
REVIEW
published: 08 May 2015

doi: 10.3389/fphar.2015.00100

Edited by:
Terry Kenakin,

University of North Carolina,
Chapel Hill, USA

Reviewed by:
Suyash Prasad,

Audentes Therapeutics, USA
Gerfried Karl Hans Nell,

NPC Nell Pharma Connect Ltd.,
Austria

*Correspondence:
Lakshmi A. Devi,

Department of Pharmacology
and Systems Therapeutics, Icahn

School of Medicine at Mount Sinai,
19-84 Annenberg Building, One

Gustave L. Levy Place, New York,
NY 10029, USA

lakshmi.devi@mssm.edu

Specialty section:
This article was submitted to

Pharmaceutical Medicine
and Outcomes Research,

a section of the journal
Frontiers in Pharmacology

Received: 13 February 2015
Paper pending published:

29 March 2015
Accepted: 21 April 2015
Published: 08 May 2015

Citation:
Stockert JA and Devi LA (2015)

Advancements in therapeutically
targeting orphan GPCRs.
Front. Pharmacol. 6:100.

doi: 10.3389/fphar.2015.00100

Advancements in therapeutically
targeting orphan GPCRs
Jennifer A. Stockert and Lakshmi A. Devi*

Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA

G-protein coupled receptors (GPCRs) are popular biological targets for drug discovery
and development. To date there are more than 140 orphan GPCRs, i.e., receptors
whose endogenous ligands are unknown. Traditionally orphan GPCRs have been
difficult to study and the development of therapeutic compounds targeting these
receptors has been extremely slow although these GPCRs are considered important
targets based on their distribution and behavioral phenotype as revealed by animals
lacking the receptor. Recent advances in several methods used to study orphan
receptors, including protein crystallography and homology modeling are likely to be
useful in the identification of therapeutics targeting these receptors. In the past 13 years,
over a dozen different Class A GPCRs have been crystallized; this trend is exciting, since
homology modeling of GPCRs has previously been limited by the availability of solved
structures. As the number of solved GPCR structures continues to grow so does the
number of templates that can be used to generate increasingly accurate models of
phylogenetically related orphan GPCRs. The availability of solved structures along with
the advances in using multiple templates to build models (in combination with molecular
dynamics simulations that reveal structural information not provided by crystallographic
data and methods for modeling hard-to-predict flexible loop regions) have improved the
quality of GPCR homology models. This, in turn, has improved the success rates of
virtual ligand screens that use homology models to identify potential receptor binding
compounds. Experimental testing of the predicted hits and validation using traditional
GPCR pharmacological approaches can be used to drive ligand-based efforts to probe
orphan receptor biology as well as to define the chemotypes and chemical scaffolds
important for binding. As a result of these advances, orphan GPCRs are emerging from
relative obscurity as a new class of drug targets.

Keywords: Homology modeling, virtual screening, MD simulations, protein crystallography

Abbreviations: BLAST, basic local alignment search tool; BRIL, apocytochrome b562RIL; cAMP, cyclic AMP; CCR2, C-C
chemokine receptor type 2; CysLTR1, cysteinyl leukotriene receptor 1; DAG, diacylglycerol; DARPP-32, dopamine- and
cAMP-regulated phosphoprotein of 32 kDa; DRD3, dopamine D3 receptor; ECL, extracellular loop; FFAR1, free fatty
acid receptor 1; FPR1R, formylpeptide receptor; GABA, gamma-aminobutyric acid; GHS-R, growth hormone secreta-
gogue receptor; GPCR, G-protein coupled receptor; GRAFS, glutamate, rhodopsin, adhesion, frizzled/taste2, secretin; H,
helix; HH4R, human histamine H4 receptor; ICL, intracellular loop; Ins(1,4,5)P3, inositol 1,4,5-trisphosphate; KD/KO,
knockdown/knockout; MCHR1, melanin-concentrating hormone receptor 1; MDs, molecular dynamic simulations; NK1,
neurokinin 1 receptor; N/OFQ, nociception/orphanin FQ receptor; ORL-1, opioid receptor-like 1; OX1R, orexin receptor
type 1; OX2R, orexin receptor type 2; P2RY5, purinergic receptor 5; PLCβ, phospholipase Cβ; PDB, protein data bank;
PKA, protein kinase A; PKC, protein kinase C; RMSD, root-mean square deviation; T4L, T4-lysozyme; TM, transmembrane;
TRHR, thyrotropin-releasing hormone receptor; VLS, virtual ligand screening.
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Introduction

