
MINI REVIEW
published: 20 June 2017

doi: 10.3389/fphar.2017.00374

Frontiers in Pharmacology | www.frontiersin.org 1 June 2017 | Volume 8 | Article 374

Edited by:

Suowen Xu,

University of Rochester, United States

Reviewed by:

Christoph Eugen Hagemeyer,

Monash University, Australia

Zhiping Liu,

Augusta University, United States

*Correspondence:

Weien Yuan

yuanweien@126.com

Hui Li

talktohui@gmail.com

Xinbo Zhou

hapwave@163.com

Specialty section:

This article was submitted to

Translational Pharmacology,

a section of the journal

Frontiers in Pharmacology

Received: 20 March 2017

Accepted: 30 May 2017

Published: 20 June 2017

Citation:

Zhao Y, Li X, Zhao X, Yang Y, Li H,

Zhou X and Yuan W (2017)

Asymmetrical Polymer Vesicles for

Drug delivery and Other Applications.

Front. Pharmacol. 8:374.

doi: 10.3389/fphar.2017.00374

Asymmetrical Polymer Vesicles for
Drug delivery and Other Applications

Yi Zhao 1, Xiaoming Li 1, Xiaotian Zhao 1, Yunqi Yang 1, Hui Li 2*, Xinbo Zhou 3* and

Weien Yuan 1*

1 School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China, 2 School of Medicine, University of California, San

Francisco, San Francisco, CA, United States, 3 Laboratory of Computer-Aided Drug Design and Discovery, Beijing Institute of

Pharmacology and Toxicology, Beijing, China

Scientists have been attracted by polymersomes as versatile drug delivery systems

since the last two decades. Polymersomes have the potential to be versatile drug

delivery systems because of their tunable membrane formulations, stabilities in vivo,

various physicochemical properties, controlled release mechanisms, targeting abilities,

and capacities to encapsulate a wide range of drugs and other molecules. Asymmetrical

polymersomes are nano- to micro-sized polymeric capsules with asymmetrical

membranes, which means, they have different outer and inner coronas so that they

can exhibit better endocytosis rate and endosomal escape ability than other polymeric

systems with symmetrical membranes. Hence, asymmetrical polymersomes are highly

promising as self-assembled nano-delivery systems in the future for in vivo therapeutics

delivery and diagnostic imaging applications. In this review, we prepared a summary

about recent research progresses of asymmetrical polymersomes in the following

aspects: synthesis, preparation, applications in drug delivery and others.

Keywords: asymmetrical polymer vesicle, drug delivery, self-assemble, nano-delivery vesicles

INTRODUCTION

Polymersomes, which also can be called polymeric vesicles, have attracted scientists’ interests in
recent years. Compared to other nanometer scale self-assembling delivery systems, such as polymer
micelles, nanoparticles and nanogels, polymersomes provide a more stable condition for the
storage of drugs, especially for nanoscopic emulsions (Asano et al., 2016). As compared to similar
devices such as liposomes, which are comprised of low molecular weight lipids, polymersomes are
composed of versatile macromolecular amphiphiles architectures, including dendritic copolymers
(Yang et al., 2005), graft polymers (Dou et al., 2003; Lee et al., 2006), amphiphilic diblock polymers
(Discher et al., 1999; Qin et al., 2006; Zhou et al., 2006), triblock polymers (Nardin et al., 2000;
Napoli et al., 2004a) and so on. Because of this unique composition, polymersomes commonly
exhibit much better colloidal stability, solidity, and protection of drugs, whereas illustrating very
little chemical permeability. Composed of amphiphilic AB diblock or ABC triblock copolymers,
polymersomes usually have relatively longer hydrophobic blocks to make up the dense core
membranes, and shorter hydrophilic blocks in the facial membranes to protect the interior fluids
in aqueous solutions. Hence, this advantage presents an excellent solution to the problem that no
matter what hydrophilic or hydrophobic property a particular drug has, polymersomes can act as
appropriate carriers for the drug. For example, both hydrophobic (e.g., doxorubicin, paclitaxel,
quantum dots) and hydrophilic molecules (e.g., DNA, siRNA, therapeutic proteins, chelated Gd)
can be encapsulated into polymersomes (Wang et al., 2012; Anajafi et al., 2017; Nomani et al.,
2017).

