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Trace amines (TAs), endogenous amino acid metabolites that are structurally similar
to the biogenic amines, are endogenous ligands for trace amine-associated receptor
1 (TAAR1), a GPCR that modulates dopaminergic, serotonergic, and glutamatergic
activity. Selective TAAR1 full and partial agonists exhibit similar pro-cognitive,
antidepressant- and antipsychotic-like properties in rodents and non-human primates,
suggesting TAAR1 as a novel target for the treatment of neurological and psychiatric
disorders. We previously reported that TAAR1 partial agonists are wake-promoting
in rats and mice, and that TAAR1 knockout (KO) and overexpressing mice exhibit
altered sleep-wake and EEG spectral composition. Here, we report that locomotor and
EEG spectral responses to the psychostimulants modafinil and caffeine are attenuated
in TAAR1 KO mice. TAAR1 KO mice and WT littermates were instrumented for
EEG and EMG recording and implanted with telemetry transmitters for monitoring
locomotor activity (LMA) and core body temperature (Tb). Following recovery, mice were
administered modafinil (25, 50, 100 mg/kg), caffeine (2.5, 10, 20 mg/kg) or vehicle p.o.
at ZT6 in balanced order. In WT mice, both modafinil and caffeine dose-dependently
increased LMA for up to 6 h following dosing, whereas only the highest dose of each
drug increased LMA in KO mice, and did so for less time after dosing. This effect
was particularly pronounced following caffeine, such that total LMA response was
significantly attenuated in KO mice compared to WT at all doses of caffeine and did
not differ from Vehicle treatment. Tb increased comparably in both genotypes in a dose-
dependent manner. TAAR1 deletion was associated with reduced wake consolidation
following both drugs, but total time in wakefulness did not differ between KO and WT
mice. Furthermore, gamma band EEG activity following both modafinil and caffeine
treatment was attenuated in TAAR1 KO compared to WT mice. Our results show that
TAAR1 is a critical component of the behavioral and cortical arousal associated with
two widely used psychostimulants with very different mechanisms of action. Together
with our previous findings, these data suggest that TAAR1 is a previously unrecognized
component of an endogenous wake-modulating system.
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INTRODUCTION

Considerable progress has been made in identification of
both wake- and sleep-promoting systems over the past two
decades. Although the monoaminergic systems were originally
thought to facilitate sleep (Jouvet, 1969), subsequent research
established that activation of the noradrenergic, serotoninergic
and histaminergic systems promote wakefulness (Saper et al.,
2010; Scammell et al., 2017). Similarly, midbrain dopaminergic
systems have been shown to promote wakefulness (Lu et al., 2006;
Eban-Rothschild et al., 2016; Cho et al., 2017), in contrast to
early studies suggesting lack of state-dependent activity (Miller
et al., 1983). The discovery of the hypocretin/orexin (Hcrt) system
(de Lecea et al., 1998; Sakurai et al., 1998) added yet another
wake-promoting system, with the additional feature that the Hcrt
provided excitatory input to the aforementioned monoaminergic
as well as the cholinergic systems in the basal forebrain and
midbrain (Schwartz and Kilduff, 2015). More recently, two wake-
promoting GABAergic neuronal populations have been found
in the lateral hypothalamus (Herrera et al., 2016; Venner et al.,
2016). These discoveries have demonstrated that the maintenance
of wakefulness involves highly redundant systems that extend
well beyond the classical ascending reticular activating system
(Moruzzi and Magoun, 1949).