G-protein coupled receptors are by far the largest group of TM
signaling receptors in the human genome. Phylogenetic analysis
has estimated that over 800 genes encode for GPCRs (Fredriksson
et al., 2003), which amounts to over 1% of the entire human
genome (Jassal et al., 2010). GPCRs are ubiquitously expressed
throughout the body and modulate a wide array of essential
physiological processes, including those governing the senses of
vision, taste, and olfaction, as well as mediating cellular responses
to hormones and neurotransmitters (Rosenbaum et al., 2009).
GPCR signal transduction is accomplished by the binding of
a receptor agonist to an exposed extracellular or intramem-
brane site on the receptor, which causes a conformational change
in the receptor protein. This leads to the uncoupling of the
heterotrimeric G-proteins associated with the receptor which,
in turn, unleashes a cascade of intracellular downstream effec-
tor molecules. The assortment of known GPCR ligands is as
expansive and diverse as the biological functions that they regu-
late, and includes photons, ions, odorants, amino acids, peptides,
nucleotides, lipids, and small organic molecules (Kroeze et al.,
2003; Venkatakrishnan et al., 2013). Because of the range of
biological processes, and therefore pathologies, that they modu-
late, GPCRs have been popular and successful biological targets
in the history of drug development.

Despite the diversity of this superfamily of proteins, all
GPCRs have the same basic structure and signaling mechanisms.
Thus the structure of a GPCR can be broken down into three
basic parts: (i) the extracellular-facing region comprising the
N-terminus and three ECL (ECL1–ECL3), (ii) the TM region, a
defining motif of GPCRs, that consists of seven α-helices (labeled
TM1–TM7) bundled together and which span the width of the
membrane at varying lengths and angles, and (iii) the intracel-
lular region that contains three ICL (ICL1–ICL3), an additional
helix (H8) and C-tail. While the extracellular domain medi-
ates the access of ligand(s) to the receptor (Venkatakrishnan
et al., 2013), the TM region undergoes a conformational change
upon the binding of a ligand that is transmitted to the intra-
cellular region of the GPCR (Venkatakrishnan et al., 2013).
The latter region is responsible for interacting with downstream
effectors such as G-proteins (i.e., Gα and Gβγ subunits) and
arrestins (Katritch et al., 2012). In canonical GPCR signal-
ing, agonist binding to the receptor leads to the activation of
G-proteins and these, in turn, activate effector molecules such
as adenylyl cyclase and PLCβ resulting in the production of
second messengers such as cAMP, DAG and Ins(1,4,5)P3, that
continue the signaling cascade by activating further downstream
proteins including PKA and PKC (Ritter and Hall, 2009), to
name a few.

Given the size and scope of the GPCR superfamily, several
classification schemes have been proposed. While some of these
attempted to group GPCRs based on either the dynamics of
ligand binding, physiological, or structural characteristics, the
best-known classification scheme categorizes GPCRs based on
their sequence and structural similarity (Fredriksson et al., 2003).
Thus, phylogenetic analyses of non-olfactory humanGPCRs have
resulted in their grouping into five distinct classes abbreviated

as GRAFS: glutamate (i.e., Family C receptors) rhodopsin (i.e.,
Family A receptors), adhesion, Frizzled/Taste2, and secretin
(i.e., Family B receptors) receptors (Fredriksson et al., 2003;
Rosenbaum et al., 2009; Table 1). Class A rhodopsin-like recep-
tors form the largest, most diverse, and best studied, and
contains over 700 receptors; ∼240 members of this family are
non-olfactory and include prostaglandin, amine (e.g., serotonin,
dopamine, and histamine), andmelatonin receptors (Fredriksson
et al., 2003). The secretin and glutamate families both contain
∼15 members and include the glucagon and GABA recep-
tors, respectively. The adhesion family, so-called because they
contain one or more domains with adhesion-like motifs at the
N-terminus, comprises ∼24 members, while the Frizzled/Taste2
family contains ∼24 receptors that mediate cellular events in
metazoan development and the sense of taste (Fredriksson et al.,
2003).