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
https://doi.org/10.3389/fphar.2017.00374
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2017.00374&domain=pdf&date_stamp=2017-06-20
http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:yuanweien@126.com
mailto:talktohui@gmail.com
mailto:hapwave@163.com
https://doi.org/10.3389/fphar.2017.00374
http://journal.frontiersin.org/article/10.3389/fphar.2017.00374/abstract
http://loop.frontiersin.org/people/447195/overview
http://loop.frontiersin.org/people/366149/overview
http://loop.frontiersin.org/people/352796/overview
http://loop.frontiersin.org/people/379753/overview
http://loop.frontiersin.org/people/283815/overview
http://loop.frontiersin.org/people/260721/overview


Zhao et al. Asymmetrical Vesicle for Drug Delivery

As we all know, for a drug carrier, biodegradability is the
first thing that must be considered carefully (Zhao et al., 2014).
The alternative hydrophobic block-based drug carrier systems,
such as liposomes, must be decorated with poly(ethylene glycol)
(PEG) or polycarbonates in order to maintain a stealthy property.
PEG is the most commonly used material for decorating drug
carriers because it can maintain the carriers’ stability in the
plasma by prohibiting the adsorption of plasma proteins and has
little toxicity to the cells (Kricheldorf, 2006). Hence, the carriers
whose surfaces are decorated with PEG chains usually get longer
blood circulation times (Gref et al., 2000; Ohya et al., 2011).
However, this will not be a problem for polymersomes. Taking
the advantage of the arbitrary structures, polymersomes can be
intrinsically stealthy, because they present typical hydrophilic
macromolecular amphiphilic parts (e.g., PEG and dextran) in
the facial membranes. This non-fouling property offers scientists
a great convenience to make further transformation. Though
polymersomes have the above advantages over liposomes,
polymersomes have relatively low loading levels and loading
efficacies for hydrophilic drugs, including protein drugs and
chemotherapeutics, which limits their applications as drug
carriers, especially for anti-tumor therapy. To investigate
this issue, great efforts have been made to improve the
loading efficiency of polymersomes. It is a normal way to
decorate polymersomes with specific ligands to create smart
polymersomes, which selectively releases payloads to the sites of
action in response to external stimulus (e.g., magnetic and photo)
or internal signals (e.g., enzyme degradation, endo/lysosomal
pH and cytoplasmic glutathione). Decorated materials usually
include aptamers, lactoferrin, antibodies, peptides, and folate
(Lu et al., 2015). Moreover, changing the permeability of the
membranes, or controlling the degradability of the structures can
also achieve the same effect (LoPresti et al., 2009). In addition,
ingenious encapsulation procedures such as nano-precipitation
method (Sanson et al., 2010) and transmembrane phosphate-,
citrate-, sulfate-, or PH- gradient loading (Choucair et al., 2005;
Ahmed et al., 2006a; Yin et al., 2009; Gubernator, 2011) are also
smart ways to enhance the loading efficacy.

Lo Presti et al. have demonstrated that by exploiting
endocytosis, pH-sensitive PMPC-PDPA polymersomes can
deliver various drugs effectively to cells (Lomas et al., 2007,
2008; Massignani et al., 2009, 2010a; Murdoch et al., 2010).
There exists different mechanisms that control the acidification
of the internalized material within subcellular compartments
(endosomes) (Doherty and McMahon, 2009). The authors
have also found that after polymersomes are internalized by
endocytosis, they will disassemble in a controllable manner when
approaching the acidic endosomal lumen. This, conversely, leads
to endosomal membrane perturbation in a short time, which
will facilitate the polymersomes to escape from endosomes and
get into the cell cytosol (Lomas et al., 2007, 2008; Massignani
et al., 2009). The endocytosis efficiency is strongly dependent on
the polymersome topology and surface chemistry, as well as the
polymersome size (Massignani et al., 2009).

