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Caveolae are cholesterol and glycosphingolipid-rich flask-shaped invaginations of the
plasma membrane which are particularly abundant in vascular endothelium and present
in all other cell types of the cardiovascular system, including vascular smooth-muscle
cells, macrophages, cardiac myocytes, and fibroblasts. Caveolins and the more recently
discovered cavins are the major protein components of caveolae. When caveolae were dis-
covered, their functional role was believed to be limited to transport across the endothelial
cell barrier. Since then, however, a large body of evidence has accumulated, suggesting
that these microdomains are very important in regulating many other important endothe-
lial cell functions, mostly due to their ability to concentrate and compartmentalize various
signaling molecules. Over the course of several years, multiple studies involving knockout
mouse and small interfering RNA approaches have considerably enhanced our understand-
ing of the role of caveolae and caveolin-1 in regulating many cardiovascular functions. New
findings have been reported implicating other caveolar protein components in endothelial
cell signaling and function, such as the understudied caveolin-2 and newly discovered cavin
proteins. The aim of this review is to focus primarily on molecular and cellular aspects of
the role of caveolae, caveolins, and cavins in endothelial cell signaling and function. In addi-
tion, where appropriate, the possible implications for the cardiovascular and pulmonary
physiology and pathophysiology will be discussed.
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CAVEOLAE AND CAVEOLINS
Caveolae or “small caves” were originally identified as 50–100 nm
flask-shaped, non-clathrin-coated invaginations of the plasma
membrane (Palade, 1953, 1961; Yamada, 1953; Palade and Bruns,
1968). These organelles are present in most mammalian cell types
and tissues, and are particularly abundant in endothelial cells
(ECs), adipocytes, and pneumocytes type I (Anderson, 1993; Field-
ing and Fielding, 1995; Parton, 1996; Severs, 1988). The originally
described functions for caveolae included cholesterol transport
(Fielding and Fielding, 1995; Smart et al., 1996), endocytosis
(Schnitzer et al., 1996), and potocytosis (Anderson et al., 1992).
However, later studies have revealed that this morphologically
distinct subset of lipid rafts, highly enriched in cholesterol and
sphingolipids, play a pivotal role in regulating cell signaling. Mem-
brane rafts and caveolae concentrate certain membrane proteins
and other components involved in transport and signal transduc-
tion (Allen et al., 2007; Parton and Simons, 2007; Patel et al., 2008;
Insel and Patel, 2009).

A significant advance in understanding the roles of caveolae
was made with identification of the coat proteins of caveolae,
the caveolins: VIP21/caveolin-1 (Cav-1), caveolin-2 (Cav-2), and
caveolin-3 (Cav-3; Glenney and Soppet, 1992; Kurzchalia et al.,
1992; Way and Parton, 1995; Scherer et al., 1996; Tang et al., 1996).
Cav-1 and Cav-2 are expressed in most cell types including all cell
types of the cardiovascular system, while Cav-3 is expressed pri-
marily in cardiac and skeletal muscle. Cav-1 expression is essential

for the formation of caveolae, whereas the role of Cav-2 can vary
depending on a cell and tissue type (Scheiffele et al., 1998; Fuji-
moto et al., 2000; Razani et al., 2002; Lahtinen et al., 2003; Sowa
et al., 2003).

CAVEOLAE IN ECs
All blood vessels are lined by a monolayer of ECs, called the
endothelium that helps supply nutrients and oxygen to under-
lying tissues and organs. Caveolae are most numerous in the
microvascular endothelia of the lung and relatively infrequent in
the highly restrictive microvascular endothelia of brain, retina, and
testes. Interestingly, caveolae are mostly absent in passively leaky
blood vessels with sinusoidal endothelia such as the liver (Ogi
et al., 2003). It is important to note that caveolae contain all of
the components required for vesicle formation, fission, docking,
and fusion with target membranes (Schnitzer et al., 1995). Com-
prehensive proteomic studies revealed many proteins specifically
enriched in EC caveolae (Durr et al., 2004). A large number of
signaling molecules that regulate vascular ECs localize to lipid
rafts/caveolae (Figure 1). These include receptors, e.g., recep-
tor tyrosine kinase (RTK), G-protein-coupled receptors (GPCRs),
transforming growth factor-beta (TGF-β) type I and II receptors,
certain steroid receptors, low molecular weight and heterotrimeric
G-proteins, and “downstream” enzymes and components includ-
ing endothelial nitric oxide synthase (eNOS; Patel et al., 2008;
Insel and Patel, 2009). This review will also discuss how various
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FIGURE 1 | Examples of signaling proteins localized in endothelial cell

caveolae. Several signaling molecules were localized in endothelial
caveolae and interact with Cav-1 including eNOS, RTK (e.g., VEGF Receptor
2), GPRC (e.g., Bradykinin Receptor 2, Endothelin Receptor, Muscarinic
Receptor), heterotrimeric G protein subunits (e.g., Gq), TGF-beta Receptors
I and II, calcium channels (e.g., TRPC1 and 4, TRPV4).

EC signaling molecules and their functions are regulated by cave-
olae and their specific coat and adapter protein components, i.e.,
caveolins and cavins.

ENDOTHELIAL Cav-1, eNOS, VASCULAR REACTIVITY, AND
BLOOD PRESSURE
Endothelial nitric oxide synthase was one of the first non-receptor
proteins found to be localized to plasma membrane caveolae
(Feron et al., 1996). Since then, many in vitro studies have char-
acterized the interaction between eNOS and Cav-1. Specifically,
using co-immunoprecipitation and domain-mapping approaches,
several groups have shown that eNOS directly interacts with the
scaffolding domain (aa 81–101) of Cav-1 (Garcia-Cardena et al.,
1997; Ju et al., 1997). Evidence supporting the functional relevance
of this interaction in intact cells has been shown by delivery of a
cell-permeable peptide containing the Cav-1 scaffolding domain
or by adenoviral overexpression of Cav-1 in living cells or tis-
sues. In all cases, NO release was attenuated, indicating that Cav-1
has a negative role in regulating eNOS activity (Michel et al., 1997;
Bucci et al., 2000; Sowa et al., 2001). Moreover, we have shown that
Cav-1 present in caveolae but not lipid rafts is able to inhibit eNOS
under basal conditions (Sowa et al., 2001), suggesting that caveolae
formation and localization is necessary for optimal tonic inhibi-
tion of eNOS by Cav-1. Studies involving Cav-1 KO validated the
negative regulation of eNOS by caveolae and Cav-1. Specifically,
the two independent studies revealed that the basal NO release
and cGMP production were both significantly higher in Cav-1 KO
than in WT mice (Drab et al., 2001; Razani et al., 2001). These data
clearly indicate that loss of Cav-1 and caveolae results in hyperacti-
vation of eNOS and associated NO release. Moreover, in addition
to eNOS hyperactivation, the following observations were also
reported: a lack of steady contractile tone in aortas isolated from
Cav-1 KO mice, as well as an increased relaxation in response to
acetylcholine coupled with a lower L-NAME-sensitive steady-state
maximal tension in response to phenylephrine (Drab et al., 2001;

Razani et al., 2001). These data suggest that Cav-1 and caveolae
play important roles in the negative regulation of eNOS activ-
ity in vivo. However, these studies examined cerebral arteries and
aorta, respectively, none of which can be regarded as resistance
arteries. Thus additional studies on systemic small arteries have
been performed by at least two independent laboratories (Albins-
son et al., 2007; Dubroca et al., 2007). Specifically, in both studies
Cav-1 KO mice displayed a reduced myogenic tone, i.e., active
constriction induced by pressure. Interestingly, the reduction in
myogenic tone was partially independent of increased NOS activ-
ity observed in Cav-1 KO mice (Albinsson et al., 2007; Dubroca
et al., 2007).

