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Resting-state EEG signals undergo rapid transition processes (RTPs) that glue otherwise 
stationary epochs. We study the fractal properties of RTPs in space and time, supporting the 
hypothesis that the brain works at a critical state. We discuss how the global intermittent 
dynamics of collective excitations is linked to mentation, namely non-constrained non-task-
oriented mental activity.
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 exponential decay e−γt, with a finite (though becoming larger) 
scale 1/γ, but, at the critical point, follows a law characterized 
by scale invariance
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where ξ(t) is the fluctuation and averages 〈·〉 are taken on the dif-
ferent beginning-time values t

0
 This latter phenomenon is nor-

mally denoted as 1/f noise, or more specifically 1/f η noise, with 
η = 1 − β.

Coming back to brain activity, 1/f noise has been revealed by 
many authors, starting from Novikov et al. (1997). It is not yet deter-
mined if these highly correlated fluctuations are generated either by 
the oscillatory neural synchronization advocated by Medina (2009) 
or by the spontaneous phase-transition process of many interacting 
neurons proposed by Bianco et al. (2008), or by a yet to be uncov-
ered complex dynamic processes. The phase-transition conjecture, 
dating back to the pioneering work of Turing (1957) fits the critical-
ity condition stressed in the neurophysiological literature (see, e.g., 
Chialvo and Bak, 1999, or, more recently, Werner, 2009). Moreover, 
in the neurophysiological literature there is increasing conviction 
that brain dynamics are characterized by quakes (Martin, 2008) 
and/or avalanches (Beggs and Plenz, 2003; Plenz and Thiagarjan, 
2007; Chialvo, 2008). All this literature supports the hypothesis of 
a critical brain, where inverse-power law correlations are present 
both in space and time.

Contoyiannis and Diakonos (2000) pointed out that the inverse-
power law autocorrelations in critical systems (see, e.g., Stanley, 
1971), correspond to an intermittent dynamics (as in Gaspard and 
Wang, 1988) driving the fluctuations of those macroscopic variables 

IntroductIon
Neural processing is characterized by the phenomenon of integra-
tion, each neuron collecting input from many other neurons, and 
sending it to many others. The process of information spreading is 
of paramount complication, so that has been frequently taken as a 
paradigm of complexity. In fact, complexity, as is becoming clearer 
during the last two decades, is not a mere synonym of complication, 
since it also implies the notion of emergence: Many elements with 
non-linear interactions develop collective modes dominating the 
system’s dynamics.

This fact has been long known by physicist and is at the basis 
of the thermodynamic processes known as phase transitions. 
The equilibrium properties and the non-equilibrium dynam-
ics of some collective observable may become independent of 
the underlying microscopic equations and, as function of some 
macroscopic parameter (such as temperature or energy), critical 
points exist marking the border between macroscopic determi-
nation and macroscopic indeterminacy. In other words, while 
below the critical points a single solution exists, above it multiple 
solutions are available. Therefore, above the critical point, as the 
system explores only one macroscopic solution, the entire col-
lection of possible microscopic states of the alternative solutions 
remains unexplored. How does this happens? Approaching the 
critical point from below the macroscopic fluctuations around 
the equilibrium become larger, with more and more extended 
correlations both in space and time, till the correlation scales 
become infinite at the critical point. Above the point the solu-
tions separate, and the system is said to become non-ergodic. 
Here the mathematical notion of infinity means that, for exam-
ple, the fluctuation autocorrelation in time (or, equivalently 
the system relaxation after a large fluctuation) is no longer an 
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MaterIals and Methods
eeG dataset collectIon, pre-processInG and analysIs
Thirty subjects, from 20 to 30 years old, underwent an EEG record-
ing during a resting condition lasting 5 min. All subjects signed 
an informed consent according to the University of Pisa Ethical 
Committee guidelines. Experimental sessions were performed 
between 3 PM and 5 PM, while subjects were comfortably seated 
in an armchair in a semi-dark and sound-attenuated room. Before 
recordings started, it was demanded to each subject to stay still, 
with their eyes closed, and to avoid any structured thinking, like 
calculations or intentionally memories recalling.

A 32-channel acquisition systems has been used for the EEG 
recordings. Impedances of the recording electrodes were in the 
range of 2–5 kΩ, with a sampling rate of 500 Hz. All electrical 
potentials were reference to electrode FCz, placed slightly in front 
of the head vertex. EEG raw data were notch filtered at the line 
frequency (50 Hz) and then, in order to obtain unipolar recordings, 
re-referenced to the instantaneous average of the signals recorded 
from the earlobes. Reference electrode has been excluded from 
the analysis, together with two electrodes, placed at the earlobes. 
Movement artifacts were visually detected and discarded by an 
EEG-expert.