Although the difficulty can be conquered in various ways,
it still remains a big challenge that symmetrical polymersomes
exhibit inefficient intracellular drug delivery. First of all, as

symmetrical polymersomes-based drug delivery systems show
low endosomal escape ability, they may be trapped inside
the endosomes. Besides, the side effects to healthy cells due
to the slow endocytosis rate and drug diffusion can never
be neglected. In recent years, asymmetric polymersomes have
attracted a lot of attention in the drug delivery field. They
have the following advantages: efficient drug loading capacity,
fast endocytosis rate and endosomal escape ability, which can
meet most requirements for drug delivery (Liu et al., 2014).
Asymmetrical vesicles with different structures both inside
and outside are self-assembled from asymmetric ABC triblock
copolymers or AB and BC two diblock copolymers (Lu et al.,
2015). In this review, we prepared a summary about recent
progresses of asymmetrical polymersomes in the following
aspects: synthesis, preparation, applications in drug delivery and
others.

SYNTHESIS AND PREPARATION OF
ASYMMETRICAL POLYMERSOMES

Synthesis of Asymmetric Triblock
Copolymers
There are two methods to synthesize the materials of
polymersomes. One is mixing AB and BC diblock copolymers
together, the other is directly using ABC triblocks to form
asymmetrical polymersomes. Consisting of at least two
homopolymer blocks, block copolymers are the ideal materials
for forming self-assembling polymersomes. Normally,
the homopolymer is designed to exhibit some specific
physicochemical properties, and in consequence, the block
copolymers will display versatile properties and utilization values
(Lee and Feijen, 2012; Ge et al., 2014).

Sequential radical addition-fragmentation chain transfer
(RAFT) polymerization is the most commonly used technique
to synthesis triblock copolymers (Du et al., 2012). Ring-
opening polymerization (ROP) is another feasible way to
synthesize diblock or triblock copolymers (Kishimura et al.,
2007). The properties of the diblock or triblock copolymers
can determine the types and applications of the asymmetrical
polymersomes by controlling the structures, compositions and
molecular weights (Li et al., 2015). Therefore, we summarize
some available diblock or triblock copolymers that constitute
asymmetrical polymersomes, and the results are given in
Table 1.

Preparation of Asymmetrical
Polymersomes
There are two major methods to form self-assembling
asymmetrical polymersomes: solvent change method (phase
inversion) and direct hydration method (Zhang and Eisenberg,
1995; Blanazs et al., 2009). The first method is more widely used.
Interestingly, Asano et al. first used the co-assembly method
to generate asymmetric polymersomes. They put two distinct
diblock copolymers PS-b-PEO (SO) and PB-b-PEO (BO) in an
oil-in-oil emulsion PS/PB/CHCl3 (Asano et al., 2016).
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TABLE 1 | Examples of available diblock or triblock copolymers that constitute asymmetrical polymersomes.

Polymers Preparation

method

Formation

method

Copolymers Targeting

ligands

Drugs/stimulus

for release

Pros and cons References

PEO45-b-PS130-

b-PDEA120

Atrp None reported PEO45-b-PS130-b-

PDEA120

None

reported

pH-induced None reported Giacomelli et al.,

2007

FA/DTPA-PGA-b-

PCL

None

reported

Solvent

switching

method

FA-PGA75-b-PCL30

and

DTPA-PGA22-b-PCL30

FA DOX·HCl/pH-

induced

Improve the sensitivity of

a T2 MRI contrast agent

Oerlemans et al.,

2010

Anis-PEG-PTTMA-

PAA

Raft Solvent

switching

method

Anis-PEG-PTTMA-PAA

and PEG-PTTMA-PAA

Anisamide GrB/pH-

induced

Targeting ability and

prompt intracellular

protein release

Lu et al., 2015

PEG5K-P(CL-co-

LA)11K-PEG2K

Rop Film hydration

method

mPEG-PCL or

mPEG-P-(CL-co-LA)

