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The endurance of memories of emotionally arousing events serves the adaptive role
of minimizing future exposure to danger and reinforcing rewarding behaviors. However,
following a traumatic event, a subset of individuals suffers from persistent pathological
symptoms such as those seen in posttraumatic stress disorder (PTSD). Despite the
availability of pharmacological treatments and evidence-based cognitive behavioral
therapy, a considerable number of PTSD patients do not respond to the treatment,
or show partial remission and relapse of the symptoms. In controlled laboratory studies,
PTSD patients show deficient ability to extinguish conditioned fear. Failure to extinguish
learned fear could be responsible for the persistence of PTSD symptoms such as
elevated anxiety, arousal, and avoidance. It may also explain the high non-response
and dropout rates seen during treatment. Animal models are useful for understanding
the pathophysiology of the disorder and the development of new treatments. This review
examines studies in a rodent model of PTSD with the goal of identifying behavioral and
physiological factors that predispose individuals to PTSD symptoms. Single prolonged
stress (SPS) is a frequently used rat model of PTSD that involves exposure to several
successive stressors. SPS rats show PTSD-like symptoms, including impaired extinction
of conditioned fear. Since its development by the Liberzon lab in 1997, the SPS model
has been referred to by more than 200 published papers. Here we consider the findings
of these studies and unresolved questions that may be investigated using the model.
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INTRODUCTION

The focus of this Frontiers in Pharmacology Research Topic is the neural mechanisms of memory.
Memory is a fundamental process in all animals, as it allows survival and success through
learned adaptive behaviors. However, some highly stressful experiences can lead to maladaptive
fear, anxiety, and protracted periods of suffering like in Posttraumatic Stress Disorder (PTSD).
A hallmark symptom of this condition is re-experiencing the traumatic event, suggesting that the
problem lies in the mechanisms controlling storage and expression of the traumatic memories.
In this mini-review, we will discuss prospective research studies performed in animals to uncover
clues about how traumatic experiences can lead to the pathophysiology of PTSD. We also outline
some current limitations, knowledge gaps, and areas that require further investigation.
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SINGLE-PROLONGED STRESS

Single prolonged stress (SPS) is a frequently used rat model
of PTSD. Since its initial description 20 years ago (Liberzon
et al., 1997), the SPS procedure has been referred to by over
200 peer reviewed studies. Although it is called a “single”
prolonged stress, the procedure is comprised of successive, multi-
modal stressors (Figure 1). The prolonged stress begins with
a 2-h immobilization period that is immediately followed by a
forced-swim experience, lasting 20 min, and then a brief loss of
consciousness induced by ether exposure. After recovery, rats
remain undisturbed for 7 days (Liberzon et al., 1997). In some
cases, they are socially isolated (individually housed) during this
period (Knox et al., 2012a). When rats undergo auditory or
contextual fear conditioning 7 days after this procedure, they
demonstrate impaired retention of extinction learning and the
conditioned fear response persists longer than it does with fear
conditioning alone (Knox et al., 2012a). This approach can be
useful for modeling PTSD-like symptoms because those who
experience multiple traumas, or a trauma early in life, are more
susceptible to developing PTSD following a later traumatic event
(Maercker et al., 2004; Anda et al., 2006; Kilpatrick et al., 2013).

Precisely how a previous trauma predisposes individuals to
the development of PTSD remains unknown. The first trauma

or traumas may simply make an individual more anxious, in
general, or more sensitive to future stressors. Alternatively, a
previous stressor may set the brain up to acquire, store, or
retrieve traumatic memories differently, going forward. Some
researchers have hypothesized that an impairment in the recall
of fear extinction learning may be an underlying cause of PTSD
symptoms (Milad et al., 2008, 2009). The SPS rat model provides
an opportunity for testing these hypotheses.