In addition to EEG signals, electrocardiogram (ECG) and elec-
trooculogram (EOG) were recorded. While no significant ECG 
artifacts on EEG signals were observed, the EOG-related oscilla-
tions affecting the EEG, remarkably on the frontal channels, were 
removed applying the temporally constrained ICA algorithm 
(James and Gibson, 2003).

rapId transItIon processes
We processed each EEG signal in order to unveil its hidden piecewise 
regular structure; namely, we looked for the abrupt changes in EEG 
amplitude that glue EEG signal segments with regular amplitude 
and wave shape. These points (events) were baptized rapid transi-
tion processes (RTPs) by Kaplan et al. (2005). Basically, we adopted 
the segmentation approach proposed by Kaplan et al. (2005). It is 
a non-parametric and adaptive approach since it identify RTPs on 
the basis of rules on local statistics of the signal around each point 
to be evaluated.

The segmentation algorithm can be partitioned in two main 
stages: (1) a preliminary identification of the RTPs; (2) a selection 
of the actual RTPs on the basis of the steepness of the previously 
detected EEG amplitude changes. The first stage, is in turn com-
posed by two steps: the estimation of the envelope (i.e., of the local 
amplitude) of each EEG signal and the detection of the abrupt 
changes in the EEG local amplitude time series.

Step 1a is performed applying the Hilbert transform (Huang 
et al., 1998) to the EEG signal, and considering the modulus of the 
corresponding analytic signal. The obtained series constitutes the so 
called test sequence (TS; Brodsky et al., 1999), whose modifications 
are analyzed in step 1b. Step 1b, the basic procedure of segmen-
tation, rests on comparing the ongoing instantaneous amplitude 
series with its average level over a surrounding window. To this 
aim, a smoothed TS termed level sequence (LS) has been derived 
from the previous one with a even-weighted moving-average filter 
(700 ms window length). In the case of rapid amplitude changes in 
the EEG, the LS will update its values with time delay with respect 

that integrate microscopic fluctuations. These are classically called 
“order parameters” since they highlight the emergence of collective 
behavior. Note that in the physical jargon intermittency means 
the dynamical activation/deactivation of metastable states, with 
entropy only increasing at the rapid transition from one metastable 
state to the next, so that the global entropy increase is kept small. 
This is important for living systems, and for complex systems in 
general, where by consensus the global entropy is smaller than it 
would if the system was at thermodynamic equilibrium. This is 
often expressed by the phrase “the whole is more than the sum of 
its parts”, which is the new paradigm of complexity, or, in other 
words the thumb-stone epigraph of last-century deterministic ideas 
in science.

We stress that not all inverse-power law indexes have the same 
properties. While they all fit the condition of emergence of collec-
tive states, with constrained dynamics, inverse-power law auto-
correlation functions may be integrable or not, depending on the 
index β. Moreover, it is important to establish whether the system 
is intermittent. If this happens all properties, including the auto-
correlation functions, only depend on the distribution of waiting 
times between events ψ(τ). In the case of Eq. 1 they also follow an 
inverse-power law

ψ τ
τ

τµ( ) ,∝ → ∞1
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(2)

and the intermittency index μ is therefore an important measure 
of the complexity of the system. For non-ergodic systems, where 
1 < μ < 3 a novel form of linear response have been recently dis-
covered (Allegrini et al., 2007), suggesting a quenching for the 
response for systems with μ < 2 to regular stimuli (Sokolov and 
Klafter, 2007; Allegrini et al., 2009a), non-quenched information 
transfer for systems sharing the same or similar μ, with maximal 
information transfer for μ ≈ 2 (West et al., 2008). Remarkably, 
this is the intermittency index of human language (Allegrini 
et al., 2004).