None

reported

Hb Undamaged gas-binding

capability and oxygen

affinity, plus high stability

and biocompatibility

Kishimura et al.,

2007

PEO113-b-

PCL132-b-PAA15

None

reported

Solvent

switching

method

PEO113-b-PCL132-b-

PAA15

None

reported

DOX·HCl/pH-

induced

High DOX loading

efficiency and good

biodegradability, rapid

endocytosis rate and

endosomal escape ability

Liu et al., 2014

Acupa-PEG-

PTMBPEC-PSAC

Rop Solvent

switching

method

Acupa-PEG-PTMBPEC-

PSAC and

PEG-PTMBPEC-PSAC

2-[3-[5-

amino-2-

carboxypentyl]-

ureido]-

pentanedioic

acid

GrB/pH-

induced

Unimodal distribution,

high protein loading

contents, long circulation

time

Du et al., 2012

PEG-SS-PCL-

PDEA

Rop Solvent

switching

method

PEG-PCL-PDEA and

PEG-SS-PCL

Galactose GrB/reduction-

induced

Unimodal distribution,

highly efficient loading,

high protein loading

contents, long circulation

time, target ability

Drummond et al.,

1999

PB-b-PS Atrp Blending in an

oil-in-oil

emulsion

polystyrene-b-

poly(ethylene oxide) (SO)

and polybutadiene-b-

poly-(ethylene oxide)

(BO)

None

reported

None reported Straightforward

preparation method

Asano et al., 2016

PEG-PTTMA-PAA Raft Solvent

switching

method

PEG-PTTMA-PAA None

reported

DOX·HCl/pH-

induced

Conveniently prepared,

high loading efficiency,

excellent biocompatibility,

quickly destabilized

Du et al., 2012

PEG–PAA(SH)–

PDEA)

Raft Solvent

switching

method

PEG–PAA(SH)–PDEA) None

reported

FITC–

CC/reduction-

and

pH–induced

Conveniently prepared,

high loading content,

excellent biocompatibility

Zupancich et al.,

2006

PEO-PAA-PNIPAM Raft Solvent

switching

method

PEO-PAA-PNIPAM None

reported

FITC–dextran/

temperature-

induced

Stability against high salt

conditions and change of

temperature

Du and O’Reilly,

2009

PEO–PDPA–

PDMA

Atrp Solvent

switching

method

PEO–PDPA–PDMA None

reported

None reported None reported Zhang and

Eisenberg, 1995

PEG-PCL-PDEA Raft Film hydration

method

PEG-PCL-PDEA None

reported

FITC-CC High protein loading

efficiencies and

controlled release, able

to simultaneously deliver

and release hydrophobic

anticancer drugs and

proteins into cells

Liu et al., 2010

PEG-PCL-DEX Rop Solvent

switching

method

PEG-PCL and DEX-PCL None

reported

PEO A variety of chemically

dynamic characteristics

responding to biological

pathways

Zhang et al., 2010
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DRUG DELIVERY BY ASYMMETRIC
POLYMERSOMES

As mentioned above, compared with liposomes, polymersomes
have more robust membranes, thus can improve the circulation
half-life, protect drugs and prevent uncontrolled drug release.
However, the rate and spatial distribution cannot be controlled
because of the restriction of the structures (Mecke et al., 2006).
Therefore, polymersomes that can response to various stimuli
are developed by changing the physical and chemical properties
of the membranes of the polymersomes (Du and O’Reilly, 2009;
Onaca et al., 2009; van Dongen et al., 2009). As a consequence,
the side effects are reduced and the efficacy of drugs at the site of
action is improved. The stimuli can be classified into two aspects:
external stimuli (temperature change, UV light and magnetic
field) and intracellular stimuli (pH, redox).