EFFECTS OF SPS ON BEHAVIOR AND
THE BRAIN

Many findings suggest that SPS produces behavioral and
physiological symptoms that are similar to those observed in
PTSD (Liberzon et al., 1997; Kohda et al., 2007; Yamamoto
et al., 2010; Knox et al., 2016). Examples of behavioral effects
of SPS are illustrated in Figure 1. SPS rats demonstrate sleep
abnormalities (Vanderheyden et al., 2015) enhanced anxiety (Han
et al., 2014; Liu et al., 2016), arousal (Khan and Liberzon, 2004),
and fear learning (Iwamoto et al., 2007; Keller et al., 2015b) as well
as impaired spatial and recognition memory, social interaction
(Kohda et al., 2007; Wen et al., 2016) and fear extinction (Knox
et al., 2012a; Keller et al., 2015b). Most changes are observed

FIGURE 1 | Single prolonged stress (SPS) procedure and SPS-induced behavioral changes. (A) Timeline of SPS procedure. On a single day, rats are subjected to a
2-h immobilization followed immediately by a 20-min forced swim. Rats are given a brief period of recuperation and then subjected to diethyl ether until they are
anesthetized and unresponsive. (B) Behavioral changes observed up to 1 day later. Anxiety, arousal, spatial memory, and fear learning are unchanged. Acute
increase in REM sleep and transition to REM sleep is observed. (C) Behavioral changes 1 week later. Anxiety, arousal, fear context discrimination, and fear learning
are increased. On the other hand, extinction, spatial memory, social interaction, and recognition memory are decreased a week after SPS. (D) Behavioral changes
following re-stress. Enhanced anxiety, arousal, fear learning, and sleep disturbances remain observed following re-stress, while extinction and spatial memory are
impaired. Green, red, and yellow arrows indicate no “changes observed”, “increase”, and “decrease”, respectively.
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7 days, but not 1 day, after exposure to the SPS procedure,
suggesting that behavioral and cellular changes promoted by
SPS are time-dependent (Liberzon et al., 1999a; Knox et al.,
2016; Wu et al., 2016). Although it has been demonstrated that
partial SPS does not generate extinction impairments (Knox
et al., 2012b), the critical features of the SPS procedure for
development of a PTSD-like phenotype remain unclear. For
example, the passage of time alone may be sufficient for an
incubation or sensitization effect following the SPS procedure,
or a second stressful experience may be necessary to produce
cumulative effects on behavior. In Figure 1, behavioral effects
of SPS are categorized by the time of testing, i.e., whether
testing occurred after SPS, SPS + 7 days (with or without
social isolation), or SPS + 7 days + an additional stressor.
Though there are variations in some SPS procedures (i.e., social
isolation vs. group housing), many studies report consistent SPS
effects. For example, social isolation during the quiescent period
(Harada et al., 2008) and group housing during the quiescent
period (Imanaka et al., 2006) both produced an enhancement in
contextual fear conditioning following SPS.

Impaired Extinction of Conditioned Fear
One explanation for the persistence of fear, anxiety, avoidance,
and re-experiencing symptoms in PTSD is that some individuals
have strong traumatic memories that are less susceptible to
extinction. Indeed, some studies of PTSD patients show enhanced
conditioned fear (Blechert et al., 2007; Glover et al., 2011;
Norrholm et al., 2011), and several animal studies demonstrate
an enhancement in contextual fear conditioning following SPS
(Iwamoto et al., 2007; Kohda et al., 2007; Keller et al., 2015b).
However, others have reported extinction impairments despite
normal acquisition of conditioned fear (Milad et al., 2008,
2009; Eskandarian et al., 2013; Vanderheyden et al., 2015; Knox
et al., 2016). Using skin conductance responses as a measure
of conditioned fear, Milad et al. (2008, 2009) found that PTSD
patients showed normal fear conditioning and within-session
extinction, but poor retention of extinction on later tests. In rats,
prior exposure to the SPS procedure impaired extinction of both
cued (Knox et al., 2012a; George et al., 2015; Keller et al., 2015b)
and contextual fear conditioning (Yamamoto et al., 2008; Knox
et al., 2012a; Matsumoto et al., 2013), whereas acquisition of
conditioned fear and extinction within a session were not affected
(Knox et al., 2012a,b). Given the evidence that within-session
conditioning and retrieval are normal, these findings suggest that
consolidation of the extinction memory is impaired in human
PTSD patients and in SPS rats. Neurobiological changes that
could contribute to impairments in behavior and fear extinction
are discussed below (Table 1).