Trace amines (TAs) are endogenous amino acid metabolites
that are structurally similar to the biogenic amines (Grandy,
2007). TAs such as beta-phenylethylamine (β-PEA), tyramine,
octopamine and tryptamine are endogenous ligands for trace
amine-associated receptor 1 (TAAR1), a GPCR that negatively
modulates monoaminergic and glutamatergic activity (Borowsky
et al., 2001; Bunzow et al., 2001). TAAR1 is expressed in
cortical, midbrain and limbic forebrain regions important for
behavioral arousal and motivation (Bunzow et al., 2001; Xie et al.,
2007; Lindemann et al., 2008). Selective TAAR1 agonists exhibit
pro-cognitive, antidepressant and antipsychotic properties (Revel
et al., 2012b, 2013), and have been shown to ameliorate addictive
behaviors in a number of paradigms (Lynch et al., 2013; Pei et al.,
2014; Thorn et al., 2014; Cotter et al., 2015; Liu et al., 2017).
Previously, we reported that TAAR1 partial agonists promote
wakefulness in WT rats (Revel et al., 2012b, 2013) and mice
(Schwartz et al., 2017), and that TAAR1 knockout (KO) and
overexpressing mice exhibit altered sleep-wake and EEG spectral
composition (Schwartz et al., 2017). Both full and partial TAAR1
agonists also suppress REM sleep and alleviate cataplexy in mouse
models of narcolepsy (Black et al., 2017a), suggesting utility for
TAAR1-directed compounds in treating sleep disorders. Based
on these findings, we proposed that TAAR1 is a previously
unrecognized component of an endogenous wake-promoting
system (Schwartz et al., 2017). Here, we tested whether TAAR1
deletion altered wake-promoting responses to two common
and widely used psychostimulants, caffeine (Caf) and modafinil
(Mod).

Among exogenous wake-promoting substances, Caf is
undoubtedly the most widely consumed psychostimulant
worldwide. Caf antagonizes receptors for adenosine, an
endogenous ATP metabolite that accumulates during prolonged
wakefulness and is proposed to mediate the homeostatic drive

to sleep (Strecker et al., 2000; Halassa et al., 2009; Clasadonte
et al., 2014). Although Caf was initially thought to counteract
sleepiness by antagonizing the adenosine A1 receptor (Virus
et al., 1990; Benington et al., 1995), more recent studies have
implicated the adenosine A2a receptor (Huang et al., 2005;
Lazarus et al., 2011), particularly in the nucleus accumbens
(Lazarus et al., 2011). Among prescription medications, Mod was
the first compound marketed as a wake-promoting therapeutic to
counter the excessive daytime sleepiness of narcoleptic patients.
Although the mechanism of its action remains controversial,
Mod binds at low affinity to the dopamine transporter (DAT)
(Mignot et al., 1994) and the wake-promoting actions of Mod are
abolished in DAT knockout mice (Wisor et al., 2001) although
other mechanisms of action for Mod have also been suggested
(Touret et al., 1994; Garcia-Rill et al., 2007; Duchene et al., 2016).

Irrespective of the receptor site(s) at which Caf and Mod bind,
relatively little attention has been paid to the downstream neural
circuitry through which these compounds effect their wake-
promoting actions and the interaction with the currently known
wake-promoting systems (Deurveilher et al., 2006; Lazarus et al.,
2011; Zhang et al., 2013). Accordingly, in the present study we
asked whether TAAR1- a negative modulator of dopaminergic
tone in the ventral tegmental area, striatum and the accumbens
(Lindemann et al., 2008; Revel et al., 2011; Leo et al., 2014;
Espinoza et al., 2015a) – is involved in the neural circuitry
mediating wake promotion by Caf and Mod.

MATERIALS AND METHODS

Animals
Adult, 3-month old male homozygous Taar1 KO mice (n = 9)
and their WT littermates (n= 11) maintained on a pure C57BL/6
background were bred at SRI International. The generation
and breeding of these mice has been previously described
(Lindemann et al., 2008; Revel et al., 2012a). All KO and WT mice
in the present study were bred from 11 het/het pairs of Taar1
transgenics. All mice were singly housed in polyethylene cages
(280 mm× 175 mm× 130 mm) with extended vertical Plexiglas
sides that permitted the animal to be tethered for EEG/EMG
recordings. Cages were kept inside ventilated, light-tight sound-
attenuated chambers in a 12:12 h light-dark cycle; within each
chamber, light was provided by white LEDs connected to a
programmable timer, yielding 40 lx at cage level during the
light phase; lights came on at 08:00 Pacific Standard Time).
Temperature and humidity were maintained at 22 ± 2◦C and
50 ± 25% respectively. Food and water were available ad
libitum for the duration of the study. Every effort was made
to minimize animal discomfort throughout the experimental
protocols. All studies were conducted in accordance with the
Guide for the Care and Use of Laboratory Animals and were
approved by the Institutional Animal Care and Use Committee
at SRI International.