Temperature-Responsive Asymmetric
Polymersomes
Compared with UV stimuli for drug release, temperature stimuli
are amore practicable way for building intelligent polymersomes,
since natural temperature differences in tissues exist in human
body. Tumor tissues have a higher temperature than normal
tissues and the temperature can change easily in the external,
such as hyperthermia (Xu et al., 2009). Furthermore, using the
heating or cooling appliances for particular sections of the body
can also achieve the effect of temperature differences (Christian
et al., 2009).

The temperature-dependent mechanisms can be achieved by
using the polymer poly(N-isopropylacrylamide) (PNIPAm) (Li
et al., 2006; Qin et al., 2006). PNIPAm has a unique property
that its conformation will change if the temperature is above the
lower critical solution temperature (LCST) of PNIPAm (40◦C).
Above 40◦C, the block will change its property from hydrophilic
to hydrophobic. Thus, temperature-sensitive polymersomes
are designed by using PNIPAm. Usually, PNIPAm chains are
covalently combined with a hydrophilic block such as poly(N-
(3-aminopropyl) methylacrylamide hydrochloride) (PAMPA)
or PEO. The resulting copolymer will self-assemble to form
polymersomes and have the capacity to load hydrophilic drugs.
If the temperature decreases below 40◦C, the polymersomes
will disassemble to the former copolymer and release the
encapsulated therapeutics. Cai et al. (2011) prepared asymmetric
polymersomes based on poly(ethylene oxide)-b-poly(ethylene
oxide-stat-butylene oxide)-b-poly(isoprene) (E-BE-I) ABC
triblock copolymer, which presented the temperature dependent
property and the LCST was 25◦C. Compared to the usual
temperature-responsive polymersomes using PNIPAm as
responsive factors, these polymersomes had narrower molecular
weight distribution and faster transformation rate because of the
lacking of strong interchain hydrogen bonding (Figure 1).

pH-Responsive Asymmetric
Polymersomes
As a matter of fact, in the tumor microenvironment there is
an innate pH difference (pH 6.5−7.2) and the cancer cells’

endosomes and lysosomes are acidic (pH 4.0−6.5) (Grabe and
Oster, 2001; Rofstad et al., 2006; Meng et al., 2014). Ahmed
et al. found that a number of polymersomes approached
cellular endolysosomes by pinocytosis passageway (Ahmed
et al., 2006b). Hence, this intracellular cue can be applied for
pH-dependent asymmetric polymersomes. This release method
has an advantage over external cues (temperature, UV) owing to
the accessibility of such intracellular cues. Using polymersomes
whose structures are susceptibility to this pH difference, targeted
intracellular release of the specific encapsulated cargo can
be achieved. Du et al. investigated endosomal pH-sensitive
degradable asymmetric polymersomes constructed by ABC
triblock poly(ethylene glycol)-b-poly(trimethoxybenzylidene
tris (hydroxymethyl)ethane methacrylate)-b-poly(acrylic
acid) (PEG-PTTMA-PAA). In this study, they demonstrated that
PTTMA block could quickly destabilize due to the degradation of
acetal groups in lower pH in the endo/lysosomal compartments
of cancer cells, achieving targeted intracellular release of
DOX·HCl and high anti-tumor therapeutic effects (Du et al.,
2012).

Redox-Responsive Asymmetric
Polymersomes
Oxidation (Napoli et al., 2004b,a) or reduction-responsive
(Cerritelli et al., 2007) reactions open up new spatial release
mechanisms in the human body (Bodor, 1987; Corti et al.,
2010). Oxidative environments exist at sites of inflammation,
tumor tissues and in extracellular fluids, as well as intracellular
compartments such as the endolysosomes (Grundl, 1994; Tew,
2007).