Considering numerous studies showing that Cav-1 KO mice
have increased NO production (Drab et al., 2001; Razani et al.,
2001; Zhao et al., 2002), and reduced arterial myogenic tone (Drab
et al., 2001; Albinsson et al., 2007), a decrease in systemic arterial
blood pressure could be predicted. However, out of seven studies
examining systemic blood pressure in Cav-1 KO mice five stud-
ies did not find a significant difference in systemic blood pressure
between Cav-1 KO and WT mice, whereas two studies reported
reduced systemic blood pressure (Reviewed in Rahman and Sward,
2009). Based on the fact that majority of these studies, including
the most recent one using telemetry (Desjardins et al., 2008), did
not report difference and considering that telemetry reliably mea-
sures both diastolic and systolic pressures without a dependence
on anesthesia, one might conclude that despite increased eNOS
activity and reduced myogenic tone, a loss of Cav-1 does not alter
mean systemic arterial blood pressure. It is possible however, that
prolonged hyperactivation of eNOS due to chronic loss of Cav-1
results in compensatory mechanisms in Cav-1 KO mice (Insel and
Patel, 2007). One alternate approach could be using conditional
Cav-1 KO or shRNA, allowing for an inducible loss of Cav-1 within
a relatively short time frame. Another alternative might use a pep-
tide which could antagonize the effect of Cav-1 on eNOS in vivo.
Indeed, in their most recent studies Bernatchez et al. (2011) used a
cell-permeable peptide containing Cav-1 scaffolding domain with
a single mutation (F92A) named cavnoxin, which blocked a spe-
cific interaction between endogenous Cav-1 and eNOS, resulting
in eNOS hyperactivation and increased NO release in WT but
not Cav-1 KO ECs and mice. Remarkably, cavnoxin reduced vas-
cular tone ex vivo in WT but not Cav-1 KO and eNOS KO aortic
blood vessels. In addition, cavnoxin lowered blood pressure in WT
but not in eNOS KO mice. Importantly, blood pressure measure-
ments were performed in non-anesthetized mice (Bernatchez et al.,
2011). Taken together, these data suggest that cavnoxin-induced
acute disruption of Cav-1/eNOS interaction results in hyperactiva-
tion of eNOS, increased vasodilation and reduced blood pressure
in vivo.

Of note, in addition to NO that stimulates signaling via acti-
vation of PKG, prolonged local hyperactivation of eNOS can also
lead to S-nitrosylation of proteins (Iwakiri et al., 2006). In con-
trast to the stimulating properties of free NO, protein nitration
has also been shown to play an inhibitory role in cell signaling and
function. For example, recent studies have revealed that eNOS
hyperactivation observed in Cav-1 KO mice results in excessive
peroxynitrite production and inhibitory nitration of PKG, leading
to pulmonary hypertension (Zhao et al., 2009).
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THE ROLE OF ENDOTHELIAL CAVEOLAE AND Cav-1 IN
REGULATING INTRACELLULAR CALCIUM AND EDHF
PATHWAY
Numerous molecules involved in calcium-ion translocation have
been localized to caveolae and might play a very important role
in cell signaling, including activation of eNOS (Pani and Singh,
2009). For example, it has been shown that calcium waves orig-
inate in EC caveolae (Isshiki and Anderson, 1999). Moreover,
Cav-1 regulates store-operated calcium-ion influx by binding
its scaffold domain to transient receptor potential channel-1
(TRPC1) in ECs (Kwiatek et al., 2006). Studies involving Cav-1
KO mice revealed that loss of Cav-1 expression in ECs abrogated
calcium-ion entry due to calcium-ion store depletion (Murata
et al., 2007b). Mechanistically, the protein–protein interactions
between TRPC1 and TRPC4, and their targeting to plasma mem-
brane lipid rafts were impaired in Cav-1 KO ECs. Moreover,
re-expression of Cav-1 in Cav-1 KO ECs rescued calcium-ion
entry as well as TRPC1 and TRCP4 interaction and targeting
to plasma membrane lipid rafts (Murata et al., 2007b), suggest-
ing the critical role of Cav-1 in regulating calcium-ion entry
in ECs.

Another member of the TRP channel family, TRPV4, is believed
to be a major regulator of vascular tone. TRPV4 channels appear
to be a significant calcium-ion entry pathway in ECs because of
their high calcium-ion permeability (Nilius et al., 2003; Kohler
et al., 2006). These channels can be activated by shear stress
and significantly contribute to endothelial mechanotransduction
(Hartmannsgruber et al., 2007). Interestingly, recent studies iden-
tified TRPV4 as the link between the impairment of calcium
entry and the defect in endothelium-derived hyperpolarizing fac-
tor (EDHF)-induced relaxation observed in Cav-1 KO mice (Saliez
et al., 2008). Specifically, a comparison of relaxation in ves-
sels from Cav-1 KO and WT mice, showed a complete absence
of EDHF-mediated vasodilation in isolated mesenteric arteries
from Cav-1 KO mice. Interestingly, the loss of Cav-1 and cave-
olae resulted in impairment of calcium homeostasis in ECs, i.e.,
decreased activity of calcium-ion permeable TRPV4 cation chan-
nels that participate in NO- and EDHF-mediated relaxation.
Moreover, morphological characterization of Cav-1 KO and WT
arteries revealed fewer gap junctions in vessels from Cav-1 KO
mice, associated with a lower expression of connexins 37, 40,
and 43 and altered myoendothelial communication. Finally, stud-
ies have also shown that TRPV4 channels and connexins colo-
calize with Cav-1 in plasma membrane caveolar compartments
(Saliez et al., 2008). Taken together, these data suggest that loss
of Cav-1 leads to impaired intercellular coupling through gap
junctions, implying that Cav-1 and caveolae might be critical
for a correct membrane location of connexins and gap-junction
assembly. Thus Cav-1 and caveolae are also important in regulat-
ing EDHF-related relaxation by modulating membrane location
and activity of TRPV4 channels and connexins that are involved,
at different steps, in the EDHF signaling. The broader signifi-
cance of impaired EDHF signaling observed in Cav-1 KO mice
for systemic vasculature appears to be complex and has been
thoroughly discussed in a recent review by Rahman and Sward
(2009).