In this paper we build on some recent discoveries reported in 
Allegrini et al. (2009b) within this context, namely that the transi-
tion processes from global metastable states is in fact intermittent, 
with, again, an intermittency index μ ≈ 2, the same of language. 
Herein we again focus on global metastable states and we cor-
roborate the hypothesis of the brain working in a critical condi-
tion by studying a scale-invariant distribution of avalanche size, 
where the size is the number of EEG electrodes involved in the 
global intermittent process. We show however that different levels 
of complexity are reverberated in different regions of the brain, and 
that regions more prone to be recruited in global processes have 
an index similar to the index of the global process. In particular 
the electrodes most prone to be recruited in avalanches are those 
located in the central region, collecting electric signals from the 
two hemispheres. The above results lead us to link a specific EEG 
dynamical spatio-temporal structure to the behavioral process of 
mentation, namely the unstructured non-task-oriented mental 
activity that our set of subjects performed in our experiment, the 
same activity extensively studied at a metabolic level, by means of 
functional magnetic resonance imaging (fMRI) that has revealed a 
metabolic network maximally excited during resting-state menta-
tion, and not involved in most task-oriented functions.
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MultIchannel rtp detectIon
The identification of RTP concurrent among EEG channels 
(MC-RTPs) allows inferences about the dynamics of large-scale cor-
tical interactions in recruitment/selection of neuronal populations 
forming metastable assemblies (Fingelkurts et al., 2003a,b, 2004). 
In fact, by reason of the integrated functioning of the brain, RTPs 
happen simultaneously in two or more EEG channels more often 
than expected by chance and the study of waiting times between 
MC-RTPs allows the estimation of the lifetime of the large-scale 
functional assemblies of neurones. Effectively, starting from the 
time-location series of the above defined single-channel RTP, transi-
tions occurring simultaneously in N channels have been considered, 
with N varying from 2 to the number of recorded EEG channels, 
irrespective of the electrode position on the scalp. Namely, from the 
multivariate series of RTP locations, the time locations sequences 
of those RTP concurrent in N electrodes have been constructed. 
We consider simultaneous RTPs those events in which the time 
lap between two transitions is less or equal to a threshold value ∆t 
called “lumping time”. Unless otherwise stated, we take ∆t = 2 ms, 
i.e., the time resolution of our recordings. In case of N > 2, RTPs 
are simultaneous if they can be sorted so that the distance between 
each consecutive pair is less or equal to ∆t.

self-orGanIzatIon, cascades, and InterMIttency
Following Beggs and Plenz (2003) we studied in our data the 
phenomenon of avalanches. This perspective is along the lines 
of self-organized criticality (Bak et al., 1987), evoked to explain 
inverse-power laws in neural dynamical patterns. In particular it 

to the non-smoothed TS. The time locations of each intersection 
between TS and LS can thus be considered as preliminary RTPs 
(Kaplan et al., 2005).

Stage 2 aims at overcoming a first step pitfall: Some of the inter-
sections between the two series do not correspond to a discontinu-
ity between quasi-stationary EEG segments and thus false RTPs, 
related to brief anomalous peaks in the TS, may occur. According 
to Kaplan et al. (2005), anomalous peaks (either related to very 
tight pairs of intersections or without a steady separation between 
the two series) can be effectively selected out by noticing that the 
slope of the TS around a false RTP should be less steep than that 
around actual RTPs and should be similar to that of any other 
point in the TS. To filter out false RTPs we used a smoothed time 
derivative of the TS, calculated by means of a convolution with 
a anti-symmetrical step-like function (of window 50 ms wide, 
value −1 in the left part, +1 in the right, 0 outside the window). 
Looking at the modulus of the derivative signal, we remove seg-
ments (100 ms wide) centered around the time locations of the 
preliminary RTP and we estimate the probability density func-
tion of the remaining signal. On the basis of this distribution, a 
threshold aiming at discriminating actual from false RTP has been 
calculated as the 99th percentile of the distribution. Namely, we 
required that the TS at actual RTPs exhibits high slope absolute 
values, that are uncommon among slopes of TS generic points. 
Needless to say that the application of this threshold criterium for 
the recognition of actual RTPs implies that only a portion of the 
occurring RTPs are detected. A schematic representation of the 
segmentation procedure is shown in Figure 1.

25µV

1s

FiGuRE 1 | Schematic representation of the EEG segmentation (RTP 
identification). Top panel: raw EEG signal, with units labels on the right. Middle 
panel: Black curve represents the Test Sequence, TS, obtained from raw data via 
Hilbert transform; the blue curve is the Level Sequence, LS, obtained from the 
TS via a running-average smoothing; the green dots denote the intersections 
between TS and LS. Bottom panel: the black curve is the time derivative (details 

on text) of the TS; the blue/red curve on the right denotes the distribution 
density of the derivatives, with the blue part denoting the central part, between 
the 5th and the 95th percentile; red points (crosses) denote actual RTP, namely a 
selection of the green dots intersections of middle panel, with the further 
condition of having a large derivative value. From these points (RTP) vertical 
traces are drawn up to the raw data of the upper panel, for visual validation.
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namely the Shannon’s entropy (information), with condition 3, 
leads to

S t k t( ) ln ,= + δ  (5)

where k is a constant. The evaluation of the slope according to 
which S increases with lnt provides a measure for the anomalous 
scaling δ.