Hippocampus
The hippocampus plays a role in storing fear memories and in
mediating stress responses (Phillips and LeDoux, 1992; McEwen,
2007). Not surprisingly, the hippocampus is highly sensitive to
chronic stress (McEwen, 2007). This is confirmed by functional
magnetic resonance imaging (fMRI) studies demonstrating that
PTSD patients have a smaller hippocampal volume than healthy
controls (Bremner et al., 1995; Stein et al., 1997), although

some research suggests that a lower hippocampal volume may
represent a risk factor for PTSD (Gilbertson et al., 2002).
These findings indicate that reduced hippocampal function
might be associated with resistant memory impairments in
PTSD.

To our knowledge, no studies have examined the effect
of the SPS procedure on hippocampal volume, however, the
hippocampus has been the subject of many investigations.
Enhanced apoptosis, a phenomenon involved in programed
cell death that results in morphological changes, is observed
in the hippocampus shortly after SPS, and persists after the
undisturbed phase, and after a subsequent stressor (Li et al.,
2010; Liu et al., 2010; Wang et al., 2012; Han et al., 2013). Re-
stress after SPS also enhances autophagosomes and autophagy-
related markers (Wan et al., 2016). Likewise, studies using
the SPS model show evidence of enhanced oxidative stress
and inflammation (Schiavone et al., 2013). For example, IL-6,
malondialdehyde, NOX2, and 4-hydroxynonenal contribute to
apoptotic cell death in the hippocampus following SPS (Li et al.,
2010; Wang et al., 2012; Han et al., 2013; Liu et al., 2016).
Balance and expression of GR and MR receptors is disrupted in
the hippocampus of SPS rats. Thus, while decreased expression
of GR and MR is observed shortly after SPS (Liberzon et al.,
1999a; Zhe et al., 2008), increased expression of these receptors
is observed after a week or after re-stress (Zhe et al., 2008; Knox
et al., 2012b; Eagle et al., 2013; George et al., 2015). Synaptic
plasticity-related mechanisms are also influenced by SPS. Both
LTP and LTD are decreased after SPS (Kohda et al., 2007), while
NMDA receptor expression is enhanced (Yamamoto et al., 2008).
In a recent study using c-Fos expression, Knox et al. (2016)
found that SPS disrupted the inhibition of ventral hippocampal
activity during extinction retrieval as well as the functional
connectivity within the dorsal hippocampus during extinction
learning.

Amygdala
The amygdala is also involved in the control of fearful states
and learning of emotional experiences. Imaging studies have
revealed that PTSD patients show exaggerated amygdala activity
in response to trauma-related cues or unrelated arousing stimuli
and during new fear learning (Liberzon et al., 1999b; Dunsmoor
et al., 2011; Sartory et al., 2013), supporting the notion that
enhanced amygdala activity could be involved in impaired
extinction learning or generalization of fear responses.

Studies using the SPS model demonstrate changes in
the amygdala starting a day after the procedure (Table 1).
Increased apoptosis and downstream signals, like phosphorylated
extracellular signal–regulated kinases, glucose-regulated protein
78 (GRP78) and caspases 3, 9, and 12 expression, were observed
in the amygdala 1 day after SPS, and some reached peak levels
7 days later (Liu et al., 2010; Xiao et al., 2011, 2015), suggesting
that SPS-induced morphological and connectivity changes may
precede the behavioral and memory deficits observed after
the 7-day period. Potentiated-fear learning following SPS was
paralleled by an early decrease in GR and MR receptors in the
amygdala, as well as by blunted LTP and decreased colocalization
of GR and MR receptors 1 week later (Kohda et al., 2007; Han
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TABLE 1 | Cellular changes in three key areas controlling memory and emotionality after single prolonged stress (SPS) model of PTSD.