Surgical Procedures
Mice were instrumented for tethered EEG and EMG
recording and implanted with intraperitoneal telemetry
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transmitters for monitoring of locomotor activity (LMA)
and core body temperature (Tb) as described previously
(Fisher et al., 2013, 2016). Under isoflurane anesthesia and
aseptic conditions, the intraperitoneal cavity was accessed
via a midline incision, the peritoneum was irrigated with
physiological saline, a sterile telemetry device (G2 E-Mitter;
Phillips Respironics, Bend, OR, United States) was sutured to
the inner abdominal muscle, and the incisions were then closed
with absorbable sutures. Next, a dorsal midline incision was
made on top of the head, the temporalis muscle was retracted,
and the skull was cleaned with a 3% hydrogen peroxide solution.
A prefabricated EEG/EMG headmount (8201-C; Pinnacle
Technologies, Lawrence, KS, United States) was affixed to the
skull with four stainless steel screws that acted as EEG electrodes.
Screws were positioned approximately 1.5 mm lateral to the
sagittal suture, with frontal screws located 2.0 mm anterior of
bregma and posterior screws −4.0 mm posterior to bregma.
The threads of the screws were coated with conductive silver
epoxy (SEC1233; Resinlab, Germantown, WI, United States) and
conductivity was tested with a multimeter. Two stainless steel
braided EMG wires attached to the headmount were inserted
into the trapezius muscle and sutured in place. The implant
was secured to the cranium using dental acrylic (Lang Dental
Manufacturing Co) and the incision was sutured. Mice were
administered analgesics (buprenorphine, 0.05–0.1 mg/kg and
ketoprofen, 2–5 mg/kg) and 0.9% physiological saline s.c. for
1–2 days post-surgery, maintained with thermal support and
given nutrient gel and/or soft chow. Sutures were removed after
12–14 days recovery.

EEG/EMG, LMA and Tb Recording and
Analysis
EEG/EMG data were continuously recorded using iox2
(v2.8.0.11; EMKA Technologies, France) on a PC and
analyzed as described previously (Fisher et al., 2013, 2016;
Schwartz et al., 2017). Flexible cables were used to connect mouse
headmounts to swivel commutators (Pinnacle Technologies)
mounted above the cage’s center, allowing unrestricted movement
across the entire cage. Mice were habituated to cables for at least
4 days prior to the start of data collection. Electrophysiological
signals were amplified with Grass Model 15 amplifiers; EEG
signals were high- and low-pass filtered at 0.3 and 300 Hz,
respectively, and EMG signals were high- and low-pass filtered
at 3 Hz and 6 KHz, respectively. Amplified electrophysiological
signals were sampled at 500 Hz. Simultaneously with collection
of EEG and EMG data, LMA and Tb were recorded from the
implanted E-Mitters at 1-min intervals via inductive telemetry
using ER-4000 receiver bases (MiniMitter/Philips Respironics,
Bend, OR, United States) located beneath the home cages and
connected to a PC running Vitalview (v5.0; MiniMitter/Philips
Respironics).

EEG and EMG data were visually scored offline in 10 s epochs
for behavioral state (Wake, REM, NREM) by expert scorers blind
to genotype and drug treatment groups. Epochs that contained
mixed states or recording artifacts were included in the behavioral
state analysis but excluded from subsequent spectral analysis.

Individual state data were quantified as time spent in each state
per 1 or 6 h. Latency to NREM and REM onset for each animal
was calculated from the time of drug injection (ZT6). Bouts
were defined as a minimum of two consecutive epochs of any
state. EEG power spectra were calculated for each state and drug
condition using Fourier-transformed EEG signals (0–100 Hz,
0.1 Hz bins). For each mouse, EEG spectral values for each
drug condition were normalized to the mean spectral power
during the vehicle treatment for that mouse to determine EEG
spectral changes relative to the vehicle. LMA and Tb data were
subsequently analyzed using ClockLab (Actimetrics; Evanston,
IL, United States).