Let us briefly mention what we know about applying DE to time 
series with known long-range correlation. We construct an artificial 
series by letting ξ

i
 = 1 (this means that we find the marker at the ith 

position), or ξ
i
 = 0 (the i-th sign is not a marker). We then assume 

intermittency namely that the distance between a “1” and the suc-
cessive does not depend on the such previous distances. Then, if 
the distances t between events are distributed as

ψ µ
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(ψ(t) ∼ t−μ asymptotically is a sufficient condition], then, using 
a continuous-time random-walk technique and the generalized 
central-limit theorem, p(x;t) is proved to follow a truncated Lévy 
probability distribution function (PDF; Grigolini et al., 2001). DE 
detects the scaling δ of the central part, namely

δ
µ

µ δ µ=
−

< < = >1

1
2 3 0 5 3if if, . .
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The condition 2 < μ < 3 means long-range correlation, since 
for truncated Lévy PDFs asymptotically 〈x2(t)〉 − 〈x(t)〉2 ∝ t4−μ and 
therefore the correlation function obeys Eq. 1, namely it decays 
as tβ. with

β µ= − 2.  (8)

Note that the decay of this correlation function is non- integrable, 
yielding an infinite correlation time.

results
MultIchannel avalanches and scalInG
We defined as the size of avalanche the number of EEG elec-
trodes undergoing a simultaneous RTP at a certain time t. For 
each subject we constructed the histograms for the avalanche size. 
The results are illustrated in Figure 2. For each subject we see a 
smooth inverse-power law, visualized as a straight line in a log-log 
plot for a small number of electrodes (n ≤ 10). For larger n the 
probability densities P(n) are noisy. For each patient a non-linear 
least-square fit was performed on the first 7 points. The resulting 
average and standard deviation for the probability density index 
ζ, defined as

P n
n

( ) ,∝ 1
ζ  

(9)

is

ζ = ±1 92 0 12. . ,  (10)

where we reported the average and the standard deviation. In 
Figure 2 (solid squares) we also plot an averaged P(n), taking 
into account the avalanche sizes, cumulatively for all subjects. 
Remarkably, the least-square fit for this cumulative histograms 
yields ζ = 1.92. In this latter case the fit was performed for all points, 

is focused on the study of inverse-power laws both in the “spa-
tial” and in the temporal dimension. They studied cortical slices 
of animal brain in vitro, and found results that are compatible 
with a simple feedforward neural network at a critical value. The 
theory (explained in detail in Zapperi et al., 1995; de Arcangelis 
et al., 2006; Pellegrini et al., 2007) predicts a probability density for 
the size n of avalanches (in Beggs and Plenz, 2003, the number of 
neurons firing) as p(n) ∝ n−1.5, while the lifetime distribution for 
avalanches is ψ(τ) ∝ τ−2, with excellent agreement between theory 
and experiment. We performed a similar study on the number of 
electrodes undergoing simultaneous RTP.

We defined as ψ(τ), namely the lifetime of collective modes, 
the waiting time distribution for consecutive avalanches. A direct 
evaluation of ψ(τ) cannot be used, due to distorting effects from 
superimposed noise. We evaluated it indirectly by studying the 
scaling relation for the number of MC-RTPs in time windows of 
different duration, as explained in the following subsection. We use 
the fact that the avalanches are driven by a renewal events, namely, 
by events that reset the memory of the system so that waiting times 
between two such events are all mutually independent, as proved by 
Allegrini et al. (2009b). This latter property is in fact a mathematical 
definition of the earlier mentioned phenomenon of “intermittency”, 
and is in fact compatible with SOC (see Discussion).

scalInG and dIffusIon entropy
Here we assume that an intermittent, i.e., renewal process, exists 
with ψ(τ) ∝ τ−μ for very long values of waiting times τ’s. While a 
direct evaluation can in principle be done, in practice it may hap-
pen that the renewal process may trigger some other dynamics 
(pseudoevents), or can be under threshold, or be blurred by noise. 
All the three mechanisms can significantly alter the value of the 
detected μ. Here we use a robust mechanism to unravel the index 
μ responsible for the renewal dynamics. This method, called diffu-
sion entropy (DE) method has been theoretically and numerically 
proved to overcome the aforementioned difficulties (Grigolini et al., 
2001; Allegrini et al., 2003a,b; Mega et al., 2003).