Hippocampus Effect Reference

Within 24 h Apoptosis Li et al., 2010; Liu et al., 2010; Han et al., 2013

Glucocorticoid receptor Liberzon et al., 1999a; Zhe et al., 2008

Mineralocorticoid receptor Liberzon et al., 1999a; Zhe et al., 2008

LTP/LTD∗ Kohda et al., 2007

After 7 days Apoptosis Li et al., 2010

Glucocorticoid receptor∗∗ Zhe et al., 2008; Knox et al., 2012b; Eagle et al., 2013

CB1 receptor Zer-Aviv and Akirav, 2016

NMDA receptor Yamamoto et al., 2008

Oxytocin receptor Binding Liberzon and Young, 1997

IL-6 Liu et al., 2016

Glucocorticoid receptor Ganon-Elazar and Akirav, 2013

Mineralocorticoid receptor Zhe et al., 2008

LTP Kohda et al., 2007

After re-stress BDNF Takei et al., 2011

TrkB Takei et al., 2011

Autophagy Wan et al., 2016

Protein kinase M zeta Ji et al., 2014

Apoptosis Wang et al., 2012

Glucocorticoid receptor George et al., 2015

Glycine transporter Iwamoto et al., 2007

Muscarinic receptor Brand et al., 2008

Amygdala Effect Reference

Within 24 h Apoptosis Xiao et al., 2015

pERK Liu et al., 2010

CaM Xiao et al., 2009

Glucocorticoid receptor Han et al., 2014

Mineralocorticoid receptor Han et al., 2014

After 7 days Glucocorticoid receptor Ganon-Elazar and Akirav, 2013

CaM Xiao et al., 2009

Oxytocin Liberzon and Young, 1997

5-HT2C receptor Harada et al., 2008

Apoptosis Liu et al., 2010

pERK Liu et al., 2010

CB1 receptor Zer-Aviv and Akirav, 2016

Neuropeptide Y Cui et al., 2008

CaMKII Xiao et al., 2009

After re-stress Norepinephrine Lin et al., 2016a

CB1 receptor Zer-Aviv and Akirav, 2016

Dopamine Lin et al., 2016a

Prefrontal cortex Effect Reference

Within 24 h Mineralocorticoid receptor Zhang et al., 2012

CaM Wen et al., 2012

Apoptosis Li et al., 2013

Caspases Zhang et al., 2016

After 7 days Caspases Wen et al., 2012

Glucocorticoid receptor Knox et al., 2012b; Ganon-Elazar and Akirav, 2013

pERK Wen et al., 2016, 2017

CaM Wen et al., 2012

Apoptosis Wen et al., 2016, 2017

Mineralocorticoid receptor Zhang et al., 2012

CaMKII Wen et al., 2012

Glutamate Knox et al., 2010; Perrine et al., 2016

(Continued)
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TABLE 1 | Continued

Prefrontal cortex Effect Reference

After re-stress Glucocorticoid receptor Ganon-Elazar and Akirav, 2013; George et al., 2015

CB1 receptor Zer-Aviv and Akirav, 2016

CaMKII Wen et al., 2012

Norepinephrine efflux Lin et al., 2016b

Dopamine efflux Lin et al., 2016b

Glutamate Perrine et al., 2016

Different from behavioral changes, expression of receptors and other proteins, as well as neurotransmitters, are observed within hours after SPS. Mechanisms controlling
neuroendocrine responses, memory and emotion show a full profile of disruption after 7 days of incubation or after subsequent stress experience. CaM, calmodulin;
CaMKII, Ca2+/calmodulin-dependent protein kinase II; CB1, cannabinoid receptor 1; pERK, phosphorylated extracellular signal-regulated kinase; BDNF, brain-derived
neurotrophic factor; NPY, Neuropeptide Y; LTP/LTD, long-term potentiation/depression; NMDA, ionotropic glutamate receptor; IL-6, Interleukin 6; pPKB, phosphorylated
protein kinase B; TrkB, tyrosine receptor kinase B; 5-HT2C receptor, serotonin receptor. ∗Measured 1 h after SPS; ∗∗one study reported decrease.

et al., 2014). Intracellular calcium levels are changed shortly
after SPS and the effect persists for 1 week (Xiao et al., 2009).
Acute changes in calmodulin (CaM) and calcium-CaM kinase II
(CaMKII), two messengers involved in Ca2+ homeostasis and
signaling processes related to learning and memory, were up-
and downregulated, respectively, within 1 day of SPS (Xiao et al.,
2009), indicating that SPS disrupts fundamental mechanisms
of cell signaling, which may lead to amygdala hyperactivity,
enhanced fear expression and impaired extinction of conditioned
fear.

