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Heart rate variability predicts cell death and inflammatory
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This study examines the relationship between autonomic functioning and neuropathology
following cardiac arrest (CA) in mice.Within 24 h of CA, parasympathetic cardiac control, as
indexed by high frequency (HF) heart rate variability, rapidly decreases. By day 7 after CA,
HF heart rate variability was inversely correlated with neuronal damage and microglial acti-
vation in the hippocampus. Thus, by virtue of its sensitivity to central insult, HF heart rate
variability may offer an inexpensive, non-invasive method of monitoring neuropathological
processes following CA. The inverse linear relationships between heart rate variability and
brain damage after CA also may partially explain why low heart rate variability is associated
with increased morbidity and mortality in myocardial infarction patients.
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INTRODUCTION
Sudden cardiac arrest (CA) is a leading cause of mortality world-
wide, affecting more than 800 individuals in The United States and
2,000 individuals in Europe every day (Sans et al., 1997; Ameri-
can Heart Association, 2002). While survival rates following CA
remain staggeringly low, the individuals who do survive suffer
from a myriad of pathological conditions resulting from neu-
ronal damage associated with cessation of blood flow to the brain,
otherwise known as global cerebral ischemia (Cronberg et al.,
2009).

Ischemic brain injury resulting from CA is thought to exacer-
bate negative health status through a broad spectrum of mecha-
nisms that include a diminished capacity to coordinate hormonal
and autonomic processes important for metabolic, immune, and
cardiovascular regulation (Micieli and Cavallini, 2008; Neigh et al.,
2009; Offner et al., 2009; Tracey, 2009). Indeed, evaluation of neu-
rocardiac functioning is used as a risk stratifier in patients with
various cerebrovascular diseases (Thayer and Lane,2007). A reduc-
tion in heart rate variability, a measure of parasympathetic cardiac
control (Berntson et al., 1997), after myocardial infarction is asso-
ciated with increased morbidity and mortality (Bigger et al., 1988;
Huikuri et al., 2009; Karp et al., 2009). Despite the strong predictive
value of heart rate variability in cardiovascular patients, the nature
of the relationship between low heart rate variability and mortality
is not well understood. Deficits in central regulation of heart rate
variability represent one of the more likely explanations for the
aforementioned relationship (Thayer and Lane, 2007). For exam-
ple, lesions or pharmacological inhibition of higher level cortical
structures are known to diminish parasympathetic cardiac regu-
lation (Oppenheimer et al., 1996; Thayer et al., 2009). Therefore,
measurement of neurocardiac functioning may provide a non-
invasive proxy for alterations in the activity of higher level brain
structures associated with ischemic damage.

The objective of the present study was to determine the
effect of global cerebral ischemia on autonomic functioning in
a mouse model. Furthermore, we tested the hypothesis that alter-
ations in neurocardiac function covary with neuronal damage and
inflammatory processes after CA.

MATERIALS AND METHODS
Adult male C57/BL6 mice (23–30 g; Charles River, Wilmington,
MA, USA) were maintained on a 14:10 light/dark cycle and indi-
vidually housed within a temperature and humidity-controlled
vivarium. The study was conducted in accordance with NIH guide-
lines and approved by the OSU Institutional Animal Care and Use
Committee.

EXPERIMENTAL PROTOCOLS
Animals were implanted with telemetric recording devices (ETA-
F20; DSI, St. Paul, MN, USA) for the determination of auto-
nomic cardiac control, locomotor activity, and temperature. Ani-
mals were randomly assigned to two experimental groups: nor-
mothermic CA (CA/CPR; n = 12) or hypothermic CA (control;
n = 10).