Drugs
Modafinil (Mod) was purchased from Waterstone Technology
(Carmel, IN, United States). On the day of dosing, Mod was
suspended and sonicated for 2 h in 1.25% hydroxypropyl methyl
cellulose (HPMC) with 0.1% dioctyl sodium sulfosuccinate
(DOSS; 2.24 mM) in sterile water (hereafter referred to as ‘Veh’)
at final dosing concentrations. Caffeine (Caf) was purchased
from Sigma and was dissolved in Veh at 2 mg/mL stock and
diluted to final dosing concentrations on day of dosing. All mice
received p.o. Mod (25, 50, 100 mg/kg), Caf (2.5, 10, 20 mg/kg)
or Veh via oral gavage in the mid-light phase [Zeitgeber Time
(ZT) 6, where ZT0 = lights-on and ZT12 = lights-off; thus,
all drugs were given 6 h after lights-on, or 14:00 local time]
with each mouse receiving all 7 drug conditions, each condition
balanced across treatment days and genotypes with at least 3 days
between each drug treatment. ZT6 was chosen as a time of day
for treatment for two reasons: first, at this time spontaneous
wakefulness is at a relatively low level, facilitating detection of
any increases in wakefulness from these basal levels; second,
dosing in the middle of the light phase avoids the possible
confounding effects of elevated homeostatic sleep drive that
exist near the start of the light (resting) phase or the elevated
circadian drive for wakefulness that occurs near the start of
the dark (active) phase in nocturnal rodents (Trachsel et al.,
1986; Borbely and Achermann, 2000). Oral dosing was chosen
to correspond to the typical route of administration for both
Mod and Caf in humans. Mice were acclimated to oral dosing
with gavage needles by dosing with vehicle once per day for
3 days, with acclimation ending at least 3 days prior to data
collection.

Statistical Analyses
Drug efficacy was evaluated within genotypes using two-way
within-subjects ANOVAs comparing drug treatment (Veh,
Mod 25/50/100 mg/kg, Caf 2.5/10/20 mg/kg) and time (h), and
between genotypes using two-way mixed ANOVAs comparing
genotype and drug treatment. Positive ANOVA results were
followed by post hoc Bonferroni t-tests or planned comparison F
tests where appropriate. Bout architecture results were analyzed
within genotype using two-way within-subjects ANOVAs
comparing drug treatment and bout duration; positive results
were followed by planned comparisons of drug treatment vs.
Veh within each bout duration category. 60-Hz noise was filtered
out of all spectral analyses by removing all values between 59.8
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FIGURE 1 | In WT mice, both Mod (A) and Caf (B) increased LMA for up to 6 h following dosing at ZT6 whereas, in TAAR1 KO mice, only the highest dose of each
drug increased LMA and did so for less time (C,D). In WT mice, Mod (E; 100 mg/kg) and Caf (F; 10–20 mg/kg) increased total LMA summed over 6 h post-dosing
relative to vehicle whereas, in KO mice, only Mod (100 mg/kg) increased total LMA relative to vehicle. Furthermore, total LMA following Caf (10–20 mg/kg) was
significantly attenuated in TAAR1 KO mice compared to WT. ∗p < 0.05 vs. Veh. +p < 0.05 vs. WT.

and 60.2 Hz. Total power for each of 6 frequency bands (delta,
0.5–4 Hz; theta, 4.5–9 Hz; alpha, 9–12 Hz; beta, 12–30 Hz; low
gamma, 30–59.8 Hz; high gamma, 60.2–100 Hz) was compared
via two-way mixed ANOVAs comparing genotype and drug
treatment, followed by post hoc planned comparison F-tests.

RESULTS

Locomotor Activity
In WT mice, all doses of Mod (Figure 1A) and Caf (Figure 1B)
increased LMA compared to Veh for at least 1 h and up to 6 h
following dosing [F(138,1380) = 3.25, p < 0.001], whereas only the
highest dose of each drug increased LMA in TAAR1 KO mice and
did so for less time [F(138,1104) = 3.72, p < 0.001; Figures 1C,D).
To directly compare the effects of genotype on drug response,
we analyzed cumulative LMA over the 6 h following dosing
(ZT7-12; Figures 1E,F). A mixed-model ANOVA comparing

genotype and response to all seven drug treatments yielded
significant effects of genotype [F(1,18) = 5.83, p = 0.027] and
drug treatment [F(6,108) = 22.72, p < 0.001] without interaction.
However, separate analyses of Mod and Caf responses compared
to Veh revealed that Mod (100 mg/kg) increased cumulative
LMA independent of genotype [F(13,54) = 28.33, p ≤ 0.001;
Figure 1E), whereas Caf significantly increased cumulative LMA
in WT, but not KO, mice at 10 and 20 mg/kg compared to Veh
[F(3,54) = 2.86, p= 0.045; Figure 1F].