At present there are over 140 non-olfactory GPCRs for which
endogenous ligands have not been identified or whose biological
functions remain unknown (Tang et al., 2012). Conventionally
it has been considered important to identify the endogenous
ligand(s) activating a GPCR in order to study the receptor’s
signaling/regulatory mechanisms and physiological function.
Without this basic information, developing therapeutics target-
ing these receptors is considered to be nearly impossible (Yoshida
et al., 2012). In the case of orphan GPCRs, the lack of knowledge
about the endogenous ligand has focused research on the identifi-
cation of cognate GPCR-ligand pairs rather than lead-compound
identification and drug discovery.

Orphan receptors that have been matched to their endoge-
nous ligand are termed deorphanized receptors. The earliest
attempts to deorphanize GPCRs began in the latter half of the
1980s, and this coincided with advances in molecular biological
techniques including low-stringency hybridization and degener-
ate polymerase chain reaction, which allowed for the successful
cloning of orphan GPCRs (Civelli et al., 2013). Moreover, modern
cloning technology allowed researchers to express orphan GPCRs
in cell lines so that they could be tested in signal transduction
assays with potential exogenous or endogenous ligands (Civelli
et al., 2013). This strategy known as “reverse pharmacology” was
used in the 1990s to deorphanize many ligand-receptor systems,
including nociception for ORL-1, orexin-A for OX1R, orexin-B
for OX2R, and ghrelin for GHS-R (Yoshida et al., 2012). The

TABLE 1 | Solved structures of the GPCR families.

GPCR family Identified member
receptors

Solved receptor
structures

Rhodopsin 701 21

Adhesion 24 0

Frizzled/Tas2 24 1

Glutamate 15 1

Secretin 15 2

The largest GPCR family, Rhodopsin, has the largest number of solved structures.
Since the first structure of a GPCR, bovine rhodopsin, was published in 2000, 24
other GPCR structures have been solved, indicative of the acceleration in solving
GPCR structures.
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endogenous ligands were then used to further examine the phar-
macological and physiological properties of the receptor in vitro
or in vivo (Yoshida et al., 2012).

Orphan GPCRs as Therapeutic Targets

Studies examining the distribution and localization as well as
studies probing the behavioral phenotype of animals lacking the
orphan GPCRs have been central to establishing the particular
receptor as an attractive therapeutic target. Studies examining
receptor expression by in situ hybridization and studies inves-
tigating the phenotypic characterization of targeted KD/KO of
orphan GPCRs have proven extremely useful in elucidating their
biological functions, and in suggesting their role as potential drug
targets. For example, a study with the orphan receptor GPR88
used molecular and behavioral tests to propose a role for this
receptor in schizophrenia (Logue et al., 2009). GPR88mRNAwas
found to be highly expressed in the striatum of WT mice brains
and absent in mice lacking GPR88 (GPR88 KO) using in situ
hybridization (Logue et al., 2009). GPR88 KO mice had higher
levels of phosphorylated DARPP-32 and increased sensitivity to
dopamine, suggesting that GPR88 may play an important role
in striatal function and dopamine response, making this orphan
receptor a potential drug target for the treatment of psychi-
atric disorders involving the striatum like schizophrenia. Another
study with the orphan GPR161 (also known as RE2) proposed a
role for this receptor in the proper formation of the tubes of the
heart (Leung et al., 2008). In this case in situ hybridization with
developing embryos revealed GPR161 mRNA expression in the
precardiac mesoderm, and knock-down of GPR161 resulted not
only in pericardial edema, improper positioning of the ventricle
and atrium, malformation of cardiac loops, and left–right (L–
R) patterning, but also elevated Ca2+ levels in Kupffer’s vesicle
(an organ in zebrafish that regulates L–R in the heart; Leung
et al., 2008). While further studies are needed to characterize this
receptor system (i.e., identify downstream signaling pathways),
the results of this study indicate that GPR161 may be a therapeu-
tic target for the treatment of congenital heart defects. However
the lack of information regarding their endogenous ligands or
signaling pathways activated hindered the efforts to identify ther-
apeutics targeting these orphan GPCRs. Advances in homology
modeling based on protein crystal structure and in silico screen-
ing techniques have begun to be applied toward identification
of exogenous ligands (to be developed as therapeutics) targeting
orphan GPCRs.