ENDOTHELIAL CAVEOLAE/Cav-1 AND REDOX SIGNALING
AND FUNCTION
It has been recently shown that the NADPH Oxidase (NOX) com-
plex may be preassembled and functional in caveolae, and its
enzymatic activity enhanced by recruitment of additional com-
ponents (Yang and Rizzo, 2007). In ECs, various stimuli may
organize NOX components in ceramide-enriched lipid rafts (Li
et al., 2007; Jin et al., 2008a). Formation of such complexes can be
initiated by pro-apoptotic signals such as Fas ligand, endostatin,
and TNF-α (Zhang et al., 2006). In addition to pro-apoptotic
signals, lipolysis of triglyceride-rich lipoproteins can promote
aggregation of lipid rafts and enhance ROS production in ECs,
the latter effect being attenuated by NOX inhibitors (Wang et al.,
2008). Cav-1 can serve as a sensor of shear stress in ECs and
thereby regulate ROS-mediated signaling via NOX (Milovanova
et al., 2008). Thus numerous stimuli affect lipid rafts and cave-
olae and modulate NOX in ECs. Compartmented generation of
NO and superoxide by eNOS and NOX, respectively, may con-
tribute to protein nitration on tyrosine residues. Disruption of
lipid raft/caveolae domains with cholesterol-removing drugs dis-
sociates these enzymes from these microdomains and decreases
their ability to generate reactive species and to nitrate proteins in
bovine aortic ECs (Yang and Rizzo, 2007).

Heme oxygenase (HO), that catalyzes the breakdown of heme
to biliverdin, iron, and carbon monoxide (CO), exists as three
membrane-bound isoforms: inducible HO-1, constitutive HO-
2, and HO-3 which is catalytically inactive (Unno et al., 2007).
Among the products generated by HO, CO has signaling potential
(Kim et al., 2008). CO has been shown to be regulated by NO and
potentially to be involved in regulating vascular function (Durante
et al., 1997; Wang et al., 1997). HO-1 in ECs was shown to interact
with Cav-1 and Cav-2 and localize in caveolae. HO-1 has also been
shown to be negatively regulated by Cav-1 (Kim et al., 2004). Cav-
1 KO mice are protected from hyperoxic damage in the lung due
to an increased expression and activity of HO-1 (Jin et al., 2008b).

ENDOTHELIAL CAVEOLAE/Cav-1 AND
MECHANOTRANSDUCTION
Endothelial cells are normally exposed to mechanical forces which
regulate their function (Traub and Berk, 1998). The general notion
is that laminar and disturbed flows regulate endothelial function
differently. It has been shown that exposure of ECs to shear stress
results in an increased number of caveolae (Park et al., 1998) and
a rapid NO release due to the dissociation of eNOS from Cav-1
(Rizzo et al., 1998a). Moreover, Rizzo et al. (1998b) have shown
that exposure of ECs to shear stress leads to tyrosine phospho-
rylation of proteins localized to caveolae. Also, the translocation
of several signaling molecules into caveolae has been observed,
resulting in activation of the Ras-p42/44/MAPK pathway. Fur-
thermore, upon exposure of ECs to laminar shear stress, Cav-1
undergoes translocation to the abluminal side of the cell (Sun
et al., 2002), suggesting that relocation of Cav-1 and caveolae in
ECs could contribute to the adaptive response in cells exposed to
shear stress. More recent studies involving Cav-1 KO mice and
ECs from these mice further reinforced the functional signifi-
cance for Cav-1 in short- and long-term mechanotransduction
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in the vasculature. In particular, studies by Yu et al. (2006) have
examined the role of Cav-1/caveolae in the regulation of flow-
induced mechanotransduction in vessels from WT, Cav-1 KO, and
Cav-1 KO with Cav-1 re-expressed in ECs. Their results revealed
that endothelial Cav-1 and caveolae are necessary for both rapid
and long-term mechanotransduction in intact blood vessels, sug-
gesting that Cav-1 and caveolae are important sensors of altered
shear stress and associated signaling in ECs (Yu et al., 2006). Most
recent mechanistic studies by Yang et al. (2011) involving siRNA
approaches in primary bovine aortic ECs and Cav-1 KO ECs
determined that p190RhoGAP links integrins and Cav-1/caveolae
to RhoA in a mechanotransduction cascade that participates in
endothelial adaptation to flow.

Interestingly, although the previously noted studies strongly
suggest that caveolae and Cav-1 are essential for mechanotrans-
duction induced by shear stress/flow, there are also studies suggest-
ing that the role of caveolae and Cav-1 in mechanotransduction
and its possible implications for systemic vasculature may be more
complex. Specifically, studies of Albinsson et al. (2008) revealed
that pressure (stretch)-induced vascular smooth-muscle growth
and differentiation were unaltered in Cav-1 KO versus WT ves-
sels in vitro, suggesting that unlike sensing of shear stress, the
sensing of pressure occurs independently of caveolae and Cav-1.
Moreover, another study from the same laboratory has shown no
significant difference inflow-mediated dilation in small mesenteric
arteries isolated from Cav-1 KO mice, suggesting that impaired
mechanosensing by caveolae and Cav-1-deficient endothelium
might not be relevant, at least in the specific context of systemic
blood pressure control (Albinsson et al., 2007). Alternatively, pos-
sible adaptations to continuous loss of Cav-1 and caveolae in
mice could mask certain differences. Thus using conditional Cav-
1 KO (inducible within a specific time frame), siRNA, or short
cell-permeable peptide delivery approaches could shed more light
on physiological relevance of the role of caveolae and Cav-1 in
mechanotransduction.

ENDOTHELIAL CAVEOLAE/Cav-1 AND MACROMOLECULAR
TRANSPORT/PERMEABILITY
The transcytosis of macromolecules was the first function pro-
posed for caveolae (Palade and Bruns, 1968). Caveolae have been
suggested to mediate the transport of molecules such as albu-
min (Ghitescu et al., 1986), iron-transferrin (Soda and Tavassoli,
1984), insulin (King and Johnson, 1985), low-density lipoproteins
(LDL; Ghitescu et al., 1986), and chemokines (Ge et al., 2008). The
transcytosis pathway could be central for the specific and targeted
delivery of molecules to certain organs. For example, this pathway
may be crucial for the capillary ECs that form the blood brain
barrier. The transport of albumin has been the most extensively
studied case of transcytosis (Predescu et al., 2004); it is significant
because albumin can carry various small molecules such as fatty
acids and steroid hormones. The transport of albumin was sug-
gested to be mediated by the gp60 receptor localized in caveolae
(Tiruppathi et al., 1997), and more recently, caveolae have been
shown to be involved in the endothelial transcytosis of albumin
(Schubert et al., 2001; Mehta et al., 2004). Importantly, in con-
trast to WT, Cav-1 KO ECs could not transcytose albumin in mice
injected with gold-labeled albumin (Schubert et al., 2001).