Cardiac arrest/CPR procedure
As previously described (Neigh et al., 2009), mice were anes-
thetized with isoflurane, and then 8 min of CA was induced
through injection of potassium chloride (KCL; 50 μl, 0.5 M, 4˚C)
via a jugular catheter. CPR was initiated via injection of epineph-
rine (EPI; 16 μg in 0.6 cc saline, 37˚C) and chest compressions
(300/min). A double lumen coil system was used to manipu-
late head temperature independently of body temperature. This
was accomplished by having two independent coils (one for body
and one for head) that were pumped with ice water to produce
hypothermia in the area of interest. Temperature was continuously
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measured with thermometers located in the periphery (rectum)
and the head temporalis muscle (which is highly correlated with
brain temperature, Neigh et al., 2009). The periphery was main-
tained at 27˚C during CA/CPR to protect against peripheral organ
damage. The heads of the CA/CPR mice were maintained at 37˚C
to allow the development of CA/CPR-induced neuroinflammation
and neuronal damage, while the heads of the ischemic controls
were maintained at 27˚C to prevent the evolution of neurological
damage (Neigh et al., 2009). Thus, the CA and ischemic con-
trol groups experience the same surgical preparations, duration of
cerebral ischemia and exposure to KCL, EPI, and chest compres-
sions, but only the CA/CPR group develops neuroinflammation
and neuronal damage.

Telemetry implant and heart rate variability analysis
The mice were implanted with telemetric recording devices (DSI,
St. Paul, MN, USA) at least 10 days prior to CA/CPR in accor-
dance with previous studies (Thireau et al., 2008). The telemetric
implants record temperature, activity, and electrocardiographic
signals in the animal’s home cage. The electrocardiographic sig-
nals are then subsequently used to derive R–R intervals and heart
rate variability. Mice were anesthetized with isoflurane and an
ETA-F20 (Data Sciences International, St. Paul, MN, USA) tele-
metric probe was implanted into the abdominal cavity of the
mouse and leads were placed onto opposite sides of the xyphoid
process. Immediately following telemetric implants animals were
treated with a local anesthetic to reduce pain (Bupivacaine). Com-
mercial software (Mindware, Gahanna, OH, USA) was used to
derive high frequency (HF) and low frequency (LF) heart rate vari-
ability, well validated measures of parasympathetic tone, in mice
through spectral analysis of the interbeat interval series obtained
from the ECG as measured by the telemetric implants (sampled
at 1,000 Hz). Analysis followed procedures recommended by the
Society for Psychophysiological Research SPR committee on heart
rate variability and was adapted for use in rodents (Berntson et al.,
1997). Heart rate (R–R), temperature, and activity were sampled
for 3 min at the beginning of every hour and analyzed in seg-
ments of 60 s and then averaged across the 3-min period for each
hour. LF spectral power was integrated over 0.15–1.5 Hz and HF
spectral power was integrated over the respiratory frequency band
(1.5–5 Hz). The parameters used in the analysis of HF and LF
heart rate variability were chosen based upon previous work in
mice (Gehrmann et al., 2000; Thireau et al., 2008; Norman et al.,
2010a).

HISTOLOGY
Tissue collection
At 7 days post-resuscitation, mice were deeply anesthetized
and perfused transcardially with ice-cold 0.1 M PBS and 4%
paraformaldehyde. Brains were removed, post-fixed overnight in
4% paraformaldehyde, cryoprotected with 30% sucrose, and then
frozen on dry ice. Brains were sectioned at 14 μm on a cryostat
and thaw-mounted onto Super Frost Plus slides (Fisher, Hampton,
NH, USA). Histological images were captured with a Nikon E800
microscope (Nikon Instruments, Melville, NY, USA) and stored
on a computer. Data collection was performed by an individual
who was not informed of individual group assignments.

Fluoro-Jade C histochemistry
Tissue sections were stained according to established protocols
(Schmued and Hopkins, 2000). The slides were dried at room
temperature, immersed in a basic ethanol solution, and then
rinsed in 70% ethanol and distilled water. Then, the slides were
treated with potassium permanganate (0.06%) for 10 min, rinsed
with water, incubated in Fluoro-Jade C (0.0001% in a 1% acetic
acid solution) then rinsed in dH20, dried on a slide-warmer, and
cover-slipped with DPX (Sigma, St. Louis, MO, USA). Fluoro-
Jade positive cells were counted within the entire hippocampus
and summed to form an aggregate measure of hippocampal neu-
ronal damage; a structure known to be highly susceptible to global
cerebral ischemic damage.