Protein Crystallography

The first reported structure of a GPCR, bovine rhodopsin, was
published in 2000 (Palczewski et al., 2000) and was consid-
ered a landmark achievement for crystallographers and GPCR
biologists. It confirmed that the TM region of GPCRs contains
seven α-helices and can serve as a template for other GPCRs,
allowing researchers to deduce the location of secondary struc-
tural components and highly conserved sequences on related

receptors (Palczewski et al., 2000). Successive crystallizations of
rhodopsin in various active and inactive conformations with its
ligand also provided insights into the mechanisms surround-
ing GPCR activation (Weis and Kobilka, 2008). Because of the
inherent difficulties in crystallizing proteins, it took 7 years
for the next GPCR to be crystallized, which was the human
β2-adrenergic receptor (Cherezov et al., 2007). Since 2007, there
have been several breakthroughs in crystallization techniques
which have led to a dramatic increase in the number of GPCR
structures available. One such technique involves engineering
GPCRs to contain small soluble proteins that crystallize under
known conditions, in the hope that this will increase the number
of lattice contacts necessary for crystal formation between protein
molecules (Rosenbaum et al., 2007). This innovative idea was
first employed in the crystallization of the β2-adrenergic recep-
tor, where the C-terminus and ICL3 of the receptor were replaced
with a protein, T4L (Cherezov et al., 2007). A similar strategy
was used to crystallize the N/OFQ receptor in 2012 (Thompson
et al., 2012), where again the GPCR was modified by fusing a
stable protein (in this case, BRIL; Chu et al., 2002) to a truncated
N-terminus to facilitate crystal formation (Cherezov et al., 2007).
Crystallization has also been accomplished with the help of anti-
bodies, as seen with an additional structure of the β2-adrenergic
receptor (Rasmussen et al., 2007). Other techniques used to facil-
itate GPCR crystallization include the use of new detergents and
engineering mutations into the receptors (Venkatakrishnan et al.,
2013). As a result of these advances, as of January 2015 there are
25 evolutionarily diverse crystal structures of GPCRs available
(Classes A, B, C, and Frizzled), spread across various classes (see
Table 1; Tautermann, 2014). These atomic-level, high-resolution
insights into GPCR structure are invaluable in the generation of
homology models that will aid in the development of rational,
structure-based design of therapeutics targeting GPCRs.

Protein Structures and Homology
Modeling

The modeling process involves several steps beginning with
the selection of the protein to be modeled and the template
protein, to aligning their primary amino acid sequences and
making appropriate corrections, to initial model generation and
later refinements, and ending with the validation of the model
(Krieger et al., 2003). The most important part of this process
is the selection of the appropriate homolog to serve as the
template.

Once the protein to be modeled has been chosen (i.e., the
target protein) the search for a related protein with known struc-
ture (i.e., the template) is accomplished by using sequence-based
methods. There are several repositories and structure databases
available online, and among them the PDB1 is the most popu-
lar (Berman et al., 2000). The published structures for proteins
are stored at PDB and are easily accessible. Search algorithms
such as BLAST (Altschul et al., 1990), compare the entered
target’s DNA or amino acid sequence to the sequences of other

1www.rcsb.org
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proteins, identify regions of similarity between them, return a
list of proteins ranked in order of their similarity to the query
sequence, and also display the alignment (Altschul et al., 1990).
Sequences that are more than 40% identical and are found using
tools such as BLAST are usually correctly aligned (Saxena et al.,
2013), however, errors in the initial alignment are common if
the sequences share less than 30% identity (Rost, 1999). It is
important to note that BLAST will not work on difficult targets
(proteins with only distantly related homologs), and more sensi-
tive method(s) are needed (such as those that compare multiple
sequence alignments) in these instances. While it is possible to
optimize the initial alignment using specialized alignment soft-
ware (Nayeem et al., 2006), currently there are no modeling
programs available that can construct an accurate model from an
incorrect alignment (Sanchez and Sali, 1997) and therefore every
attempt should be made to correctly align the target and template
sequences.

To model proteins such as GPCRs, it is crucial that there be an
adequate supply of highly resolved, diverse GPCR crystal struc-
tures that can serve as templates. The advances in GPCR protein
crystallization, mentioned previously, have generated a cache of
templates for modelers to choose from. Information about the
list of published structures is available at http://zhanglab.ccmb.
med.umich.edu/GPCR-EXP/ and a visualization of the phyloge-
netic tree of GPCRs shows the diversity of available structures2
(Stevens et al., 2013) and is illustrated in Table 1.