Although, the physiological role of caveolae in transcellular
transport of specific molecules such as LDL (Frank et al., 2008),
or at certain anatomical locations including lung microvascular
endothelium (Oh et al., 2007) cannot be excluded, the physiolog-
ical significance of transcytosis and its quantitative importance
remain a matter of controversy for most macromolecules (Rippe
et al., 2002). In fact, several studies using Cav-1 KO or siRNA
approaches in vivo determined that albumin or other macromolec-
ular transport is increased due to loss or reduction of Cav-1 (Schu-
bert et al., 2002; Miyawaki-Shimizu et al., 2006; Rosengren et al.,
2006). Although these studies were consistent regarding increased
macromolecular transport, the proposed mechanisms are differ-
ent. Specifically, two of these studies reported opening of the
paracellular junctions in endothelia of small veins and capillaries
(Schubert et al., 2002; Miyawaki-Shimizu et al., 2006). In contrast,
in another study, Rosengren et al. (2006) did not observe an open-
ing of alternative paracellular pathway in Cav-1 KO mice. Instead,
they concluded that this increased macromolecular transport
could be a result of passive porous transport via an unperturbed
two-pore system, presumably at an elevated capillary hydraulic
pressure (Rosengren et al., 2006). Regardless of these differences
the increased macromolecular transport in Cav-1 KO appears to
be mediated through the ability of caveolae and Cav-1 to regu-
late cell signaling, in particular eNOS. Specifically, Schubert et al.
(2002) have shown that treatment of Cav-1 KO mice with eNOS
inhibitor reversed the enhancing effect of Cav-1 loss on macromol-
ecular transport, suggesting that Cav-1 might control molecular
transport via regulating eNOS activity. The opening of adherens
junctions that was observed in Cav-1 KO endothelium (Schubert
et al., 2002; Miyawaki-Shimizu et al., 2006) suggests that Cav-1 is
necessary for adherens junction assembly or maintenance. Most
recently, a plausible mechanistic explanation regarding this phe-
nomenon was provided by Siddiqui et al. (2011), who, using ECs
isolated from Cav-1 KO mice, have shown that loss of Cav-1 could
activate eNOS and the generation of NO and peroxynitrite. They
found that the GTPase-activating protein (GAP) p190RhoGAP-
A was selectively nitrated at Tyr 1105, resulting in impaired GAP
activity and RhoA activation. Inhibition of eNOS or RhoA restored
adherens junction integrity and diminished endothelial hyperper-
meability in Cav-1 KO mice. In addition, thrombin also induced
nitration of p120-catenin-associated p190RhoGAP-A, suggesting
that eNOS-dependent nitration of p190RhoGAP-A is critical for
adherens junction disassembly leading to increased endothelial
permeability (Siddiqui et al., 2011).

Interestingly, in contrast to the previously discussed increase
basal permeability in Cav-1 KO mice, these mice were resis-
tant to hydrogen peroxide-induced pulmonary vascular albumin
hyperpermeability and edema formation. Furthermore, the vas-
cular hyperpermeability in response to hydrogen peroxide also
observed in Cav-1 KO mouse lung microvessels was rescued by
expression of WT but not by the expression of phosphorylation-
deficient mutant of Cav-1. The increase in Cav-1 phosphorylation
induced by hydrogen peroxide was concentration-dependently
coupled to both increased albumin transcytosis and decreased
transendothelial electric resistance in pulmonary ECs. Hydrogen
peroxide-induced phosphorylation of Cav-1 resulted in the disso-
ciation of vascular endothelial cadherin/beta-catenin complexes
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and endothelial barrier disruption (Sun et al., 2009). Thus Cav-
1 phosphorylation-dependent signaling plays a critical role in
oxidative stress-induced pulmonary vascular hyperpermeability
via transcellular and paracellular pathways.

In light of the experimental evidence discussed in this section,
it is clear that caveolae and Cav-1 play a critical role in regulat-
ing microvascular permeability. Moreover, the regulatory role of
caveolae and Cav-1 appears to be complex and context-specific,
as seen in basal- versus oxidative stress-induced microvascular
permeability.

IS LOSS OF ENDOTHELIAL Cav-1 RESPONSIBLE FOR
CARDIAC HYPERTROPHY IN Cav-1 KO MICE?
Cardiac hypertrophy is a critical pathology leading to heart failure.
Although, ventricular cardiomyocytes express primarily Cav-3,
surprisingly numerous studies have reported cardiomyopathy in
Cav-1 KO mice (Zhao et al., 2002; Cohen et al., 2003; Wunder-
lich et al., 2006; Murata et al., 2007a). A detailed discussion of
the role of Cav-1 and caveolae in cardiac muscle and cardiac
hypertrophy observed in Cav-1 KO mice can be found in a recent
review by Rahman and Sward (2009). A very important study,
from an endothelial Cav-1 and caveolae perspective conducted
by Murata et al. (2007a) revealed that the mechanism leading to
cardiac hypertrophy observed in Cav-1 KO mice appears to orig-
inate in ECs. Specifically, they showed that selective re-expression
of Cav-1 under the control of the preproendothelin-1 promoter
completely reversed cardiac hypertrophy and associated coronary
arterial remodeling and fibrosis in Cav-1 KO mice (Murata et al.,
2007a). These data suggest that loss of endothelial Cav-1 is primar-
ily responsible for the cardiac phenotype observed in Cav-1 KO
mice. However, in addition to ECs, endothelin-1 expression has
been reported in other cell types such as smooth muscle,adventitial
fibroblasts, or epithelial cells (Rahman and Sward, 2009). There-
fore, additional studies with Cav-1 re-expression and/or condi-
tional KO approaches, using independent EC-specific promoter(s)
such as VE-cadherin or Tie-2, may be needed to further reinforce
the importance of endothelial Cav-1 in cardiac pathophysiology.

CAVEOLAE/Cav-1 AND POSTNATAL ANGIOGENESIS
Angiogenesis is the process of new blood vessel formation that
takes place in three clearly distinct phases: initiation, proliferation
of vascular cells, and morphogenesis. Several important signaling
proteins involved in angiogenesis have been localized to caveo-
lae such as the VEGF receptor (VEGFR), the urokinase receptor
(uPAR), eNOS, and TGF-β receptors.

Initial studies using Matrigel plugs supplemented with basic
fibroblast growth factor implanted into WT and Cav-1 KO mice
have shown that angiogenesis in Cav-1 KO mice is markedly
reduced (Woodman et al., 2003), suggesting that Cav-1 is necessary
for optimal neovascularization. Furthermore, three independent
studies using in vivo models of tumor-induced angiogenesis with
mouse B16 melanoma cells implanted in Cav-1 KO and WT
C57BL/6 mice (Woodman et al., 2003; Chang et al., 2009), and
RM-9 prostate cancer cells or human prostate cancer LNCaP cells
implanted into nude mice (Tahir et al., 2008), have further rein-
forced the positive role for Cav-1 in angiogenesis. Specifically,
the results of the first study revealed that tumor weight, volume,