In synthesis, one defines a “marker” on a time sequences, and stud-
ies the probability p(x;t) of having a number x of markers in a window 
of length t. This statistical analysis is done by moving a window of 
length t along the sequences, counting how many times one finds x 
markers inside this window, and dividing this number by the total 
number N − t + 1 of windows of size t, where N is the total length.

Having large number values for x and t, we can adopt a con-
tinuous approximation. Moreover, in the ergodic and stationary 
condition, a scaling relation is expected, namely

p x t
t

F
x wt

t
( ; ) ,= −





1
δ δ

 
(3)

where w is the overall marker density, δ is the scaling index and F is 
a function. If F is the Gauss function, δ is the known Hurst index, 
and if the further condition δ = 0.5 is obeyed, then the process is 
said to be Poissonian, and the dynamics of x is called “Brownian 
motion”. If this condition applies, there is no long-range memory 
regulating the occurrence of markers in time.

It is straightforward to show that

S t dxp x t p x t( ) ( ; ) ( ; ),=
−∞

∞

∫ ln
 

(4)
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areas. Montage B consists on removing the external channels (while 
 keeping the occipital ones). The analysis is shown in Figure 3, with 
used channels highlighted. The resulting ζ is respectively 2.00 and 
1.84. Although the result for Montage A may be consistent with the 
finite-size effect, Montage B, yielding a result closer to the expected 
theoretical value, tells us that the fractal avalanching is in fact sta-
tistically modulated by electrodes in different brain areas, with a 
more apparent effect in the central core.

We performed the DE analysis on the events marked by 
MC-RTPs. The results for MC-RTPS with at least two channels 
are shown in Figure 4 for three subjects. The same analysis (not 
shown here) was repeated with different thresholds of avalanche 
size, with the same resulting slope. A typical slope, shown in the 
figure as a guide to the eye, suggest that δ ≈ 0.9, yielding μ ≈ 2.1. This 
is in line with the data reported in Allegrini et al. (2009b), where 
this result is confirmed by the use of other techniques.

A more precise evaluation of δ, hence of μ was performed with 
a non-linear least-square fit of the DE analysis using the form

S t S t T( ) ( ) ln( ),= + +0 δ  (11)

where T, an additional fitting parameter, serves the purpose of 
taking into account the time necessary to approach the asymp-
totic regime. A lack of correlation between the detected variables 
ζ and δ in different subjects (Spearman’s R value: 0.033, with 
0.16 z-score) again suggest a statistical spreading rather than a 
subject effect.

as the inverse-power law is visually more robust. The  equality of 
the two averages suggest that the index variability for different 
subjects is to be interpreted more as a lack of statistics rather than 
as a real difference (patient effect). This is an indication of a state 
of criticality being present at the level of the whole cortex, although 
with an index that differ from that presented by Beggs and Plenz 
(2003) (ζ = 1.5), who looked at a smaller scale.

In line with the work of Beggs and Plenz (2003), the cumu-
lative average has been performed for different choices of the 
lumping time ∆t. A larger value of ∆t corresponds to an higher 
probability of finding events with a large number of n, and a 
smaller probability of finding avalanches with a small value of 
n. Therefore we may expect a lower value of the index η with 
increasing ∆t. The results are shown in the inset of Figure 2. 
We see that while the choice ∆t = 2 ms corresponds to a good 
inverse-power law, the choices ∆t > 2 ms do not result in a straight 
line in a log-log plot. We therefore conclude that ζ = 1.92, cor-
responding to ∆t = 2 ms is the right avalanche-size scaling index 
for the process.

This difference between our reported 1.92 and the theoreti-
cal value 1.5 can be due to a different topology underlying con-
nections among different brain areas or to finite-scale effects. In 
order to discriminate between these two possibilities, we studied 
the avalanche size distribution with two different sub-montages, 
i.e., removing some channels from the analysis. Montage A con-
sists on a low density montage, spanning however over all scalp 
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FiGuRE 2 | Main figure: Solid curves are the probability densities for 
avalanches sizes for 30 subjects; Solid squares denote the averaged 
probability density; the dashed line denotes a corresponding best fit with 

inverse-power law with index ζ = 1.92. Inset: Averaged probability densities 
for different values of ∆t (∆t = 0 corresponds on selective as consecutive events 
only those exactly co-occurring in the sampling-time window).
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Notice that channels having an higher average value of δ are those 
with a smaller variability, and, in turn, are the very channels with 
higher probability of being recruited into an avalanche.