Body Temperature
Both Mod and Caf dose-dependently increased Tb compared to
Veh for up to 6 h following dosing in WT [F(138,1380) = 2.90,
p < 0.001; Figures 2A,B] and KO mice [F(138,1104) = 3.40,
p < 0.001; Figures 2C,D). Mod (100 mg/kg) and Caf
(10, 20 mg/kg) both increased average Tb over the 6 h following
dosing [F(6,108) = 25.8, p < 0.001] but, in contrast to LMA, there
was no influence of genotype (Figures 2E,F).
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FIGURE 2 | Both Mod (A,C) and Caf (B,D) dose-dependently increased hourly Tb for up to 6 h following dosing in both WT and TAAR1 KO mice. (E,F) Mod
(100 mg/kg) and Caf (10, 20 mg/kg) increased average Tb over the 6 h following dosing but the average Tb increases over 6 h post-dosing did not differ between KO
and WT mice. ∗p < 0.05 vs. Veh.

Sleep/Wake States
Both Mod and Caf dose-dependently increased total
wakefulness [F(6,108) = 90.84, p < 0.001] and decreased
total NREM [F(6,108) = 97.55, p < 0.001] and REM sleep time
[F(6,108) = 21.94, p < 0.001] for 6 h post-dosing (Figures 3A–C).
There were no effects of genotype on total sleep time (Figure 3),
hourly sleep/wake time or NREM/REM latency (not shown).
Mod (50 and 100 mg/kg) consolidated wakefulness in WT
mice by increasing the percentage of Wake time spent in
long (>8 min) wake bouts and the number of 4–8 min wake
bouts, while decreasing the proportion of shorter wake bouts
[F(30,300) = 9.00, p < 0.001; Figures 4A,B]. By contrast, only
Mod 100 mg/kg comparably consolidated wakefulness in KO
mice [F(30,240) = 6.74, p < 0.001; Figures 4C,D]. Similarly, Caf
(20 mg/kg) consolidated wakefulness in WT mice by increasing
the percentage of Wake time in wake bouts > 8 min long
(Figure 4A) and the number of 4–8 min wake bouts (Figure 4B)
whereas, in KO mice, Caf failed to increase the proportion
of wake bouts longer than 4 min (Figures 4C,D). Thus, both
drugs exhibited comparable wake-promoting efficacy in WT and

KO mice in terms of total wake time, but TAAR1 deletion was
associated with reduced consolidation of wakefulness following
both Mod and Caf.

EEG Power Spectra
To analyze the effects of Mod and Caf on EEG spectral
composition, we binned spectral power within each power band
(see section “Materials and Methods”) for the 6 h following
dosing (ZT7–ZT12) and normalized each drug treatment
condition to Veh. Significant effects of drug treatment were
observed for the delta [NREM, F(6,108) = 8.74, p < 0.001],
theta [Wake, F(6,108) = 3.16, p = 0.007; REM, F(6,108) = 2.59,
p = 0.022], low gamma [Wake, F(6,108) = 4.93, p < 0.001;
NREM, F(6,108) = 4.15, p < 0.001] and high gamma bands
[Wake, F(6,108) = 6.77, p < 0.001; NREM, F(6,108) = 4.61,
p < 0.001]. In addition, non-significant trends were observed
for waking delta power [F(6,108) = 2.13, p = 0.056] and REM
high gamma power [F(6,108) = 2.16, p = 0.052]. There were no
effects of drug treatment on alpha or beta power in any state
(not shown). While the omnibus ANOVA analyses did not reveal
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significant influences of genotype or genotype × drug treatment
interactions, there was a widespread trend toward attenuated
drug response in KO mice for the delta, theta and gamma bands
(Figures 5, 6). Accordingly, spectral data were further analyzed
via planned pairwise comparisons of each drug vs. Veh for delta,
theta and low and high gamma power within each state and each
genotype (Figures 5, 6). Presentation of Mod (Figure 5) and Caf
conditions (Figure 6) were separated for clarity.