and vessel density were all reduced in Cav-1 KO mice subcuta-
neously (sc) injected with B16-F10 melanoma cells (Woodman
et al., 2003). A more recent study, using a similar model of tumor-
induced angiogenesis, also reported impaired tumor growth and
diminished angiogenesis in Cav-1 KO mice (Chang et al., 2009).
In another study using an orthotopic RM-9 mouse prostate cancer
model both tumor growth and angiogenesis were also reduced in
Cav-1 KO mice (Tahir et al., 2008). Furthermore, both tumor vol-
umes and tumor microvessel density were significantly greater in
nude mice implanted sc with LNCaP cells in which expression of
Cav-1 was induced with doxycycline (Tahir et al., 2008). In addi-
tion to in vivo studies, at least two studies involving Cav-1 KO
aortic ECs seem to support the pro-angiogenic role for Cav-1.
For example, Cav-1 KO aortic ECs displayed impaired VEGF-
stimulated signaling and angiogenesis in vitro (Sonveaux et al.,
2004). A different study involving Cav-1 KO aortic ECs determined
that recombinant Cav-1 could restore specific angiogenic func-
tions in Cav-1 KO aortic ECs (Tahir et al., 2008). Numerous studies
using antisense or siRNA approaches, frequently combined with
Cav-1 overexpression also support pro-angiogenic role of Cav-1
in vitro. Knockdown of Cav-1 with antisense oligos suppressed
capillary tube formation in human umbilical vein EC (HUVEC)
shown using a fibrin gel-based angiogenesis assay (Griffoni et al.,
2000). Adenoviral overexpression of Cav-1 and treatment with a
cell-permeable peptide containing the Cav-1 scaffolding domain
enhanced capillary-like tube formation, while downregulation of
Cav-1 expression with antisense adenoviral approach reduced
this process (Liu et al., 2002). Treatment with the two caveolae-
disrupting agents cyclodextrin and filipin, or selective targeting
of Cav-1 expression with siRNA, resulted in blocking MT1-MMP
function and inhibition of PMA-stimulated HUVEC migration
through polycarbonate filters and invasion into type I collagen gel
as well as capillary tube formation in matrigel (Galvez et al., 2004).
Similarly, siRNA-mediated knockdown of Cav-1 inhibited direc-
tional cell migration in HUVEC stimulated with VEGF as shown
in a Dunn chamber assay, demonstrating that Cav-1 is crucial
for VEGF-induced migration (Beardsley et al., 2005). A consid-
erable amount of evidence has accumulated showing a positive
correlation between Cav-1 expression, tumor microvascular den-
sity, and often shorter survival in humans with clear cell renal
cell carcinoma (Joo et al., 2004), prostate cancer (Yang et al.,
2007), meningioma (Barresi et al., 2008), or hepatic cell carci-
noma (Zhang et al., 2009). Collectively, basic and clinical research
data strongly support a pro-angiogenic function for Cav-1.

Data suggesting an anti-angiogenic role for Cav-1 based on
in vivo and in vitro models of angiogenesis have also been reported.
However, little clinical evidence has been obtained to date. Neg-
ative regulation of tumor-induced angiogenesis in vivo by Cav-1
has been reported using Cav-1 KO mice, Cav-1 overexpression,
or delivery of cell-permeable peptide containing Cav-1 scaffold-
ing domain. Transfection of the liposome Cav-1 plasmid complex
delayed sc implanted Lewis lung carcinoma (LLC) tumor growth
in mice, particularly during later stages (Brouet et al., 2005). In
another study, a significantly higher tumor growth rate, angio-
genesis, and tumor vascular permeability were observed in Cav-1
KO implanted with LLC tumors (Lin et al., 2007). Furthermore,
administration of cell-permeable peptide containing scaffolding
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domain of Cav-1 through the tail vein of Cav-1 KO mice pre-
vented both the tumor vascular hyperpermeability and increased
tumor growth (Lin et al., 2007). Similar to the previous study,
a more rapid tumor growth, increased angiogenesis and tumor
vessel hypermeability was reported in Cav-1 KO mice implanted
sc with B16 melanoma cells (Dewever et al., 2007). An anti-
angiogenic role for Cav-1 was also suggested by several studies
using in vitro models of angiogenesis, For example, adenoviral
overexpression of Cav-1 inhibited the proliferation of HUVEC in
response to VEGF as well as the kinase activity of VEGFR2 and
the downstream p42/44 MAP kinase (Fang et al., 2007). Another
study reported that VEGF-stimulated VEGFR2 tyrosine phospho-
rylation was more robust and sustained in Cav-1 KO lung ECs.
This coincided with a decreased basal and VEGF-stimulated asso-
ciation between VEGFR2 and the VE-cadherin complex as com-
pared with WT ECs (Lin et al., 2007). Overall, these data support
anti-angiogenic function of Cav-1.

Thus the experimental evidence has been gathered suggest-
ing that Cav-1 could play a bi-directional role in angiogenesis,
i.e., promote or inhibit the process of new blood vessel forma-
tion. How can the studies showing positive and negative role of
Cav-1 in angiogenesis be reconciled? It is essential to remember
that tumor-induced angiogenesis depends on the delicate balance
between pro- and anti-angiogenic factors which vary between spe-
cific tumor models, stages of tumor growth and angiogenesis, and
the genetic backgrounds or ages of animals used. Also, differences
between specific in vitro assays of angiogenesis, source of ECs, or
pro-angiogenic stimuli could result in different outcomes. Impor-
tantly, Cav-1, through its scaffolding domain, can interact with
and inhibit activity of numerous signaling proteins such as eNOS,
PI3K, Src, PKC, or Erk that could play a role in angiogenesis (see
review by Patel et al., 2008). In the absence or presence of low lev-
els of pro-angiogenic stimuli, Cav-1 could play an anti-angiogenic
role. The shift from anti- to pro-angiogenic role for Cav-1 could
occur once a critical level of pro-angiogenic stimulation is reached.
At that point, correct caveolar localization of a pro-angiogenic
signaling protein may be essential for optimal signal transduc-
tion. Furthermore, Cav-1 protein is crucial for maintaining intact
and functional caveolar membranes that sequester many receptors
and downstream signaling proteins involved in angiogenesis such
as VEGFR2 (Labrecque et al., 2003; Sonveaux et al., 2004), PDGF
receptor, Src, eNOS, PI3K, or PKC (de Laurentiis et al., 2007).

ENDOTHELIAL CAVEOLAE, Cav-1, AND ATHEROSCLEROSIS
Atherosclerosis is the result of inflammatory and fibro-
proliferative responses which reflect a complex crosstalk among
the vascular wall, circulating cells, and cardiovascular risk factors.

Many studies involving animals and humans have provided
the evidence showing that EC dysfunction plays a major role in
initiation of the atherosclerotic process (Luscher and Noll, 1994;
Brandes et al., 2005). The entrapment of LDL particles in the sub-
endothelial space of arteries and their subsequent modification is
believed to be one of the key events that ultimately lead to the
development of an atheroma (Ross, 1999; Williams and Tabas,
2005).