Wang et al. (2013) demonstrated reduction-responsive
asymmetrical polymersomes based on PEG-SS-PCL diblock
copolymer and asymmetric PEG-PCL-PDEA triblock copolymer.
When exposed to reducing environments such as the nuclei
and cytoplasm of cancer cells, this system will quickly rupture
due to cleavage of the disulfide bonds between PEG and PCL
blocks. This delivery system can protect encapsulated cargos in
the extracellular environments (i.e., blood plasma) and induce
efficient intracellular drug release, therefore it has the potential
to be a versatile and multifunctional drug delivery platform by
using intracellular stimuli (Krack et al., 2008).

APPLICATIONS OF ASYMMETRIC
POLYMERSOMES

Polymersomes have higher stability than liposomes (Discher
et al., 1999; Photos et al., 2003; Lee et al., 2011). Moreover,
polymersomes not only can encapsulate hydrophilic drugs but
also can hold hydrophobic or amphiphilic compounds into
their lumina or membranes. This advantage can be used in the
fields of drug delivery, medical imaging and disease diagnosis
(Massignani et al., 2010b). It has been proved that anticancer
drugs (i.e., PTX and DOX·HCl) (Ahmed et al., 2006a; Chen
et al., 2010), membrane proteins (i.e., OmpF, LamB, and FhuA,
Stoenescu et al., 2004), hydrophobic dyes (i.e., PKH26) (Photos
et al., 2003) and amphiphilic dyes (i.e., octadecyl rhodamine B,
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FIGURE 1 | Schematic illustration of the thermally induced size change of

assemblies of copolymers containing thermoresponsive blocks. Below the

LCST, the central block (cyan) is hydrophilic; above the LCST, the central block

(pink) becomes hydrophobic (Cai et al., 2011) (The figure has been obtained

with copyright permission/license from ACS).

Battaglia and Ryan, 2005; Lomas et al., 2008) can be incorporated
into membranes of polymersomes.

Delivery of Conventional Drugs
Encapsulating drugs in asymmetric polymersomes can achieve
efficient drug loading capacity, fast endocytosis rate and rapid
endosomal escape ability. All of these advantages help to
maintain the property of drugs in vivo or in vitro and control
the release rate. With the development of smart delivery systems,
many cancer-target chemotherapeutics drugs which have severe
side effects now come to a renascence (Arrigo, 2000, 2005; Arrigo
and Ducasse, 2002).

Liu et al. reported pH-sensitive asymmetric polymersomes
based on PEO-b-PCL-b-PAA triblock copolymer. PEO chains
constituted the outer corona of polymersomes because it showed
well-behaved biocompatibility and was intrinsically stealthy to
immune system. The pH-responsive PAA chains were designed
in inner aqueous core since they could quickly destabilize at
endosomal pH. Consequently, the release of encapsulated cargos
in the cells was efficient and accurate (Liu et al., 2014).

Delivery of Protein
Protein drugs have been recognized as one kind of the most
potential leads for the growth of new therapeutics (Tan et al.,
2010), and they are powerful antidotes toward many intractable
diseases such as diabetes and cancers (Torchilin and Lukyanov,
2003; Futaki, 2006; Schrama et al., 2006). However, they are too
sensitive to environmental conditions, which results in their short
lives in vivo.

Polymersomes with huge aqueous compartments can
encapsulate proteins and the membranes will protect proteins
from degradation (Discher et al., 2007; Christian et al., 2009;
Sun et al., 2009; Meng and Zhong, 2011; Lee and Feijen, 2012;
Liu et al., 2012). So far, polymersomes have encapsulated
a variety of proteins, including aquaporin Z (Kumar et al.,
2007), cytochrome C (CC) (Hvasanov et al., 2011), hemoglobin

(Rameez et al., 2008; Li et al., 2012), insulin (Xiong et al., 2007;
Christian et al., 2009; Kim H. et al., 2012), immunoglobulin G
(Fu et al., 2011), ovalbumin (Stano et al., 2013), and myoglobin
(Kishimura et al., 2007). Recent investigations also have found
that polymer vesicles with asymmetrical membranes exhibit
much higher loading capacity of proteins than symmetrical
polymersomes.

