underlying coverslip and placed adjacent to the control
barrel of a fast-switching multibarrel perfusion system (Warner
Instruments). To apply drugs the barrels were translated horizon-
tally so the cell was exposed to the drug-containing solution flow
from a different, adjacent barrel. The temperature of the solutions

applied from all barrels of this device could be set at a single
defined level using a commercially available multichannel tem-
perature controller (Warner Instruments). Data are presented as
mean ± SEM.

DRUGS
Acetylcholine (ACh), choline, and (−)-nicotine were purchased
from Sigma-Aldrich, UK. Methyllycaconitine (MLA), PNU120596
were purchased from Tocris Biosciences, UK.

RESULTS
PATCH CLAMP ANALYSIS OF α7 nAChR-MEDIATED RESPONSES
Application of ACh, (−)-nicotine, and choline all produced the
expected inward currents in GH4C1-rα7 cells voltage-clamped
at −75 mV. At high concentrations of each of these agonists,
inward currents rapidly appeared and then promptly desensitized
(Figure 1A). The remaining work in this manuscript employs only
ACh as an agonist, since this is likely to be the major physiological
activator of alpha7 receptors in vivo.

The concentration–response behavior of ACh-mediated α7
nAChR activation was determined using 2 s agonist applications
at concentrations between 10 and 3000 μM. A plot of peak cur-
rent versus concentration for such data pooled from seven cells
is shown in Figure 1B. The mean EC50 determined from fit-
ting these datasets individually was 260 ± 31 μM, while the mean
Hill coefficient was 1.4 ± 0.1. The kinetics of current responses
were also strongly concentration-dependent with both activation
and desensitization being faster at higher agonist concentrations.
Deactivation following removal of 30 μM ACh occurred with a
mean time constant of 54.5 ± 9.1 ms, n = 7. Responses to 3 mM
ACh were completely eliminated by MLA (100 nM; Figure 1C),
confirming currents evoked by ACh in these cells are mediated
solely by α7 nAChR. This antagonism was reversed upon MLA
washout with a time constant of recovery of approximately 240 s
(data not shown). An important caveat to note here is that the
estimation of α7 nAChR peak current and kinetics of channel acti-
vation and desensitization are impacted profoundly by the kinetics
of solution exchange. The α7 nAChR is unique among ligand-
gated ion channels with respect to its extremely rapid activation
and desensitization kinetics. Although we have employed a rapid
perfusion system to activate α7 nAChR channels the estimation
of ACh potency and kinetic parameters under such conditions
is predominantly governed by the leading edge of the solution
application.

Current–voltage relationships for α7 nAChR-mediated cur-
rents were obtained by varying the holding potential at which
ACh was applied. In line with previous observations, under con-
trol conditions the peak current versus voltage plot exhibited
strong inward rectification, with little outward current observed
at positive potentials (Figure 1D). Similarly strong rectification
was observed with all three different ACh concentrations, which
produced approximately 10, 30, and 100% levels of peak response
amplitude.

ELECTROPHYSIOLOGICAL ACTIONS OF PNU120596 AT ROOM
TEMPERATURE
PNU120596 was first described as a PAM at α7-AChR receptors
by Hurst et al. (2005). It has more recently been put forward as
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FIGURE 1 | Activation of recombinant α7 nAChR stably expressed in

GH4C1 cells. (A) Two seconds duration applications of ACh (1 mM), choline
(10 mM), and nicotine (100 μM) elicited α7 nAChR-mediated fast inward
currents that rapidly desensitize. (B) Pooled peak current versus
concentration data from seven cells. All data from each cell were normalized
to the response obtained with 3 mM ACh. The dashed line is a logistic fit to
the concentration–response curve of ACh-evoked peak current

(EC50 = 260 μM; n = 7). (C) ACh-evoked currents (3 mM) are completely
abolished by pre-application of the selective α7 nAChR blocker MLA
(100 nM). (D) Current–voltage relationships of currents evoked by three
different ACh concentrations [30 μM (n = 7), 100 μM (n = 7), and 3 mM,
(n = 10)]. Responses are normalized to the response recorded at a holding
potential of −75 mV. Note the strong inward rectification at all agonist
concentrations.

a canonical example of so-called type II PAMs (Gronlien et al.,
2007). In addition to enhancing agonist-induced currents and
increasing apparent agonist affinity, type II PAMs produce dra-
matic effects on receptor kinetics. This behavior is illustrated in
Figure 2A where responses to 3 mM ACh from the same cell
recorded in either the absence (left) or maintained presence (right)
of PNU120596 are compared. In the presence of PNU120596, the
maximum current was larger, desensitization was largely elim-
inated and deactivation was massively slowed. The time con-
stant of deactivation in the presence of PNU120596 (1 μM) was
5211 ± 838 ms (n = 10), close to 100× slower than that seen in
the absence of this PAM. Application of PNU120596 produced no
agonist effects in its own right.