Pairwise comparisons showed that Mod increased NREM
delta and gamma power compared to Veh at all doses in WT
mice (Figure 5B); these effects were greatly attenuated in KO
mice (Figure 5E). A similar pattern was observed for waking
and REM spectra, with increased gamma power at multiple doses
of Mod in WT mice, while only the 100 mg/kg dose exhibited
comparable effects in KO mice. Mod 100 mg/kg increased REM
theta power (4–8 Hz) in both WT and KO mice (Figures 5C,F)
and suppressed waking theta power in KO mice (Figure 5D).
Caf increased high gamma power compared to Veh in wake
(10, 20 mg/kg; Figure 6A) and REM sleep (all doses; Figure 6C)
in WT mice, whereas this effect was only seen in REM sleep at the
highest dose in KO mice (Figure 6F).

DISCUSSION

Previously, we reported that TAAR1 partial agonists promote
wakefulness in rodents (Revel et al., 2012b, 2013; Schwartz
et al., 2017) and reduces cataplexy in two mouse models
of narcolepsy (Black et al., 2017a), suggesting promise for
treatment of this sleep disorder. Based on these findings, we
tested potential mechanisms for TAAR1’s involvement in state
control by comparing the response to Mod and Caf, two well-
characterized psychostimulants in TAAR1-null mice and their
WT littermates. In contrast to the pronounced hypersensitivity
of TAAR1 KO mice to amphetamines (Wolinsky et al., 2007;
Lindemann et al., 2008), we observed comparable increases
in total wake time in KO and WT mice. However, KO mice
exhibited mild reductions in consolidated wakefulness following
both Mod and Caf compared to WT littermates, blunted EEG
spectral responses to both drugs, and a strong attenuation
of the motor-activating response to Caf. Constitutive TAAR1
deletion thus attenuates behavioral and EEG spectral responses
to dopaminergic (Mod) and adenosinergic (Caf) stimulants, but
does not grossly impair the promotion of wakefulness by these
drugs.

Taar1 Deletion Attenuates
Modafinil-Induced Locomotor Activity
without Affecting Wakefulness Amounts
Elevating dopamine (DA) transmission powerfully modulates
wakefulness, as indicated by the dopaminergic mechanisms of
action of many potent psychostimulants, the wake-promoting
roles for brainstem DA neurons (Lu et al., 2006; Eban-Rothschild
et al., 2016; Cho et al., 2017), and the profound hyperarousal
associated with DAT-null mutation (Wisor et al., 2001; Kume
et al., 2005; Dzirasa et al., 2006). TAAR1 inhibits firing in ventral
tegmental DA and dorsal raphe serotonin neurons and exhibits

FIGURE 3 | Both Mod and Caf dose-dependently increased wakefulness
(A) and decreased total NREM (B) and REM (C) sleep time for 6 h
post-dosing. There were no effects of genotype on total sleep time or hourly
time courses for each state (not shown). ∗p < 0.05 vs. Veh.

tonic or constitutive activity ex vivo (Lindemann et al., 2008;
Bradaia et al., 2009; Revel et al., 2011) and in vivo (De Gregorio
et al., 2016), which has led to the hypothesis that TAAR1-
mediated inhibition negatively regulates monoaminergic tone.
Consistent with this idea, TAAR1-null mice exhibit elevated
basal firing rates in brainstem monoaminergic neurons, and
exaggerated hyperactivity and striatal DA release following
amphetamine administration (Wolinsky et al., 2007; Lindemann
et al., 2008). However, constitutive TAAR1 deletion had no effect
on overall promotion of wakefulness and only mild modulatory
effects on the wake-consolidating efficacy of Mod. Mod promotes
wakefulness via DAT inhibition (Mignot et al., 1994; Wisor et al.,
2001; Wisor, 2013) and consequent elevation of extracellular
DA (Wisor, 2013) and downstream DA-dependent α1 adrenergic
activation (Stone et al., 2002; Wisor and Eriksson, 2005);
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FIGURE 4 | In WT mice (A,B), Mod (50 and 100 mg/kg) consolidated wakefulness by increasing the percentage of Wake time spent in long (>8 min) wake bouts
(A) and the number of 4–8 min long bouts (B), at the expense of shorter wake bouts (A,B) but, in KO mice, only Mod 100 mg/kg exhibited comparable effects
(C,D). Caf (20 mg/kg) similarly consolidated wakefulness in WT mice whereas, in KO mice, Caf failed to increase the proportion of wake bouts longer than 4 min
(C,D). ∗p < 0.05 vs. Veh.