Advances in Homology Modeling of
GPCRs

With the increase in the number of templates available for GPCRs
there has been renewed interest in improving the methodolo-
gies and techniques that are used to create homology models.
These include multi-template modeling approaches, MDs, and
the treatment of long loop regions in the receptors (Yarnitzky
et al., 2010). These are described below.

As its name suggests, multi-template modeling involves the
use of more than one template to create a model of the
target. The effect of using multiple templates to generate models
of the β2-adrenergic receptor was evaluated in one paper by
comparing the RMSD of ligand poses in multiple and singu-
lar template models of the receptor compared to its crystal
structure (Mobarec et al., 2009). The multi-template model
performed slightly better than the single-template models, since
it had a slightly higher percentage of docking poses of the
ligand with an RMSD less than 2 Å compared to the crys-
tal structure (Mobarec et al., 2009). However, it should be
noted that this improvement was only observed when all the
templates used shared low sequence similarity to the target; if
the templates had a relatively high sequence similarity to the
target, there was no significant difference in the performance
of multi-template and single-template models (Mobarec et al.,
2009). Another example of successful multi-template model-
ing is in the enrichment of VLS of homology models of the

2http://gpcr.scripps.edu/

NK1 receptor (Kneissl et al., 2009). In this study, models of
NK1 were built using either bovine rhodopsin or human β2-
adrenergic receptor as a template, or using a combination
of bovine rhodopsin and β2-adrenergic receptor as template
(Kneissl et al., 2009). NK1 models built based on only one
template did not conform to experimental mutagenesis data
and needed further refinements; however, the multiple-template
model achieved enriched VLS scores in agreement with a consen-
sus model without any additional refinements (Kneissl et al.,
2009).

One of the more problematic aspects of modeling GPCRs
is in the treatment of variable loop regions. The ECLs and
ICLs between GPCRs are much less conserved and often differ
between target and template, which makes them extremely
difficult to model using template-based approaches (Goldfeld
et al., 2011). This is perhaps the greatest disadvantage of using
template-based homology models because these loop regions
are extremely important in ligand binding and receptor acti-
vation (Goldfeld et al., 2011). The ECLs of GPCRs have been
shown to facilitate the binding of ligands of several differ-
ent chemotypes including small drug-like molecules (de Graaf
et al., 2008), large proteins (de Graaf et al., 2008), and vari-
ous low molecular weight biological compounds (Goldfeld et al.,
2011) and can also regulate receptor activation (Klco et al.,
2005). ICLs group together to form functional domains that
interact with the G-proteins coupled to the receptor (Wong,
2003). Because these regions are so integral to proper GPCR
function much effort has gone into improving the model-
ing of these unpredictable peptide sequences, and what to do
if loop modeling proves too complex. For this the modeling
field has moved toward more template-free approaches that use
energy functions to guide loop folding in a defined confor-
mational space (Li, 2013). During this process a large number
of models are generated and the best models are chosen for
further refinement based on their minimized energy in terms
of geometric constraints (i.e., minimized steric constraints, etc.;
Li, 2013). The success of this method relies on the ability of
algorithms to effectively sample the best conformations and
evaluate model energy (Tang et al., 2014). Since 2000 several
programs have been developed for loop modeling and each
uses different energy functions and sampling criteria (Li, 2013).
Some popular programs among many include MODELLER
(uses statistical potentials to integrate restraints or pseudo-
energy; Fiser et al., 2000), LOOPY (uses colony energy; Xiang
et al., 2002), RAPPER (uses AMBER force field combined
with the Generalized Born solvation model; de Bakker et al.,
2003), Rosetta (uses Rosetta; Rohl et al., 2004), and Looper
(uses CHARMM force field with additional parameters; Spassov
et al., 2008). In general these programs are very effective
at modeling loops as long as eight residues (Li, 2013), and
newer methods can accurately predict loop structures up to
13 residues long (Mandell et al., 2009; Li et al., 2011), but
modeling longer loops still remains a significant challenge (Li,
2013).