In addition to slowing desensitization of agonist responses
(Figure 2A), PNU120596 was also able to effectively dedesensi-
tize α7 nAChRs previously completely desensitized by application
of a high concentration of ACh. An example of this activity is
shown in Figure 2B. Here the receptors were first activated and
then desensitized by applying 3 mM ACh for 1 s, PNU120596 was
applied then in the maintained presence of ACh. This elicited a
large non-desensitizing current response that rose to peak with
a time constant of 2300 ± 265 ms (n = 17); a rate that is likely
to reflect the association kinetics of PNU120596 with its binding
site (formally [PNU].kon + koff). The peak current generated by
such dedesensitization was much larger (8.6 ± 2.0-fold; n = 17)

than that produced by the initial desensitizing application of
3 mM ACh (an approximately EC99 agonist concentration when
applied alone). Removal of PNU120596, in the maintained pres-
ence of ACh, caused the receptors to redesensitize with a mean half
time of 1456 ± 175 ms (n = 9). This redesensitization rate is >300
times slower than the initial rate of desensitization (which has a
half time below 5 ms), and thus the redesensitization kinetics are
likely to predominantly reflect the off-rate of PNU120596 from
its binding site. In agreement with the rapid redesensitization of
α7 nAChR on PNU removal in the presence of ACh (Figure 2B),
the effects of preapplied PNU120596 on both the amplitude and
kinetics of ACh-evoked responses were rapidly reversed following
PNU120596 washout (Figure 2C).

Using the pre-application protocol described above (Figure 2A)
we were able to show that PNU120596 also produced a
marked change in the voltage-dependence of α7 nAChR-mediated
responses (Figures 3A,B). Thus, although current–voltage rela-
tionships of agonist responses (3 mM ACh) exhibited marked
inward rectification (Figures 1D and 3B), the current–voltage rela-
tionship in the presence of PNU120596 was considerably more lin-
ear. This was quantified by calculating the rectification index which
was 1.38 ± 0.1 for ACh responses in the presence of PNU120596
(n = 5) compared to 3.82 ± 0.3 for responses to 3 mM ACh alone
(n = 10, Figure 3C). Consequently, the fold increase in peak cur-
rent produced by PNU120596 was strongly voltage-dependent.

www.frontiersin.org December 2011 | Volume 2 | Article 81 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology_of_Ion_Channels_and_Channelopathies/archive


Sitzia et al. Temperature-dependent α7 receptor modulation

FIGURE 2 | Modulation of ACh-evoked currents by PNU120596. (A)

Responses to ACh (3 mM, gray bar; left) are increased in amplitude and
kinetically modified in the presence of preapplied PNU120596 (1 μM, black
bar; right). (B) An example trace illustrating PNU120596-mediated
dedesensitization. Receptors were initially activated and desensitized by
ACh (3 mM, gray bar) following which PNU120596 was applied in the
maintained presence of ACh. The initial rapidly desensitizing ACh response
is shown in the inset box. Following the removal of PNU120596 α7 nAChRs
redesensitize over several seconds. (C) The time course of responses to
repeated ACh applications (3 mM, 2 s, every 20 s) from a typical recording.
Data for both response area (top) and peak amplitude (bottom) are shown,
both normalized to the mean baseline value (as 100%). PNU120596 was
continuously applied for the time indicated by the black bars.

Like other effects of PNU120596 (Figure 2C), the linearization of
the I–V relationship was reversed when this agent was removed.

We also noted that the rate of current deactivation on ACh
removal in the presence of PNU120596, as well as being massively
slowed, was voltage-dependent. Thus around three times faster
deactivation being seen at positive membrane potentials than at a
holding potential of −75 mV. This is readily apparent in the traces
in Figure 3A as well as the pooled results of exponential fits in
Figure 3D.