Li et al. reported self-aggregated vesicles with asymmetric
membranes. These polymersomes can serve as hemoglobin
(Hb)-based oxygen carriers with oxygen affinity and high Hb
loading content and meanwhile no interference with blood cells.
Further studies have shown that these vesicles have great stability
and efficacy, which have the potential to be alternative blood
substitutes (Li et al., 2014).

Theranostic Vesicles for Magnetic
Resonance Imaging
Magnetic resonance imaging (MRI) is a widespread diagnosis
apparatus that is clinically used for taking pictures of organs
and structures inside the body to find blood vessels, bleeding,
tumors or infection. Using asymmetric polymersomes to deliver
contrast agents has better sensitivity and lower toxicity. Liu
et al. (2015) reported asymmetrical polymersomes based on two
kinds of diblock copolymer FA-PGA75-b-PCL30 and DTPA-
PGA22-b-PCL30, which had diagnostic and therapeutic effects
simultaneously. The highest drug DLE can reach 52.6% and the
T1 relaxivity can be increased by 8-fold, meanwhile maintaining
a low toxicity and remarkable positive contrast enhancement for
tumor imaging.

Applications of Non-spherical Shape
Asymmetric Polymersomes
Polymersomes with non-spherical shapes play important roles
in applications such as vaccine development. Non-spherical
shape can cause different interaction to immune cells because
the shapes determine the in vivo behavior of polymersomes.
Actually, there are not comprehensive studies that investigated
the influence of shape and topology on the in vivo behavior of
polymersomes.

Researchers have found that tubular structures are one of the
most promising morphologies rather than spheres. Owing to
the resembling with bacterial topologies, tubular structures offer
larger contact areas between particles and cells. Van Hest’s group
has developed a series of methods that reshaped spherical vesicles
to tubular structures. The ability of tunable membrane gives
these spherical structures a chance to apply to the immunology
field (Williams et al., 2017). As for polymersomes, not only
the copolymer composition can influence the morphology but
also the response to various stimuli such as temperature, pH,
magnetic fields, or osmotic pressure can further change the
structures. In a recent example by van Hest et al. (Abdelmohsen
et al., 2016a), the formation of functional nanotubes from PEG-
PDLLA was demonstrated. Biodegradable polymersomes made
by PEG-PDLLA copolymer transformed their structures from
spheres to nanotubes upon dialysis under hypertonic conditions.
Owing to the dialysis with the increasing concentration of NaCl,
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the size can be osmotically controlled by the enrichment and
elongation of the structures. In this way, such well-defined
nanoparticles can be easily prepared and functionalized. This
method established a novel platform for biomedical research
where nanoscopic control over size and shape is highly valuable.
Another example of non-spherical vesicles is the stomatocytes,
which can also be prepared by dialysis. Through shape
transformation of spherical polymersomes into bowl-shaped
stomatocytes, polymersomes will form an extra nanocavity. Due
to the direct contact with the outside environment, these vesicles
present the ability to convert chemical energy into kinetic energy
when encapsulating enzymes or catalytic nanoparticles in the
nanocavity. Further investigations showed that stomatocytes
have the chemotactic ability toward certain cell types (Williams
et al., 2017). Stomatocytes are promising candidates for further
useful applications such as immunoassays, protein and DNA
isolation, detection and biosensing (Abdelmohsen et al., 2016b).

Applications of Targeting Polymersomes
Much efforts have been made for targeting drugs and genes
to specific sites. It is crucial for clinical therapeutics because
drugs without targeting ability may cause low effect and
high toxicity. Targeted delivery is categorized into two types:
active targeting and passive targeting. Passive targeting aims at
capturing nanoparticles that are smaller than the aperture gap
of endothelial cells. These nanoparticles can go through the
interstitium and therefore gather in tumor tissue (Danhier et al.,
2009). Active targeting takes advantage of molecular recognition
to transport drugs to specific sites. Attaching biological ligands or
antibodies to the nanoparticles is themost widely appliedmethod
and it is usually carried out by chemically conjugating (Yang
et al., 2002; Li et al., 2005; Rerat et al., 2010), mixing (Guo et al.,
2009) and coating (Yang et al., 2002; Elloumi Hannachi et al.,
2009). Targeting moieties are usually conjugated to the hydroxyl
groups of their hydrophilic polymer blocks (e.g., PEO, PEG)
(Torchilin et al., 2001; Velonia et al., 2002; Levine et al., 2008). In
addition, polymersomes conjugated with targeting moieties may
change their hydrophilic-block-to-total-mass ratio, resulting in
the change ofmorphology. For example, from vesicles tomicelles.