Table 1 reports the values of the global (i.e., over all our data 
set) probability for the channel to be recruited in an avalanche 
together with the average values of δ for the different electrodes 
and with ∆δ, namely the difference between the 75th and the 25th 
percentile among subjects.

The correlation between Π and δ is extremely significant, with 
Spearman’s correlation R = 0.94, z-score 8.4, corresponding to 
p < 10−30 (probability for fortuitous generation of such correlated 
data, under the hypothesis of null correlations). Also the (nega-
tive) correlation between δ and ∆δ is significant, with Spearman’s 
correlation R = −0.8 and z-score −5.4.

topoloGy of rtps
So far we have treated each EEG channel in a “democratic”  manner. 
It is however important to notice that not all channels have the same 
probability of being recruited into an avalanche event. Figure 5 
shows three topological plots picturing the relative frequency Π for 
each channel to undergo a MC-RTP, respectively for avalanche sizes 
of at least 2, 4, and 10 channels. Π is defined as the ratio between 
the number of times that the channel is recruited in an avalanche 
and the total number of avalanches.

It is interesting to show how this topological distribution cor-
relates with the δ values of the different channels, averaged on the 
subjects set. For this analysis we used all RTPs detected in a single 
channel for any single subject, regardless whether this RTP belongs 
to an avalanche or not. Then, for each channel we average the fitted 
values of δ over all subjects. The results are shown in Figure 6 and 
Table 1. A correlation is apparent by comparing Figures 5 and 6, 
where we plot these values for the different channels.

The upper panel of Figure 6 shows the average values of δ for 
each EEG channel, while the bottom one describes its variability 
in our data set. In particular the variability is now defined as the 
difference of the δ values between the 75th and the 25th percentile. 

 0.001

 0.01

 0.1

 1

 1  10

P
(N

)

N

all 29 Channels
Montage A
Montage B

ζ=1.92
ζ=2.00
ζ=1.84

MONTAGE A                                    MONTAGE B

C3C4

CP3CP4 CPz

Cz

F3F4
F7F8

FC3FC4

Fp1Fp2

FT7FT8

Fz

O1O2 Oz

P3P4 Pz

T3T4

T5T6

TP7TP8

C3C4

CP3CP4 CPz

Cz

F3F4
F7F8

FC3FC4

Fp1Fp2

FT7FT8

Fz

O1O2 Oz

P3P4 Pz

T3T4

T5T6

TP7TP8

FiGuRE 3 | Avalanche size distribution, averaged over subjects, for 
different montages.

 0

 1

 2

 3

 4

 5

 6

100 101 102 103 104

S
(t

)

t (ms)

subject 1
subject 21
subject 29

δAJ=0.9

FiGuRE 4 | Diffusion entropy analysis for subjects 1, 21, and 29.

C3 C4

CP3 CP4CPz

Cz

F3 F4
F7 F8

FC3 FC4

Fp1 Fp2

FT7 FT8

Fz

O1 O2Oz

P3 P4Pz

T3 T4

T5 T6

TP7 TP8  0.05

 0.1

 0.15

 0.2

 0.25

 0.3

C3 C4

CP3 CP4CPz

Cz

F3 F4
F7 F8

FC3 FC4

Fp1 Fp2

FT7 FT8

Fz

O1 O2Oz

P3 P4Pz

T3 T4

T5 T6

TP7 TP8  0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

C3 C4

CP3 CP4CPz

Cz

F3 F4
F7 F8

FC3 FC4

Fp1 Fp2

FT7 FT8

Fz

O1 O2Oz

P3 P4Pz

T3 T4

T5 T6

TP7 TP8  0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

FiGuRE 5 | Topological plots for the relative frequency Π of a channel to 
be recruited into an avalanche. Top panel: avalanches size is of at least two 
channels. Middle panel: same for at least four channels. Bottom panel: same 
for at least 10 channels.
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1.5 becomes larger, suggesting in fact a finite-size effect. However, in 
the latter case the difference between the theoretical exponent and 
the measured one reduces. Further studies need to be conducted 
with an higher density montage (128 electrodes) in order to shed 
light into this difference.