MAC-/CD11b histochemistry
Microglia were visualized using an antibody directed against
MAC-1/CD11b as previously described (Popovich et al., 1997).
Slides were air dried, rinsed in distilled water, and then blocked
with rabbit serum and bovine serum albumin. Slides were incu-
bated for 24 h at room temperature with rat anti-CD11b antibody
(Serotec, Raleigh, NC, USA) diluted 1:100 in phosphate buffer.
Slides were then rinsed and incubated with rabbit anti-rat sec-
ondary antibody (1:500; Vector Labs, Burlingame, CA, USA) for
2 h. Sections were quenched in H202 in methanol and then rinsed
and treated with Elite ABC reagent for 60 min. Sections were visu-
alized with 3,3′-diaminobenzidine containing nickel. After visual-
ization, the slides were rinsed in distilled water, then dehydrated,
cleared, and cover-slipped. Finally, proportional area of stained vs.
non-stained areas were quantified within the entire hippocampus
using image J software (NIH, Bethesda, MD, USA).

Statistical analysis
The data are expressed as means ± SE of the mean. Testing of statis-
tical significance was performed using ANOVA. Group differences
were considered statistically significant at p < 0.05. Autonomic,
locomotor, and temperature responses were analyzed using two-
way repeated measures. Spectral analysis was used to determine
diurnal rhythms in heart rate variability, temperature, and loco-
motor activity. Pearson correlation coefficients were carried out
between measures autonomic control and levels of Mac-1 and
Fluoro-Jade C expression.

RESULTS
As expected, global cerebral ischemia resulted in significant
increases in cell death (F 1,20 = 17.73, p < 0.01; Figure 1A) and
microglia responses (F 1,20 = 10.47,p < 0.01; Figure 1B) within the
hippocampus as compared to the ischemic control. Furthermore,
the CA/CPR procedure engendered significant decreases in HF
heart rate variability (F 7,140 = 16.31, p < 0.05; Figure 2A), a well
validated measure of parasympathetic cardiac control (Berntson
et al., 1997). The CA/CPR procedure also resulted in a significant
decline in LF heart rate variability (F 7,140 = 12.08, p < 0.05). Sim-
ilarly, cerebral ischemia resulted in a significant increase in heart
rate (F 7,140 = 9.19, p < 0.05; Figure 2B). However, while the over-
all values of HF heart rate variability, LF heart rate variability, and
heart rate were lower in CA/CPR animals than ischemic controls, a
2 (light vs. dark) × 2 (CA/CPR vs. Control) ANOVA revealed that
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FIGURE 1 |The CA/CPR procedure increased levels of hippocampal cell death (A) and microglial expression (B) at 7 days following CA, as measured by

Fluoro-Jade C and MAC-1 staining, respectively.The data are presented as mean ± SD and an asterisk indicates a significant difference vs. control at p < 0.05.

FIGURE 2 | (A) When cardiac arrest is accompanied by neurological damage
(CA/CPR), there is a significant reduction in HF heart rate variability, a well
validated measure of parasympathetic cardiac control. The mice in the
ischemic control group (control) displayed similar levels of HF heart rate
variability throughout the study. (B) Cardiac arrest also significantly increases
heart rate. In contrast, the mice in the ischemic control group displayed

similar heart rates throughout the study. (C) At 7 days following normothermic
CA/CPR, high frequency heart rate variability values were significantly and
inversely correlated with measures of neuronal cell damage(c) and microglial
activation (D) within the CA1 region of the hippocampus of mice. Data are
presented as mean ± SD and an asterisk indicates a significant difference
(p < 0.05) at the given time point relative to the ischemic controls.

mice maintained typical diurnal rhythms in HF and LF heart rate
variability (p > 0.05) and heart rate (p > 0.05) following CA/CPR.
HF heart rate variability, and LF heart rate variability nor heart rate
were significantly altered following CA/CPR in the hypothermic
ischemic controls (p > 0.05).

Variations in HF heart rate variability at 7 days following
surgery was significantly associated with the extent of cell death
(r2

12 = 0.38, p < 0.05, Figure 2C) and microglia activation within
the hippocampus (r2

12 = 0.34, p < 0.05, Figure 2D). While LF
heart rate variability was similarly correlated with cell death and
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microglia activation, the values did not reach statistical signif-
icance (p > 0.09). Heart rate, temperature, and activity were not
associated with cell death or inflammatory processes following CA
(p > 0.05). Furthermore, HF and LF heart rate variability were not
significantly associated with alterations in temperature or activity
(p > 0.05).