TEMPERATURE DEPENDENCE OF PNU120596 ACTIONS AT α7 nAChRs
The vast majority of patch clamp-based studies of ligand-gated
channel pharmacology and biophysics are performed at room
temperature, presumably because it is technically much simpler
so to do. The findings of such studies are then frequently used to
interpret studies in brain slices or in vivo which frequently involve
higher temperatures (often around 33˚C for brain slices and ∼37˚C
in vivo). PNU120596 has documented in vivo actions and we
are ultimately interested in understanding how these actions are
generated at a circuit level. Consequently, we were motivated to
understand how PNU120596 affected α7 nAChR gating at temper-
atures around 37˚C. To do this we modified our stepping perfusion
system such that we could warm the various solution streams, in
parallel, to the same temperature.

Increasing the temperature from room temperature (22˚C) to
physiological temperature (∼37˚C) produced somewhat variable
effects of the amplitude of ACh responses. On average, however,
peak amplitude was 20 ± 20% smaller, a non-significant change.
Charge transfer over 2 s was significantly reduced by 54 ± 10%
(n = 8, Figures 4A,B), due to faster desensitization combined with
the slightly reduced peak.

We initially studied the temperature dependence of the actions
of PNU120596 using the dedesensitization protocol (Figure 4C).
As described above (Figure 2B), this involves using a high ago-
nist concentration to completely predesensitize the α7 nAChR
population before co-applying PNU120596 to induce recovery
(dedesentization) of the receptor response in the maintained pres-
ence of agonist. As before, we quantified the effectiveness of a PAM
in this assay by plotting the ratio of the dedesensitized response in
the presence of the PAM (P2), to that of the initial ACh response
prior to desensitization (P1). At room temperature this ratio was
34 ± 20 (n = 4). When we increased the experimental tempera-
ture in the same cells it was immediately apparent that PNU120596
became much less effective at dedesensitizing the α7 nAChRs. Thus
the P2:P1 ratio fell below 1 (0.86 ± 2; n = 4) at temperature of
∼37˚C (Figure 4D).

As well as comparing the dedesensitization produced by
PNU120596 at room and physiological temperature we also exam-
ined the temperature dependence of agonist responses at receptors
pre-equilibrated with this PAM. From the example traces shown
in Figure 5A, it is clear that the actions of the PNU120597 are
greatly curtailed at higher temperatures. This is not only seen
in the response amplitude in the presence of PNU120596 but
also, for example, in the decreased PAM-mediated slowing of
deactivation.

Figures 5B,C plot pooled data from six such experiments.
Specifically these graphs plot, for three binned levels of elevated
temperature, the relative amplitude (Figure 5B) and charge trans-
fer (Figure 5C) seen in PNU120596 normalized to that seen at
room temperature in the same cells. These indicate that the loss
of the potentiating effect of the PNU120596 intimately depends
on temperature and can be observed with just a few degrees
change above room temperature. Together with the dedesen-
sitization measurements in Figure 4 these data provide good
evidence that the allosteric actions of PNU120596 are strongly
temperature-dependent within the range of standard biological
experimentation.
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FIGURE 3 | PNU120596 alters voltage-dependence of α7

nAChR-mediated responses. (A) Currents from a standard I–V
relationships in response to ACh (3 mM) applied in the continuous
presence of 10 μM PNU120596 at room temperature. The numbers to the
left of the traces are the holding potential in millivolt. (B) Pooled I–V
relationships for ACh alone (3 mM; n = 10, squares) and ACh + PNU120596
(n = 5, circles). PNU120596-modulated ACh-evoked currents have a more
linear I–V relationship while currents recorded in ACh alone show
classically strong inward rectification. (C) A comparison of rectification
index of currents evoked by ACh alone (n = 10) and ACh applied in the

presence of PNU120596 (n = 5). Rectification index is defined as the chord
conductance between −75 and −55 mV divided by that between +45 and
+65 mV. Rectification ratios recorded in PNU120596 were different
(***P < 0.001, using Student’s T -test) when compared to currents evoked
by ACh (3 mM) alone. (D) A graph plotting the voltage-dependence of the
deactivation time constant of ACh-induced currents recorded in the
maintained presence of PNU120596. Time constant was determined by
making single exponential fits to the current decay following ACh removal.
As is visibly apparent in (A), deactivation is considerably faster at less
negative membrane potentials.