Prefrontal Cortex
Inhibition of amygdala hyperactivity and cognitive flexibility
are important prefrontal cortex functions that are implicated
in PTSD susceptibility and symptoms (Kitayama et al., 2006;
Shin et al., 2006; Gold et al., 2011). This notion is supported
by functional imaging studies showing a reduced activity of the
medial prefrontal cortex and anterior cingulate cortex in PTSD
patients during presentation of trauma-related and non-related
aversive stimuli (Shin et al., 2006; Etkin and Wager, 2007; Gold
et al., 2011). Moreover, the volume of the ventromedial prefrontal
cortex and the anterior cingulate cortex is reduced in individuals
with PTSD (Kitayama et al., 2006; Kasai et al., 2008; Karl and
Werner, 2010). Abnormal morphological changes in the pathway
from the anterior cingulate cortex to the amygdala was also
found in PTSD patients (Kim et al., 2006), suggesting that a
series of changes in the normal control of the fearful states or
behavioral flexibility by the frontal cortex may be involved in the
pathophysiology of PTSD.

Evidence for similar changes in the prefrontal cortex
of rats submitted to the SPS model remains sparse. As
in the hippocampus and amygdala, neuronal apoptosis and
dysregulation of autophagic activity in the prefrontal cortex
appears 1 day after SPS (Li et al., 2013; Wen et al., 2016;
Zheng et al., 2017). Elevated levels of protein kinase RNA-like
endoplasmic reticulum kinase (PERK), activating transcription
factor 6 (ATF6), inositol-requiring enzyme 1 (IRE1) in the
endoplasmic reticulum (ER), glucose-regulated protein (GRP) 94
and apoptosis-related caspase-12 are involved in the persistent
apoptotic profile seen 1 week after SPS (Li et al., 2013; Zhao et al.,
2014; Wen et al., 2016, 2017). Unbalanced control of calcium
indicates that intracellular messengers controlling neuronal

excitability are disrupted following SPS (Wen et al., 2012). This
is corroborated by studies showing decreased levels of glutamate
in the prefrontal cortex 1 week after SPS or re-stress (Knox et al.,
2010; Perrine et al., 2016). The concentration of MRs is elevated
1 day after SPS (Zhang et al., 2012), while GR expression is
enhanced 1 week later and after re-stress (Knox et al., 2012b;
Ganon-Elazar and Akirav, 2013; George et al., 2015), indicating
temporally distinct disturbances in stress-related systems.

Decreased volume and integrity of prefrontal sub-regions have
been reported in PTSD patients (Rauch et al., 2003; Woodward
et al., 2006). Similarly, SPS disrupts normal activity of the
infralimbic region of the medial prefrontal cortex before re-stress
(Knox et al., 2016), suggesting that SPS could predispose the
prefrontal cortex to dysfunctional activity during fear learning
and/or subsequent extinction trials. However, since different
regions of the prefrontal cortex control distinct aspects of fear
learning and extinction, additional studies are needed for a better
understanding about changes that can be predisposing factors or
consequences of the trauma.

Effects of SPS on HPA-Axis
Early research on the pathophysiology of PTSD identified a
decrease in cortisol levels (Yehuda et al., 1990). Later studies
demonstrated that administration of low doses of dexamethasone
produced suppression of plasma cortisol, indicating that the
hypothalamus-pituitary-adrenal cortex (HPA) axis may become
sensitive to negative feedback in PTSD patients (Yehuda et al.,
1995). Similarly, enhanced suppression of the HPA-axis is
observed in rats 7 days after SPS (Liberzon et al., 1997,
1999a). The data currently available suggest that the enhanced
glucocorticoid negative feedback observed in SPS may be linked
to overexpression of GR and a reduced expression of MR in key
areas mediating activity of the HPA-axis during stress (Liberzon
et al., 1999a; Zhe et al., 2008; Eagle et al., 2013).