In recent years homology models of orphan GPCRs have
been generated. For example, a model for GPR18, a Class
A receptor that might play a role in apoptosis, using the
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N/OFQ receptor as a template has been generated (Kothandan
and Cho, 2013). Also two homology models were generated
to examine the effects of mutations on the structure of the
P2RY5 receptor, an orphan GPCR identified by genetic link-
age analysis that is implicated in autosomal recessive wooly hair
(Shimomura et al., 2008). In addition, a homology model of
GPR55 was built using the crystal structure of the adenosine A
(2A) receptor and used to dock known ligands (Elbegdorj et al.,
2013).

Molecular dynamic simulations are time-dependent
computer-based simulations that track the movement of
atoms and molecules in a defined system (Lindahl, 2008). When
MDs are applied to large proteins such as GPCRs they can
reveal important structural information, and in general serve
as a means to assess how theoretical models (such as homology
models) compare to experimental data (Lindahl, 2008). In the
case of GPCRs, MDs are recorded on a timescale ranging from
nanoseconds to microseconds and can be used to study not
only how a ligand reaches the binding pocket of a GPCR but
also the mechanism of receptor activation, oligomerization,
and allosteric modulation (Bruno and Costantino, 2012). In
homology modeling MDs are used for further refinement to
optimize protein folding (Yarnitzky et al., 2010) thereby improv-
ing the performance of the model for ligand docking simulations
(Yarnitzky et al., 2010). In one study bovine rhodopsin was used
as a template to create a model of the HH4R, and MDs were
run on the receptor in a membrane-bound environment with
and without its agonist histamine and a selective antagonist
(Jójárt et al., 2008). The simulations modeled receptor confor-
mational changes and histamine-binding site interactions that
agreed with previous experimental data (Jójárt et al., 2008). In
addition, the modeled movements of several TMs were also
in agreement with experimental data. Taken together these
results indicated that the MDs of the HH4R can serve as a
structural model for identification of HH4R ligands (Jójárt et al.,
2008).

Molecular dynamic simulations can also be employed in
an innovative way to address some problems associated with
ligand binding to homology models. For example, models
built using the bovine rhodopsin template are sometimes
unable to bind to known ligands because the binding site
is too small. In this case pressure-guided molecular dynam-
ics can be used to correct this problem (Kimura et al.,
2008). During these MDs, pressure is applied to the bind-
ing site of the receptor to expand it much in the same
way that a balloon expands when filled with air and for
this reason this is sometimes called the “balloon expansion
method” (Kimura et al., 2008). To test the legitimacy of
this method, a structure of bovine rhodopsin was created
without its ligand retinal, rendering it inactive and closed.
Upon application of the “balloon pressure” retinal was able
to bind almost exactly as it is known to (Kimura et al.,
2008). When tested on an unrefined homology model of the
chemokine receptor CCR2 that was originally unable to bind
three known antagonists, the applied pressure allowed for the
ligands to bind in a manner that agreed with mutagenesis data
(Kimura et al., 2008).

In Silico Screening Using Homology
Models of GPCRs for Drug Discovery

One of the most practical and popular applications of homology
models is their use in in silico virtual screens for drug discovery.
An example of successful use of homology modeling to identify
small molecule ligands is that of DRD3. In this case, a homology
model of the DRD3, built using the β2-adrenergic receptor as a
template, was used to dock over 3 million compounds (Carlsson
et al., 2011). When the 26 top-scoring molecules were tested
for binding affinity, six of these compounds exhibited affini-
ties in the micromolar range (Carlsson et al., 2011). Soon after
this initial screen, the crystal structure for the DRD3 receptor
was released and the same docking experiment was performed;
this yielded five molecules with affinities between nanomolar
and micromolar concentrations (Carlsson et al., 2011). The hit
rates between model and crystal structure were also similar,
at 23 and 20%, respectively. What is remarkable about this
study is that there was no difference in the screening capability
between the homology model and crystal structure; the model
was able to identify binding ligands at the same rate as the
crystal structure (Carlsson et al., 2011). While this study demon-
strates the effectiveness of homology models in virtual screens,
this was not the first time that homology models were success-
fully used to predict novel ligands for GPCRs. Homology models
of the HH4R (Kiss et al., 2008), FFAR1 (Tikhonova et al., 2008),
and MCHR1 (Cavasotto et al., 2008), among other examples
(Edwards et al., 2005; Engel et al., 2008) were able to iden-
tify novel binding compounds that exhibited either agonistic or
antagonistic properties (Table 2). A recent review (Kooistra et al.,
2013) lists over 15 examples of successful structure-based virtual
screens of GPCR homology models (Table 2 summarizes six
of these virtual screens). The success with the identification of
these ligands clearly demonstrates the usefulness of homology
models in ligand discovery. Virtual docking approaches simi-
lar to those used in the case of models of known GPCRs are
likely to be useful in the identification of ligands targeting orphan
GPCRs.