Lastly, we were interested to determine if the temperature
dependence of the positive allosteric modulation of α7 nAChR
by PNU120596 extended to other structurally diverse α7 nAChR
PAMs. We have previously reported on the α7 nAChR PAM activity
of SB-206553 (Dunlop et al., 2009), a compound originally char-
acterized as a 5-HT2B/C receptor antagonist. Figure 6 shows the

dedesensitization protocol evaluating the effect of SB-206553 on
ACh-evoked α7 nAChR currents showing a strongly temperature-
dependent effect, similar to PNU120596, with reduced dedesen-
sitization at near physiological temperatures compared to room
temperature. Similar to PNU120596, the magnitude of poten-
tiation of α7 nAChR currents in response to ACh in cells
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FIGURE 4 | PNU120596-mediated dedesensitization is strongly

attenuated at physiological temperatures. (A) ACh-mediated current
responses at room temperature and 37˚C in the same example cell. (B) A
graph plotting the changes in amplitude and charge transfer produced by
increasing the recording temperature to 37˚C. (C) Example traces showing

PNU120596-mediated reversal of ACh-evoked desensitization at room
temperature (black trace) and 37˚C (gray trace). (D) A histogram showing the
ratio between the dedesensitized peak current (P2) evoked by PNU120596
and the initial desensitizing ACh response (P1) at room temperature and
37˚C.

FIGURE 5 | Potentiation of agonist responses at receptors

pre-equilibrated with PNU120596 is reduced at higher temperatures.

(A) Example responses to 3 mM ACh in the maintained presence of
PNU120596 at four different temperatures. (B,C) Pooled data plotting the

amplitude (left) and charge transfer (right) of response to ACh in the
presence of PNU in three different recording temperature bins. Data are
normalized to the corresponding responses recorded at room
temperature.
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FIGURE 6 | SB-206553-mediated dedesensitization is strongly attenuated

at physiological temperatures. (A) Example trace showing
SB-206553-mediated reversal of ACh-evoked desensitization at room

temperature, and (B) Example trace showing lack of SB-206553-mediated
reversal of ACh-evoked desensitization at 37˚C, illustrating a strong
temperature dependence for this SB-206553 mediated effect.

pre-equilibrated with SB-206553 was reduced at physiological
temperature compared to room temperature (data not shown).

DISCUSSION
Selective pharmacological manipulation of α7 nicotinic receptors
holds considerable promise for the future pharmacotherapy of
schizophrenia and other human diseases characterized by signifi-
cant cognitive deficits (Leiser et al., 2009; Hajos and Rogers, 2010;
Haydar and Dunlop, 2010; Thomsen et al., 2010). Furthermore,
pharmacological modulation of α7 nAChR also has some poten-
tial promise as a neuroprotective strategy (Kihara et al., 2001;
Hellstrom-Lindahl et al., 2004; Hu et al., 2007; Roncarati et al.,
2009). The current over-arching view is that increasing activity of
α7 nAChRs is the required route to improved cognitive function,
a supposition that is supported by behavioral data using agonists,
and to a lesser extent PAMs. It is this view-point that has shaped
the recent extensive drug discovery efforts in many pharmaceutical
companies around the world.

At room temperature, the type II PAM PNU120596 produces
remarkable effects on gating of α7 receptors. As well as potentiat-
ing peak current generated by agonist concentrations that produce
near maximal responses in the absence of a PAM, this agent almost
eliminates desensitization and slows deactivation by around 100-
fold (Figure 2A). Furthermore, this agent can completely dedesen-
sitize α7 nAChRs that have been fully desensitized with a high
agonist concentration (Figure 2B). At room temperature these
effects are massive compared to the positive allosteric modulation
of other neurotransmitter-gated channels by well known drugs,
for example, the effects of benzodiazepines on GABAA receptors
and the actions of so-called “AMPAkines” on the AMPA sub-
class of glutamate receptors. Importantly, all of the effects of
PNU120596 we observed in both activation and desensitization

assays were substantially reduced as temperature was increased
toward physiological levels (Figures 4 and 5). Similarly, the pro-
found temperature dependence for the α7 nAChR PAM activity of
PNU120596 was also observed with the structurally distinct PAM
SB-206553.