Recently, direct genetic evidence has been provided support-
ing the important role of endothelial caveolae and Cav-1 in

atherosclerosis. Initially, using Cav-1 KO mice bred to ApoE KO
mice, Frank et al. (2004) demonstrated that the loss of Cav-1
markedly inhibits fatty streak lesion formation compared with
ApoE KO mice. This decrease was accompanied by lower CD36
expression in the aorta. Also, plasma LDL levels in Cav-1 KO
mice were elevated, suggesting a defect in either uptake and/or
transfers of LDL to peripheral tissues, consistent with a role of
caveolae in the LDL transcytosis process (Frank et al., 2004).
Taken together, this data suggest that caveolae and Cav-1 markedly
contribute to process of atherosclerosis in mice. However, in addi-
tion to ECs, macrophages are also involved in LDL uptake and
express Cav-1. Thus it was important to determine a specific
contribution of endothelial Cav-1 to the process of atheroscle-
rosis. To address this, an EC-specific re-expression of Cav-1 in
Cav-1 KO mice was used (Fernandez-Hernando et al., 2009). The
results of these studies revealed that although global loss of Cav-
1 in an ApoE KO background inhibited atherosclerotic lesion
expansion, endothelial-specific re-expression of Cav-1 restored
this process. Mechanistically, loss of Cav-1 decreased LDL infiltra-
tion into the arterial wall, promoted NO production, and reduced
the expression of leukocyte adhesion molecules such as VCAM-
1, ICAM-1, and E-selectin. These effects of global loss of Cav-1
were completely reversed by re-expression of Cav-1 in endothe-
lium (Fernandez-Hernando et al., 2009). Another study from the
same laboratory revealed that endothelial-specific overexpression
of Cav-1 enhanced the progression of atherosclerosis in mice and
was accompanied by reduced EC proliferation, migration, and
NO production in vitro and increased expression of VCAM-1
in vivo (Fernandez-Hernando et al., 2010). Taken together, these
data support the notion that Cav-1 expressed in ECs plays a
pro-atherogenic role in mouse models of atherosclerosis.

THE ROLE OF EC CAVEOLAE AND Cav-1 IN ACUTE LUNG
INJURY AND INFLAMMATION
Primary acute lung injury (ALI) is a direct injury to the lung
resulting from pneumonia, ventilation-associated injury, hyper-
oxic injury, trauma, and contusion (Ingbar, 2000; Mantell and Lee,
2000; Matute-Bello et al., 2008). Secondary ALI is typically caused
indirectly by severe sepsis, pancreatitis, or transfusion-related ALI
(Ingbar, 2000). Acute inflammation has been associated with the
pathological stages of ALI and with enhanced vascular perme-
ability, fibroproliferation, epithelial cell apoptosis, and varying
degrees of interstitial fibrosis (Ingbar, 2000; Mantell and Lee, 2000;
Matute-Bello et al., 2008).

Experimental evidence suggests that caveolae and Cav-1
expressed in ECs play a critical role during acute inflammation
by regulating the transport of macromolecules such as albumin
from the blood-space to the tissue-space (Schubert et al., 2002;
Hu et al., 2008a,b; Sun et al., 2009). Albumin cannot be endocy-
tosed by Cav-1 KO lung ECs and is retained in the blood vessel
lumen (Sun et al., 2009). Previous studies have suggested that
caveolae and lipid rafts contribute to non-cardiogenic pulmonary
edema during ALI (Hu et al., 2008a,b). Additional studies using
cell-permeable peptide containing scaffolding domain of Cav-1
have demonstrated that scaffolding domain of Cav-1 regulates
calcium store release-induced calcium influx in ECs, suggesting
a potential role in endothelial permeability (Sundivakkam et al.,
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2009). The results of numerous studies suggest that Cav-1 plays
a dual role in regulating microvascular permeability. First, as a
caveolae-associated structural protein Cav-1 may control caveolar
transcytosis. Second, as a tonic inhibitor of eNOS activity, Cav-1
plays a negative role in regulating paracellular permeability (Sun
et al., 2009). As a result of such dual regulation, although the Cav-
1 KO mice display vascular and fluid balance abnormalities in
the lung, they are resistant to ALI in comparison to WT mice. In
addition, Cav-1 KO mice have markedly improved survival during
secondary ALI resulting from sepsis induced by lipopolysaccharide
(LPS; Garrean et al., 2006; Mirza et al., 2010). Analogous results
were reported using hyperoxia (Jin et al., 2008b). Remarkably, Cav-
1 KO mice display basal pulmonary edema manifested by elevated
extravascular lung fluid. It has been postulated that this opposing
tissue pressure may limit further transport and accumulation of
pulmonary edema fluid from vascular damage during lung injury
(Jin et al., 2011). Furthermore, loss of Cav-1 hyper-activates eNOS
and subsequently reduces toll-like receptor 4 signaling, leading to
the decreased innate immune response to LPS and thus protecting
from LPS-induced inflammation and injury (Mirza et al., 2010).
These data are in agreement with the previous studies by Garrean
et al. (2006) demonstrating that Cav-1 KO mice have markedly
reduced pro-inflammatory response to LPS via NF-κB-mediated
pathways.

THE NEGATIVE ROLE OF Cav-2 IN REGULATING EC
PROLIFERATION
The possibility for the involvement of Cav-2 in regulating EC
proliferation and differentiation in vivo was suggested by the
observation that Cav-2 KO mice develop a hyperproliferative phe-
notype in the lungs associated with increased number of VEGFR2
positive cells (Razani et al., 2002). Because VEGFR2 is predom-
inantly expressed in ECs, this observation suggests that Cav-2
may negatively regulate microvascular EC proliferation in the
lung. However, due to the complexity of the in vivo system, it
is impossible to unequivocally conclude if Cav-2 directly regulates
lung microvascular EC proliferation. Thus, we immunoisolated
and characterized pure populations of lung ECs from Cav-2 KO
and WT mice, and compared their proliferation potential and
the expression or phosphorylation levels of cell cycle-associated
signaling proteins (Xie et al., 2010). These studies determined
that Cav-2 suppresses lung microvascular EC proliferation via
inhibition of extracellular signal regulated kinase 1/2 (ERK1/2)
phosphorylation, increased expression of cyclin-dependent kinase
(cdk) inhibitors p16INK4 and p27Kip1 and activation (hypophos-
phorylation) of the retinoblastoma (Rb) protein, resulting in a
reduced cell cycle progression (Xie et al., 2010). Recently, another
group using a combination of miRNA, siRNA, and plasmid over-
expression approaches, has confirmed anti-proliferative function
of Cav-2 in a rat prostate EC line (YPEN-1; Shatseva et al., 2011),
suggesting that in addition to the lung, Cav-2 can also inhibit EC
proliferation from other organs such as the prostate.

We are now exploring the mechanistic nature of this negative
regulation by Cav-2. Since Cav-2 almost entirely targets to lipid
rafts/caveolar microdomains in mouse lung ECs used in our stud-
ies (Xie et al., 2011), our data suggest that the inhibitory effect
of Cav-2 on EC proliferation is most likely initiated in plasma

membrane lipid rafts and caveolae. In addition, the fact that Cav-
2 can be serine phosphorylated (Sowa et al., 2003), and that serine
36 phosphorylation of Cav-2 increases in mitotic ECs (Sowa et al.,
2008) indirectly suggest involvement of serine phosphorylation in
the growth inhibitory function of Cav-2 in ECs. However, more
direct studies will be required to determine involvement of serine
phosphorylation of Cav-2 in regulating EC proliferation.