We also find that the dynamical activation of avalanches is driven 
by a process with waiting-time distribution ψ(t) ∝ t−μ, with μ slightly 
larger than two. Remarkably, this is compatible with μ ≈ 2 recently 
reported by Kitzbichler et al. (2009) for the time durations of phase 
synchronization in different brain regions, using fMRI and magne-
toencephalography. Moreover, Allegrini et al. (2009b) have assessed 
the intermittent, i.e., renewal nature of the dynamical process respon-
sible for the avalanches. Therein, the reason why long-range memory 
yielded by self-organization is not incompatible with the memory-
resetting properties of renewal avalanches is widely discussed. The 
discussion in Allegrini et al. (2009b) goes along four statements.

1. Eguíluz et al. (2005) reported an fMRI voxel–voxel cross-
 correlation network displaying a scale-free topology. However it 
was later shown that this topological pattern is  superimposable 

dIscussIon
The experimental discovery of 1/f noise in the brain (e.g., Novikov 
et al., 1997; Linkenkaer-Hansen et al., 2001; Buiatti et al., 2007) has 
normally been interpreted as an indication of self-organization. 
On the other hand, the celebrated theory of self-organized critical-
ity (Bak et al., 1987), which is frequently invoked to understand 
the complex emergent output of neural activity (Beggs and Plenz, 
2003; Plenz and Thiagarjan, 2007; Chialvo, 2008), has been origi-
nally introduced to explain the origin of 1/f noise. In this paper 
we provide evidence for fractal (i.e., following an inverse-power 
law) distribution probability of the number of EEG electrodes 
involved in global metastable transitions. This is the counterpart 
of the fractal avalanching process in SOC. The difference between 
the classical SOC index ζ = 1.5 and the index we detect, ζ = 1.92, 
can be explained by the difference in the system we study (different 
scales and topologies). We have addressed the problem of whether 
the difference could be due to finite-size effects, or, in other words 
to the fact that the number of channels in our analysis is limited 
if compared with the original work of (Beggs and Plenz, 2003). At 
this scope we have further downsized our EEG montages follow-
ing two different strategies. In one case we have removed three 
horizontal rows of electrodes, so as to keep the distribution of 
the relative frequency of being recruited in a coincidence similar 
to the original one (Montage A of Figure 3). In the other case 
we have removed the external electrodes, i.e., those less frequently 
recruited into avalanches (Montage B of Figure 3). In the former 
case the difference between the measured index and the theoretical 
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FiGuRE 6 | Top panel: topological plots for average values of δ. Bottom 
panel: difference between the δ values at the 75th and the 25th percentile of 
the distribution of the values, for each channel, in our subjects data set.

Table 1 | Electrode name, global probability for the channel to be recruited 

in an avalanche Π (with N = 2), average values of single-electrode δ, and 

variability ∆δ, defined as the difference between the 75th and the 25th 

percentile among subjects.

Electrode Π δ ∆δ

C3 0.228385 0.757506 0.187235

C4 0.201346 0.739667 0.198606

CP3 0.209338 0.77078 0.160584

CP4 0.24643 0.782216 0.130516

CPz 0.299641 0.821134 0.054272

Cz 0.289253 0.800577 0.063873

F3 0.198364 0.764414 0.113709

F4 0.188843 0.759774 0.08692

F7 0.0900044 0.610634 0.266811

F8 0.0905577 0.544237 0.374451

FC3 0.209569 0.7204 0.136453

FC4 0.200835 0.727074 0.106384

Fp1 0.0751904 0.467436 0.343563

Fp2 0.0798263 0.485997 0.360373

FT7 0.0786308 0.546022 0.315478

FT8 0.07672 0.48328 0.344937

Fz 0.192899 0.704634 0.164585

O1 0.173621 0.636286 0.371517

O2 0.180112 0.646007 0.336575

Oz 0.194776 0.66265 0.355264

P3 0.205673 0.708011 0.296643

P4 0.23455 0.731865 0.232571

Pz 0.288554 0.777395 0.143018

T3 0.14311 0.584108 0.377083

T4 0.118829 0.562056 0.446797

T5 0.127144 0.628666 0.416468

T6 0.167971 0.672351 0.390344

TP7 0.134388 0.643266 0.376864

TP8 0.135346 0.647444 0.338161
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lobes (Raichle et al., 2001; Beckmann et al., 2005). DMN was also 
 identified through EEG in Trevis et al. (2010). In addition, some of 
the DMN areas have been reported to be associated to conscious-
ness, namely the inferior parietal lobe, and the whole medial cortical 
core (Alkire et al., 2008).