Changes in the HPA-axis may contribute to PTSD symptoms
by interfering with extinction of conditioned fear. For example,
exogenous administration of stress-levels of cortisol can impair
the retrieval of long-term memories (de Quervain et al., 1998),
but the same treatment enhances consolidation of new memories
(McGaugh and Roozendaal, 2002; de Quervain et al., 2009).
These findings suggest that SPS-induced enhanced suppression
of the HPA-axis may have the opposite effect, perpetuating the
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fear memory by facilitating retrieval of the traumatic memory
and impairing consolidation of extinction memory (de Quervain
et al., 2017). However, a few studies have dissociated GR
upregulation and extinction impairments in the SPS model.
A significant increase in GR expression was observed in the
hippocampus and prefrontal cortex 7 days after partial SPS
(e.g., forced swimming and ether exposure) that did not impair
extinction of conditioned fear (Knox et al., 2012b). These results
indicate that glucocorticoid receptor expression must reach
a threshold in order to interfere with the consolidation of
extinction, or there is another SPS-related change that influences
the extinction of conditioned fear. Consistent with the view
that enhanced suppression of the HPA-axis and the resulting
decrease in circulating glucocorticoids predisposes animals to the
PTSD phenotype, Keller et al. (2015b) found that inhibition of
corticosterone synthesis prior to fear conditioning exacerbated
the extinction impairment in SPS rats.

Taken together, these findings indicate that the SPS model
is a useful tool for studying the role of the HPA-axis in PTSD.
Future studies should examine the full extent of HPA-axis
changes, including the evaluation of SPS effects on circulating
glucocorticoid levels. Further studies may be designed to
determine whether HPA-axis dysfunction is a predisposing factor
or a consequence of traumatic experience.

LIMITATIONS

Many PTSD-like effects have been identified in rats exposed
to SPS. However, seemingly subtle deviations in the procedure
may have significant consequences on behavior and physiology
(Knox et al., 2012b). In this review, we have sorted the behavioral
and physiological consequences of SPS by the time of testing.
Some effects are transient, and some emerge after 7 days or a
re-stress experience, suggesting that the effects of SPS are time-
and experience-dependent. Variations on SPS parameters can
be utilized to identify factors producing maladaptive fear and
arousal states. Future studies are needed to determine the relative
contributions of the passage of time and stress experience to these
SPS-related changes.

Here, we also describe evidence that extinction impairments
are a common feature of PTSD and the rat SPS model of PTSD.
A major caveat is that human females are two times more likely to
develop PTSD following a traumatic event (Kessler et al., 2005),
yet SPS-induced deficits in extinction are only seen in male rats.
In one study that investigated sex differences in the SPS model,
Keller et al. (2015a) demonstrated that SPS affects GR expression
in the dorsal hippocampus in females, but extinction retention
deficits were observed only in males, suggesting that female rats
are more resilient to the memory extinction effects of SPS. Such

differences may be indicative of a sexually divergent response to
conditioned fear. Emerging evidence indicates that female rats
express fear by darting rather than freezing (Gruene et al., 2015),
indicating that reliance on freezing as a single measure of fear
may be misleading.

CONCLUSION

Although we have focused on factors contributing to extinction
impairments, the SPS model can be used to investigate
hypotheses about the biological causes of other debilitating
symptoms such as social withdrawal, heightened anxiety, elevated
startle response, hypervigilance, and sleep disturbances. Though
the SPS model is a useful tool to study the PTSD symptomatology,
additional studies are needed to examine sex differences, the
timing of onset and persistence of symptoms, as well as
the features of the SPS procedure that are necessary for the
development of PTSD-like symptoms. Given the understanding
that all models have limitations, it is encouraging to note that
several other animal models demonstrate extinction impairments
and PTSD-like symptoms (Izquierdo et al., 2006; Matsumoto
et al., 2008; Wilber et al., 2009; Goswami et al., 2010; Long
and Fanselow, 2012). Utilization of multiple animal models of
PTSD and meticulous examination of PTSD-like symptoms will
be critical to unfold the pathophysiology of PTSD, and lead to
novel and efficient therapeutic strategies.
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