Cav-2 SUPPRESSES THE TGF-β-INDUCED SIGNALING AND
ANTI-PROLIFERATIVE FUNCTION IN LUNG ECs
Our most recent findings suggest that the role of Cav-2 in regu-
lating lung microvascular EC proliferation is more complex and
context-specific than we originally thought (Xie et al., 2011).
Specifically, using a combination of WT and Cav-2 KO, along
with retroviral re-expression approaches, we have shown that Cav-
2 may be a physiological inhibitor of anti-proliferative function
and signaling of TGF-β in mouse lung ECs. Remarkably, although
treatment with TGF-β resulted only in a marginal inhibitory effect
on WT lung ECs, it greatly inhibited proliferation of Cav-2 KO
lung ECs. Similar to WT ECs, the anti-proliferative effect of TGF-
β was dramatically reduced in the Cav-2 KO ECs re-expressing
Cav-2. Mechanistically, Cav-2 inhibits anti-proliferative action of
TGF-β by suppressing the Alk5/Smad2/3 pathway manifested by
reduced magnitude and length of TGF-β-induced Smad2/3 phos-
phorylation as well as activation of Alk5/Smad2/3 target genes,
plasminogen activator inhibitor-1, and collagen type I in Cav-
2-positive ECs. Our preliminary data suggest that expression of
Cav-2 neither significantly changes targeting of TGF-β receptors
type I, Alk5 and Alk1 nor Smad2/3 to caveolar and lipid raft
microdomains. However, additional studies with control versus
TGF-β-treated ECs using various subcellular fractionation and
immunofluorescence microscopy localization techniques will be
needed for a more comprehensive analysis. Cav-1 expression levels
are reduced at least by c.a. 50% in Cav-2 KO, relative to WT ECs and
thus could possibly contribute to the enhanced anti-proliferative
effect of TGF-β in Cav-2 KO ECs. Nevertheless, the levels of
re-expressed Cav-2 in Cav-2 KO ECs required to suppress TGF-β-
induced signaling and anti-proliferative function are insufficient
to upregulate the expression levels of Cav-1 or change its targeting
to lipid raft/caveolar microdomains. In addition, just as in the case
of endogenous Cav-2 in WT ECs, the re-expressed Cav-2 displays
normal targeting to plasma membrane and lipid raft/caveolae.
In addition, the re-expressed Cav-2 does not affect subcellular
targeting of endogenous Cav-1. Thus the negative regulation of
TGF-β signaling and function by Cav-2 is independent of both
the expression levels and targeting of Cav-1 to lipid raft/caveolar
microdomains. Future studies exploring the detailed mechanisms
responsible for inhibitory regulation of TGF-β-induced signaling
and function in ECs by Cav-2 will be essential. For example it will
be important to examine interactions of Cav-2 and Cav-1 with
Alk5 or other components of the TGF-β pathway in the absence
and presence of TGF- β. In addition, it will be important to exam-
ine possible regulation of subcellular localization of Alk5, TGF-β
receptor II, or accessory receptors such as endoglin and β-glycan
by Cav-2. Also, it will be important to examine the specific role
of previously identified serine and tyrosine phosphorylation of
Cav-2 (Lee et al., 2002; Sowa et al., 2003, 2008; Wang et al., 2004).
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Finally, determining thein vivo significance of our results is clearly
warranted.

COULD Cav-2 BE CONSIDERED A MOLECULAR SWITCH CONTROLLING
LUNG EC PROLIFERATION?
It is important to reconcile the role for Cav-2 in inhibiting TGF-
β-induced signaling and anti-proliferative function (Xie et al.,
2011) with the previously described anti-proliferative role of
Cav-2 in ECs (Xie et al., 2010). Though, in both cases, Cav-2
acts as an inhibitor, the final outcome depends on the particu-
lar context. Specifically, in our previous studies in which Cav-2
had an anti-proliferative effect, EC proliferation was evaluated
in the absence of known growth inhibitors (Xie et al., 2010).
Under these conditions, Cav-2 diminishes the stimulatory effect
of serum and growth factors on EC proliferation. Conversely, in
the presence of TGF-β, the role of Cav-2 switches from anti- to
pro-proliferative through the negative regulation of the growth
inhibitory action of TGF-β/Alk5/Smad2/3 pathway (Xie et al.,
2011). Thus, it is conceivable to suggest that Cav-2 could act as a
molecular switch neutralizing excessive cell responses to both pro-
and anti-proliferative signals. Further studies will be necessary to

solidify this newly proposed role for Cav-2 in ECs and possibly
other cell types.

ROLE OF CAVINS IN CAVEOLAE TURNOVER
Recent studies have revealed that in addition to their coat proteins,
caveolae also contain adapter proteins, cavins. Cavin-1 (poly-
merase transcript release factor, PTRF), cavin-2 (serum depriva-
tion protein response, SDPR), cavin-3 (srd-related gene product
that binds to c-kinase, SRBC), and cavin-4 (muscle-restricted
coiled-coil protein, MURC) may be important in regulating cave-
olin expression and caveolar morphology (Hansen and Nichols,
2010; Briand et al., 2011a).

Cavin-1/PTRF can be recruited by caveolins to plasma mem-
brane caveolar domains and is necessary for caveolae formation
(Hill et al., 2008; Liu and Pilch, 2008; Figure 2A). Deletion of
cavin-1 led to the loss of morphologically distinct caveolae and to
decreased protein stability of all three caveolins. Cavin-1 down-
regulation has been shown to cause increased mobility of plasma
membrane Cav-1, leading to its rapid internalization and degrada-
tion (Hill et al., 2008). It is believed that cavin-1 contributes to the
last steps of caveolae biogenesis as the latter protein only associates

FIGURE 2 |The complex role of caveolar coat an adapter proteins in

caveolae formation (A), deformation/elongation (B), and internalization

(C). Heterooligomers of the caveolar coat proteins, Cav-1 and Cav-2 and
homooligomers of Cav-1 crossing the inner leaflet of plasma membrane are
responsible for creating a structure or backbone of caveolae. The adapter
proteins of caveolae, cavins provide the scaffold, determine shape, and
regulate internalization/budding of caveolae. (A) Cavin-1 is a soluble protein
which is recruited to caveolae as a scaffold stabilizing the caveolae unit
(Deletion of cavin-1 results in the loss of morphologically distinct caveolae and

in decreased protein stability of caveolins). Cavin-2 and cavin-1 interact with
each other and cavin-2 promotes recruitment of cavin-1 to caveolae. Cavin-2
downregulation induces loss of cavin-1 and Cav-1 expression and thereby
limits caveolae formation. (B) Cavin-2 is thought to be a necessary
component for inducing membrane-curvature of caveolae (Overexpression of
cavin-2 induces elongated caveolar morphology as well as
caveolae-associated tubule formation). (C) Cavin-3 associates with Cav-1 upon
caveolae internalization to form vesicles and its absence markedly reduces
intracellular Cav-1 traffic along microtubules.
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with plasma membrane caveolae and not with non-caveolar cave-
olins (Hill et al., 2008; Hayer et al., 2010). Thus, cavin-1 could be
considered as a soluble protein being recruited to caveolae as a
scaffold stabilizing the caveolae unit (Figure 2A).