FIGURE 5 | Normalized EEG power spectra in Wake (A,D), NREM (B,E) and REM sleep (C,F) following Mod. In WT mice (A–C), Mod increased NREM delta power
(0.5–4 Hz) and gamma power in all states (low, 30–60 Hz; high, 60–100 Hz) at all doses but, in KO mice (D–F), only 100 mg/kg Mod exhibited comparable effects.
Mod 100 mg/kg also increased REM theta power (4–8 Hz) in both WT and KO mice (C,F). Spectral power for all drug conditions are normalized to those for each
individual’s Veh recording, which is shown as a dashed line. ∗p < 0.05 vs. Veh.

however, wake promotion by Mod is abolished in DAT-null mice
(Wisor et al., 2001), supporting a primary and essential role for
that DAT. Mod and cocaine — DAT-inhibiting stimulants that

do not bind TAAR1 — induce comparable levels of wakefulness
and motor activation, respectively, in TAAR1 KO and WT mice
(present study and Revel et al., 2011). TAAR1 is therefore not
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FIGURE 6 | Normalized EEG power spectra in Wake (A,D), NREM (B,E) and REM sleep (C,F) following Caf. In WT mice, Caf (2.5–20 mg/kg) increased gamma
band activity in Wake and REM sleep (A,C). In KO mice, Caf 20 mg/kg increased REM gamma power (F). There were no other significant effects. Spectral power for
all drug conditions are normalized to those for each individual’s Veh recording, which is shown as a dashed line. ∗p < 0.05 vs. Veh.

necessary for Mod-induced wakefulness, consistent with reports
that TAAR1 deletion does not substantively alter DAT function
in vivo (Leo et al., 2014).

By contrast, amphetamines and their derivatives directly
activate TAAR1 (Bunzow et al., 2001), in addition to profoundly
augmenting DA transmission via the DAT (Jones et al., 1998). The
potentiation of amphetamine-induced LMA in TAAR1 KO mice
may therefore reflect this distinct dual action on TAAR1 and the
DAT. Many dopaminergic stimulants, including amphetamines,
induce significant rebound hypersomnolence while others,
including Mod, promote wakefulness without a corresponding
sleep rebound (Edgar and Seidel, 1997; Gruner et al., 2009). This
capacity for wake promotion without rebound hypersomnolence
is highly desirable from a therapeutic perspective, and explains in
part why Mod is so widely used to treat pathological sleepiness
(e.g., in narcolepsy, Black et al., 2017b). In this light, future
studies should address whether interactions with TAAR1 plays
a role in rebound hypersomnolence following amphetamine
administration, perhaps via its actions on non-dopaminergic
systems.

Taar1 Deletion Attenuates
Caffeine-Induced Locomotor Activity
In contrast, motor activation was significantly attenuated
following Caf doses up to 20 mg/kg, while wake promotion was
comparable to that of WT littermates. TAAR1 is not known
to interact directly with ADO receptors, but ADO receptor
activation attenuates dopaminergic activation in the spinal cord
(Acevedo et al., 2016; Elnozahi et al., 2016), striatum (Ross and
Venton, 2015) and nucleus accumbens (NAc) (Quarta et al.,
2004), protects against DA neurotoxicity (Fathalla et al., 2016;
Xu et al., 2016), and attenuates cocaine-induced locomotor and
D2 receptor sensitization (Hobson et al., 2012). This ADO
receptor-mediated inhibition of DA signaling is proposed to
underlie the motor-activating effects of the ADO receptor

antagonist Caf (Fredholm et al., 1999; Salmi et al., 2005; Ferre,
2010). TAAR1 complexes with and augments the expression,
composition and function of D2 receptors (Espinoza et al., 2011;
Harmeier et al., 2015). TAAR1 deletion attenuates haloperidol-
induced catalepsy and striatal Fos expression (Espinoza et al.,
2011), as well as quinpirole-induced locomotor inhibition
(Espinoza et al., 2015a) compared to WT mice. These actions are
thought to reflect attenuation and hypersensitivity of presynaptic
and postsynaptic D2 receptors, respectively (Leo et al., 2014;
Espinoza et al., 2015a). It is therefore possible that, in the
absence of TAAR1, outputs like motor activity are less sensitive
to indirect A2a-mediated D2 disinhibition following Caf and to
a lesser extent Mod, leading to the unusual combination of wake
promotion (via direct Caf-mediated ADO receptor antagonism)
without concurrent motor activation (caused by dysfunctional
D2 signaling in KOs). These effects may be mediated by TAAR1
in the basal ganglia and the NAc in particular, where ADO A2a
deletion was reported to abolish wake promotion by Caf (Lazarus
et al., 2011).