Lu et al. reported the modification of their triblock copolymer
(PEG-PTTMA-PAA) polymersomes with anisamide (Anis) to
target the cancer cell receptor sigma (Lu et al., 2015). Sigma
receptor is an over-expressed membrane protein that appears
in many human malignant diseases including lung cancer
and prostate cancer (Lu et al., 2015). Anis ligands exhibit
high affinity to sigma receptor and so far have been used as
guides to deliver versatile drugs including proteins, siRNAs and
doxorubicin (Della Rocca et al., 2011; Guo et al., 2012; Kim
S. K. et al., 2012). Their results validated that Anis-chimaeric
polymersomes (CPs) presented high targeting ability to H460 and
when Anis contents increased, antitumor efficacy was improved.
If competitive antagonist is used, the antitumor activity will be
reduced drastically (Lu et al., 2015).

Applications of Leukopolymersomes
Many polymersomes are easily internalized by endocytosis of
macrophages and induce inflammatory responses. Therefore,

polymersomes are often designed to be biodegradable and
biocompatible and with reduced in vivo inflammatory responses.

Leukopolymersomes are a kind of polymersomes that have
adhesive properties to leukocytes. It can be easily made by
just functionalizing the terminal groups on the membranes
of the vesicles. There are two typically adhesive ligands on
leukocytes, which are named as selectins and integrin. These
two ligands can mimic the adhesive properties of activated
leukocytes (Hammer et al., 2008). Engineered to express the
adhesion molecules, leukopolymersomes can achieve binding to
inflammatory substrates in the shear fluid flow in blood vessels
(Hammer et al., 2008). Moreover, by altering the membrane
materials and ligand ratio, the rate and type of adhesive
interaction can be tuned. Hammer et al. demonstrated that the
adhesion was specific because the adhesive rate was the same as
that of leukocytes (Hammer et al., 2008).

The adhesiveness of leukopolymersomes can be coupled
with other properties of polymersomes, such as their ability to
encapsulate drugs and image contrast agents. These particles will
ultimately be useful for creating theranostic particles that can
detect, image and deliver drugs to inflammatory sites, cancer
cells, and cardiovascular lesions (Robbins et al., 2010).

CONCLUSIONS

In this review, we summed up the recent progresses of
asymmetrical polymersomes from the aspects of preparation,
delivery, applications and targeting of asymmetrical
polymersomes. Asymmetrical polymersomes with asymmetrical
membranes and large watery cores can encapsulate various
therapeutic molecules including both hydrophilic and
hydrophobic molecules. Their tunable membrane formulations,
stability in vivo, various physicochemical properties, controlled
release mechanisms, and targeting ability make asymmetrical
polymersomes one of the most ideal platforms for drug delivery.
According to many recent papers, we have found that a large
number of examples showing polymersomes research has caught
up with liposomal science in the past decade and in many cases,
adding extra dimensions to what is possible. In the future,
more research should be performed to further improve the
following aspects of asymmetrical polymersomes: (1) increasing
the loading capacity and encapsulation rate of drugs into
asymmetrical polymersomes; (2) enhancing the efficiency of
controlled release with the goal of achieving zero-order release
and stimuli-responsive release; (3) improving the delivery
efficiency of macromolecular therapeutics such as protein and
nucleic acid drugs; (4) improving the in vivo circulation half-life
and the efficiency for specifically targeted drug delivery.
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