It has been suggested that PAMs like PNU120596 which pro-
duce profound effects on the kinetics of α7 nAChRs are unlikely to
become useful as clinical therapeutic agents (Ng et al., 2007). The
reasoning behind this suggestion is that the elimination of desen-
sitization by such type II PAMs may produce excessive opening
of α7 nAChRs leading to cell death through massively enhanced
Ca2+ entry (Orrenius et al., 2003). Of course, any such actions
will ultimately be dose-dependent. When Ng et al. (2007) com-
pared the cytotoxicity of PNU120596 and a type I PAM, CCMI
(also known as Compound 6), they saw significant cell death
with the former but not the latter compound. These toxicity
assays were, however, performed at room temperature and our
work here shows that pharmacological actions of PNU120596
are much greater at room temperature and become substantially
attenuated nearer physiological temperature. Notably, another
more recent study with PNU120596 revealed no toxic effects of
24 h of PNU120596 treatment on cultured cortical neurons or
PC12 cells, although both cell types were clearly shown to express
functional α7 nAChRs (Hu et al., 2009). These toxicity studies,
unlike those of Ng et al. (2007), were performed at physiological
temperatures.

Our recordings also demonstrated that the strong rectification
of the I–V relationship that typifies α7 nAChR-mediated currents
was considerably reduced in the presence of the PAM. Thus, it
seems likely that the presence of the PAM inhibits whatever process
generates inward rectification in α7 nAChRs. To our knowledge,
however, the molecular basis of the rectification properties of
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α7 nAChRs is not as well understood as it is for other nicotinic
receptors (Haghighiand and Cooper, 1998, 2000).

The loss of strong rectification in the maintained presence of
PNU120596 meant it was possible to measure response deacti-
vation kinetics at positive potentials. The combination of two
facets of α7 nAChR pharmacology means that such measure-
ments are very difficult to make in the absence of a type II PAM.
The first of these is that the strong inward rectification prop-
erties seen in the absence of a PAM mean responses at positive
potentials are by definition small. Secondly, low agonist concen-
trations are best for measuring deactivation, because they elicit
slower and thus less prior desensitization; but such concentra-
tion only elicit small currents. In the presence of PNU120596
it was clear that the rate of deactivation became two to three
times faster as the membrane potential was depolarized. Deac-
tivation of many ligand-gated channels reflects agonist unbind-
ing kinetics. Thus our observations may mean ACh unbind-
ing may be more rapid at more positive membrane potentials.
The direction of this change suggests that voltage-dependent
changes to agonist occupancy are very unlikely to be the cause
of the loss of rectification in the presence of PNU120596.
In future, it would be informative to examine the details of
the voltage-dependence of the concentration-dependence of α7
nAChR activation, i.e., measuring EC50 at different membrane
potentials.

Clearly, the temperature dependence we have identified here
will have implications for how we need to think about PAM actions
at α7 nAChR in vivo. It also means any measures of PAM effi-
cacy generated in vitro at ambient temperatures will need to be
considered with caution.

We do not as yet understand the molecular basis of this striking
effect of temperature. It is interesting to note that the PNU120596
binding site is located within what is predicted to be the transmem-
brane region of the α7 nAChR (Young et al., 2008). Consequently,
the biophysical or chemical state of the membrane may play a
role in determining the actions of PAMs at this site. Raising the
temperature the from room temperature to 37˚C will have sub-
stantial effects on various properties of the plasma membrane not
least its fluidity. Lipid interactions are known to affect various
aspects of nicotinic receptor function including gating (Barrantes,
2004). With respect to changes in membrane fluidity, it is inter-
esting to note that another key determinant of membrane fluidity,
cholesterol content, has a number of effects on nicotinic recep-
tors (Barrantes, 2007). α7 nAChR are reported to be localized in
cholesterol rich lipid rafts (Bruses et al., 2001) and changes to
membrane cholesterol content seem to cause nAChR to disag-
gregate from multi-receptor nanoclusters (Kellner et al., 2007). It
would be interesting to examine if chemical depletion of choles-
terol from cells with agents like methyl-beta-cyclodextrin has any
effect on the actions of PAMs such as PNU120596.
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