The topological results of our investigation indicate that the 
probability of being recruited into avalanche is in fact higher for the 
posterior midline core, spreading in the lateral posterior regions, 
with an antero-posterior gradient. Indeed, it has been suggested that 
mental activity associated with DMN is characterized by both low 
cognitive load and executive control, which are typically sustained 
by lateral frontal regions (Mansouri et al., 2009). We are therefore 
in a position to claim that unconstrained mental activity is a fractal 
emergent property compatible with a critical brain, with a specific 
regional topological pattern, partially superimposable with the 
DMN. We also think that our approach, based on the study of the 
intermittent fractional-time transitions between metastable states, 
borrowing methods from the science of complexity, adds a new vista 
on integrated neural dynamics, adds to the understanding of the 
brain dynamics, beyond the temporal limitations of neuro-vascular 
coupling generating the fMRI signal as well as beyond the classic 
segregation in Fourier EEG bands, and is able to explore holistic 
emergent properties.

Our results opens another issue: We show that, for all electrodes, 
the single-electrode complexity is a function of the relative recruit-
ment rate in global avalanches. What is the reason of what? One 
can assume that different areas keep their segregated complexity, 
and the coincidences result from the complex auto-organization 
of the coupling of already complex structures. It is reasonable that 
the global process will have a μ smaller than all of the μ’s of the 
component involved (West et al., 2008). It is however still to be 
understood why the components with smaller μ would be more 
involved in synchronized events. On the other hand, one may also 
think that a global process exists, involving maybe some region of 
the corticothalamic system and that the corresponding complex 
impulse is able to synchronize different regions through some diver-
sified probability function, that can depend for instance on some 
distance from a focus or on the anatomy of neural connection, 
or even from the degree of freedom of their neural assembly. The 
results of Figure 3 (Montage B) supports this latter hypothesis.

Whatever the process, an emergent complex (fractal) process 
exists, dominating the unstructured, non-task-oriented men-
tal activity, possibly in a critical state. Is it the default-mode 
network? Or is it the neural-integrated dynamics underlying/
sustaining consciousness?

to the correlational structure of a paradigmatic critical system, 
namely the Ising model for electromagnetism (Fraiman et al., 
2009).

2. It is possible to find physical systems where long-range 
memory and renewal processes coexist. This is true theo-
retically: Turalska et al. (2009) found that synchronization 
patterns in all-to-all coupled stochastic clocks are in fact inter-
mittent. This is also true experimentally: Silvestri et al. (2009) 
proved that the 1/f-noise emerging from the self-organization 
of defects in liquid crystals is incompatible with the existence 
of stationary correlation functions, but in fact obeys a fluctua-
tion-dissipation theorem based on renewal events.

3. The connection between phase transition and non-Poisson 
and renewal intermittency is a general property of phase 
transition process, as proved, for instance, by Contoyiannis 
and Diakonos (2000), who applied their theoretical approach 
directly to the Ising model.

4. Renewal events, rather than being incompatible with memory, 
do in fact yield extended memory. This can be proved mathe-
matically using a continuous-time random-walk approach.

Notice, however, that the above discussion rests on the concept 
of self-organization among identically coupled identical systems. 
While it is true that this kind of self-organized systems display a 
low increase of entropy (and this is in fact a definition of complex 
system), it is also true that complexity increases when the system is 
composed by diversified elements, with diversified interactions. In 
the neurophysiological context, Tononi (2004) defined a complexity 
measure Φ that in fact describes this degree of diversity, relating it 
to the amount of consciousness, defined as the quantity of informa-
tion that can be effectively integrated, i.e., processed by a collection 
of elements of the system.

In this paper we show that different cortical areas have different 
degrees of complexity. Herein we used the scaling-based complexity 
measure δ, based on fractional time. In particular, the areas located 
in the midline are more likely to be recruited in a global metastable 
transition. Moreover, a complexity index more similar to the global 
fractal behavior, is displayed by these very same areas, already at 
the level of single EEG electrode.

Midline areas are involved in the default-mode network (DMN), 
defined as the network of areas active during unconstrained rest-
ing state (typically lying quietly with eyes closed, as in our experi-
ments). DMN, first identified through fMRI, involves the medial 
prefrontal cortex, the posterior cingulate cortex, the inferior parietal 
lobe, the lateral inferior temporal cortex, and the medial temporal 
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