Taar1 Deletion Reduces Modafinil and
Caffeine-Induced EEG Gamma Band
Activity
Gamma band EEG activity is elevated in wakefulness, and
changes in gamma power are related to cortical function
and cognition (Sohal et al., 2009; Cho et al., 2015).
NMDA receptor antagonists induce hyperactivity, aberrant
cortical gamma oscillations (Pinault, 2008; Ehrlichman
et al., 2009; Hakami et al., 2009) and sleep disruption
(Ishida et al., 2009). TAAR1 agonists block the motor-
activating and cognition-impairing effects of NMDA
hypofunction (Revel et al., 2012b, 2013), while TAAR1
deletion impairs NMDA-dependent signaling in cortex and
is associated with impulsive behavior (Espinoza et al., 2015b).
Previously, we reported that TAAR1 deletion increases, and
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overexpression decreases, EEG theta and gamma power across
sleep-wake state (Schwartz et al., 2017), while TAAR1 partial and
full agonists acutely decrease EEG oscillations in the alpha, beta
and gamma bands (Schwartz et al., 2017; Schwartz, unpublished).
Here, Mod- and Caf-induced EEG gamma band activity was
attenuated in KO mice. Together, these observations indicate that
endogenous TAAR1 critically regulates a key neurophysiological
correlate of cortical function and cognitive processing. Gamma
oscillations arise from interactions between cortical pyramidal
neurons and fast-spiking parvalbumin-positive interneurons
(Sohal et al., 2009). The cell type in which TAAR1 is expressed
in the rodent cortex is unknown but, if not on the parvalbumin
neurons themselves, could be elsewhere in the microcircuit that
underlies gamma oscillations.

Perspective
TAAR1 could regulate arousal via actions on dopaminergic
(Lu et al., 2006; Eban-Rothschild et al., 2016; Cho et al., 2017),
serotonergic (Muraki et al., 2004; Popa et al., 2005; Buchanan and
Richerson, 2010; Zant et al., 2011) or glutamatergic populations
(Fuller et al., 2011; Schone et al., 2012; Kaur et al., 2013; Schone
et al., 2014), all of which have been shown to modulate sleep/wake
state. However, Mod- and Caf-induced wake promotion was only
mildly perturbed in TAAR1-null mice, despite the documented
dysregulation of monoaminergic and glutamatergic signaling
in these animals (Wolinsky et al., 2007; Lindemann et al.,
2008; Revel et al., 2011), suggesting that these sleep- and
wake-regulatory neurotransmitter systems appear to compensate
for a constitutive lack or overabundance of TAAR1. In this
light, further probing of the acute interactions between TAAR1
and wake-related monoaminergic and glutamatergic circuits
using selective TAAR1-directed compounds would be helpful.
Alternatively, the circuits underlying TAAR1-mediated arousal
may be separate from the dopaminergic (Mignot et al., 1994;
Wisor et al., 2001) and adenosinergic (Rainnie et al., 1994; Huang
et al., 2005) circuits mediating wake promotion by Mod and
Caf, respectively. TAAR1 is enriched in mesolimbic DA nuclei
including the VTA, amygdala and nucleus accumbens, but is also
expressed in the cortex, hypothalamus, dorsal raphe nuclei and
nucleus of the solitary tract (Bunzow et al., 2001; Lindemann

et al., 2008; Espinoza et al., 2015b; Ferragud et al., 2017).
Serotonergic activity has been shown to promote wakefulness
and suppress REM sleep via the 5HT1a, 5HT2a, 5HT6 and 5HT7
receptors (Boutrel et al., 2002; Popa et al., 2005; Morairty et al.,
2008; Monti and Jantos, 2014). Of these, TAAR1 activation is
reported to modulate 5HT1a signaling (Revel et al., 2011); it
is currently unknown whether TAAR1 modulates other 5HT
receptors as well. Future studies should assess the roles of these
systems and brain regions, particularly outside the dopaminergic
systems, in regulating arousal states.
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