As described above, while the GPCR homology models have
been used to study structural features of orphan receptors,
homology modeling has not yet been widely applied in the
context of in silico drug screens. Perhaps the best example of a
successful in silico compound screen for an orphan receptor is
in the case of GPR17. A homology model of the receptor was
created using the multi-template approach by combining the
crystal structures of four GPCRs, and was then used to screen
an in-house chemical library (the Asinex Platinum Collection)
containing 130,000 lead-like compounds (Eberini et al., 2011).
The binding site of the receptor was identified using theMOE Site
Finder module, which evaluates possible binding sites according
to their geometry and location; it is a ligand-free approach and
does not use known binding compounds to detect the binding site
(Eberini et al., 2011). The top-5 scoring compounds (compounds
binding with the lowest energy conformations) were purchased
and receptor activation was measured in dose-response [35S]
GTPγS binding assays (Eberini et al., 2011). Four of these
compounds displayed full agonist activity and one compound
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TABLE 2 | Novel ligands predicted by virtual screening against GPCR homology models.

Receptor Ligand with highest affinity Agonist or antagonist Reference

DRD3 Antagonist K i = 0.3 μM Carlsson et al. (2011)

HH4R Antagonist K i = 85 nM Kiss et al. (2008)

FFAR1 Agonist EC50 = 3.6 μM Tikhonova et al. (2008)

MCHR1 Antagonist K i = 7.5 μM Cavasotto et al. (2008)

FPR1R Partial agonist K i = l μM Edwards et al. (2005)

TRHR Antagonist K i = 0.29 μM Engel et al. (2008)

was shown to act as a partial agonist, as compared to a reference
ligand; all compounds exhibited nanomolar or sub-nanomolar
potencies (Eberini et al., 2011). This virtual screen was also able
to identify efficacious molecules with novel chemical scaffolds;
these compounds are the first examples of GPR17 ligands that
are not derived from the structures of previously known GPR17
activators (i.e., CysLTR1 or P2YR ligands; Eberini et al., 2011).
While GPR17 is not a strictly orphan receptor, almost no infor-
mation regarding known ligands was needed to execute this study
(except for activity characterization/comparison in the in vitro
experiments) and it therefore serves as a good example of novel
and efficacious lead-compound discovery at a virtually unknown
receptor system.

Conclusion

GPCRs are the most targeted sites for drug discovery and this
trend is not predicted to end soon. Moreover, breakthroughs

in protein crystallization strategies and computer technology
have opened the doors for in silico methods of studying these
receptors. This includes advances in GPCR crystallization that
have led to the release of many new crystal structures, ignit-
ing renewed interest in the structure-based study of GPCRs.
Thus GPCR homology modelers in need of templates now
have dozens of functionally and evolutionary diverse options
to choose from. This taken together with the recent advances
in the computational aspects of modeling make GPCR homol-
ogy models more accurate. As a result, virtual ligand screens
using these models have successfully identified both known
ligands and novel compounds. The performance of GPCR
homology models in virtual screens compared to crystal struc-
tures is impressive, and clearly validates their continued use in
ligand discovery. This bodes well for the homology modeling
of orphan GPCRs and the use of modern in silico screening
methods to identify putative ligands, both agonists and antago-
nists that could be used to elucidate the physiological role of the
receptor.
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The combination of computational and biological methods
provides a unique approach to studying orphan GPCRs that
offers several advantages over strictly biological approaches.
Thus if computational methods are applied to orphan recep-
tors, they provide an unbiased approach at ligand discovery
which enhances the chances for successful discovery of novel
compounds, and novel chemical scaffolds. Moreover, while
biological methods are limited by the amount of resources
(cells, compounds, etc.) available for receptor ligand screen-
ing, in silico screening allows for the testing of 1000s of
compounds without costly in vivo or in vitro screening. As it

stands, ligand discovery for orphan GPCRs via computational
methods and validation of lead compounds is ripe for explo-
ration, and stands to be at the cutting edge of orphan GPCR
research.
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