Cavin-2/SDPR downregulation induces loss of cavin-1
and Cav-1 expression and thereby limits caveolae formation
(Figure 2A), suggesting that cavin-1, cavin-2, and Cav-1 are
functionally inter-dependent (Hansen et al., 2009). Studies using
co-immunoprecipitation approaches revealed that cavin-2 and
cavin-1 interact with each other and cavin-2 promotes recruitment
of cavin-1 to caveolae. However, this interaction does not require
Cav-1 (Hansen et al., 2009). In contrast to Cav-1 or cavin-1 respec-
tively, cavin-2 does not increase caveolae number but induces elon-
gated caveolar morphology as well as caveolae-associated tubule
formation (Hansen et al., 2009; Figure 2B). Thus cavin-2 may
be a necessary component for inducing membrane-curvature of
caveolae.

Based on homology with cavin-1, cavin-3 is also considered
to play a role in determining caveolae structures. Interestingly,
cavin-3 still associates with Cav-1, upon caveolae budding, to
form vesicles and intracellular Cav-1 traffic along microtubules
is markedly impaired in the absence of cavin-3 (McMahon et al.,
2009). Taken together, these data suggest that although it is unclear
if cavin-3 is necessary for caveolae formation the latter pro-
tein might be involved in coupling caveolae to the intracellular
transport machinery (Figure 2C).

Cavin-4/MURC has been previously described as purely
cytosolic and able to interact with cavin-2 (Ogata et al., 2008).
Cavin-4 was also found to associate with sarcolemmal caveolae
of muscle cells and its expression is perturbed in human muscle
diseases associated with Cav-3 dysfunction. At this point, the exact
role of cavin-4 in muscle caveolae turnover is unknown. However,
Cavin-4 was shown to associate with cardiac dysfunction through
the modulation of the Rho/ROCK pathway and to be important
in muscle biogenesis (Tagawa et al., 2008). This is consistent with
the specific expression of cavin-4 in cardiac and muscle tissues,
which parallels Cav-3 expression (Bastiani et al., 2009).

CAVINS AND EC FUNCTION
Recently generated Cavin-1 KO mice were shown to lack mor-
phologically distinct caveolae in all tissues/cell types examined,
including endothelium. In addition, the expression levels of all
three caveolin isoforms were markedly diminished as a result of
protein degradation (Liu and Pilch, 2008). These data suggest
that cavin-1 is responsible for caveolae formation and caveolin
protein stabilization in vivo. At this point it is unknown if these
mice develop pulmonary and cardiovascular phenotypes similar
to those observed in Cav-1 KO mice, although based on a loss
of caveolae and significant reduction of Cav-1, one could predict
that this would be the case. This study reported a lipodystrophic
phenotype in cavin-1 KO mice, suggesting adipocyte, and muscle
dysfunction (Liu and Pilch, 2008). Most recent study by Briand
et al. (2011b) suggests that lipodystrophy develops independently
of the presence of Cav-1 and caveolae in the endothelium of
Cav-1 KO. Clearly, direct studies examining presence of pul-
monary and cardiovascular phenotypes which could depend on
endothelial cavin-1 and caveolae will be required to determine

the potential role of endothelial cavin-1. In addition, these stud-
ies may also help to better define the possible role of endothelial
Cav-1/Cav-2 independent of cavin-1 and caveolae targeting. Of
note, cases of patients with cavin-1 null mutations were recently
reported (Rajab et al., 2010; Shastry et al., 2010). These patients
presented with multiple pathologies such as generalized lipodys-
trophy, cardiac arrhythmias, long-QT syndrome, myopathy with
muscle rippling, skeletal as well as smooth-muscle hypertrophy.
Electron microscopy revealed nearly complete loss of caveolae (to
less than 3%; Rajab et al., 2010). Interestingly, unlike general degra-
dation of caveolin proteins reported in cavin-1 KO mice (Liu and
Pilch, 2008), loss of cavin-1 did not affect the expression levels of
Cav-1 in patient fibroblasts. However, Cav-1 lost its plasma mem-
brane localization in these cells (Rajab et al., 2010). It is unknown if
and to what extent loss of endothelial cavin-1, directly or indirectly
through loss of endothelial caveolae and Cav-1 mislocalization,
could contribute to some of these pathologies, in particular to car-
diac defects. Moreover, it would be very interesting to see if these
patients present any vascular or pulmonary phenotypes which
might depend on endothelial caveolae and caveolins.

Although no studies focused on endothelial cavin in vivo were
reported, there is one study which has examined the functional
significance of cavin-1 in cultured ECs (Davalos et al., 2010).
Specifically, to identify proteins that require Cav-1 for targeting
to lipid raft/caveolae domains, a quantitative proteomics analy-
sis using isobaric tagging was performed on lipid raft membranes
isolated from WT and Cav-1 KO mice. In three independent exper-
iments, 117 proteins could be consistently identified in lipid raft
membranes with the largest differences in the levels of caveolar
coat protein Cav-2, and in the caveolar adapter proteins cavin-
1 and cavin-2. Because the lung is highly enriched in ECs, the
role of the newly described protein cavin-1 was examined in sev-
eral cardiovascular tissues and in isolated ECs. Cavin-1 was highly
expressed in ECs lining blood vessels and in cultured ECs. SiRNA-
mediated knockdown of cavin-1 also reduced the levels of Cav-1
and -2 and had only marginal effect on the formation of high
molecular weight oligomers containing Cav-1 and -2. Further-
more, silencing of cavin-1 enhanced basal NO release from ECs
but blocked pro-angiogenic phenotypes such as EC proliferation,
migration, and morphogenesis in vitro. Thus, these data support
an important role for cavin-1 as a regulator of caveolar function
in ECs (Davalos et al., 2010). Further mechanistic studies will be
required to determine how cavin-1 regulates EC function in vitro
and possibly in vivo. Also, in addition to cavin-1, studies examin-
ing a possible functional role of cavin-2 in ECs in vitro and in vivo
are warranted. It will also be interesting to examine if cavin-3 is
expressed in ECs and its potential functional significance.

CONCLUSION
Much of the literature reviewed here suggests that caveolae, cave-
olins, and cavins play important roles in regulating EC signal-
ing and function and thereby the cardiovascular and pulmonary
function at cell and systemic levels. In addition to the physio-
logical role, caveolae and caveolins, in particular Cav-1 expressed
in ECs, have been shown to have important regulatory roles in
pathological angiogenesis and in vascular disease, for example,
in atherosclerosis, cardiac hypertrophy, pulmonary hypertension,
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and ALI. Caveolae are required for the proper organization of sig-
naling pathways that support numerous signaling events, through
sequestration of receptors and downstream signaling regulators.
KO and siRNA approaches targeting caveolin proteins revealed
that these proteins are directly responsible for many of the regula-
tory mechanisms attributed to caveolae. In addition, the discovery
of cavin proteins should further our understanding of caveolar
functions in ECs and in the cardiovascular system. Despite consid-
erable progress, many unresolved issues still remain with respect to
caveolae and Cav-1, although their role in regulating EC and vas-
cular systemic function seems unquestioned. In particular, more

selective approaches distinguishing between caveolar versus non-
caveolar functions of Cav-1 in ECs will be necessary. Moreover the
roles of the understudied Cav-2, and the more recently discovered
cavin proteins, in EC function are still poorly understood and thus
future functional and mechanistic studies a clearly warranted.
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