Furthermore, a 2 (light vs. dark) × 2 (CA/CPR vs. control)
ANOVA revealed that the CA/CPR procedure resulted in dys-
regulation of the diurnal rhythm in temperature (F 1,20 = 6.05,
p < 0.05; Figure 3A) and activity (F 1,20 = 6.28, p < 0.05;
Figure 3B), Hypothermic control animals displayed comparable
mean body temperature (p > 0.05) and activity levels (p > 0.05)
throughout the baseline and post-surgical survival.

Cerebral ischemia resulted in acute hypothermia at 24–48 h fol-
lowing surgery (F 1,20 = 6.52, p < 0.05; Figure 3A) but returned
to baseline levels by day 7. Furthermore, cerebral ischemia
increased overall locomotor activity within the animal’s home cage
(F 7,140 = 8.02, p < 0.05; Figure 3B) as compared to the control
group. Importantly, statistically controlling for locomotor behav-
ior and temperature did not alter the outcome of neurocardiac
functioning discussed above (p > 0.05); this observation suggests
that the effects of cerebral ischemia on autonomic functioning are
not the result of compensatory processes resulting from activity
or temperature fluctuations.

DISCUSSION
As expected, the CA/CPR group sustained significantly greater
neuronal damage and microglial activation within the hippocam-
pus than the ischemic controls. Furthermore, global cerebral
ischemia resulted in a rapid increase in heart rate, potentially
the result of a decrease in parasympathetic cardiac control. An
alternative explanation for the elevated heart rate could be that
CA/CPR results in an increase in sympathetic activity or intrinsic
heart rate. Although we did not directly investigate the function
of sympathetic nervous system function and intrinsic heart rate
in the this study, previous work from our lab have discovered that
the CA/CPR procedure results in significant decreases in sympa-
thetic nervous system function and no changes in intrinsic heart
rate by 7 days following surgery (Norman et al., 2010a). Specif-
ically, the CA/CPR mice displayed significantly lower HF heart

rate variability beginning 24 h following surgery and this pat-
tern continued for 7 days following surgical manipulation. This
is similar to a pattern reported in post MI human patients (La
Rovere et al., 1998; Berntson et al., 2008). The CA/CPR group also
exhibited hyperactivity and acute hypothermia, however, these
effects were independent of variations in parasympathetic cardiac
control. While the CA/CPR procedure did not influence diurnal
variations in HF heart rate variability, LF heart rate variability
or heart rate, it did significantly decrease diurnal rhythmicity
in temperature and activity, which also has been reported after
experimental stroke (Karelina et al., 2009). Thus, the neuroin-
flammation and neuronal damage caused by CA is associated with
severe dysregulation of parasympathetic cardiac control, which is
associated with poorer health outcomes in humans (Thayer and
Lane, 2007). Although causal influences of neuronal cell death
on parasympathetic cardiac control cannot be determined in the
present study, one potential explanation for this association may
be alterations in central cholinergic signaling. Indeed, previous
work has demonstrated that central cholinergic signaling regulates
autonomic nervous system functioning (Berntson et al., 1994) and
CA/CPR results in decreases in basal forebrain choline acetyltrans-
ferase (ChAT positive neurons and central ChAT activity (Norman
et al., 2010b). ChAT is an important enzyme responsible for the
synthesis of acetylcholine. Furthermore, cholinergic neurons have
been shown to be highly susceptible to the deleterious effects of
neuroinflammation (Wenk and Willard, 1998). Future studies will
be necessary in order to determine whether the results presented
in this manuscript are a function of neuroinflammation induced
toxicity of cholinergic neurons.

Measurement of autonomic function is widely used in clini-
cal settings as a predictor of mortality in chronic heart disease
patients (Malik, 1996; Sans et al., 1997). However, despite the
strong predictive value of heart rate variability, the relationship
between low heart rate variability and increased mortality is not
well understood. The significant inverse correlation between heart
rate variability and neuronal damage in this study suggests that
low heart rate variability could be an indicator of brain dam-
age following CA (Figures 2C,D). The hippocampus is one of
the most susceptible regions of the brain to ischemic damage
(Kofler et al., 2004; Neigh et al., 2009), and directly innervates

FIGURE 3 | (A) When cardiac arrest is accompanied by neurological damage
(CA/CPR), there is a significant reduction in body temperature and
dysregulation of the diurnal rhythm. In contrast, body temperature and its
diurnal rhythm did not differ from baseline among the ischemic control group
that did not sustain neurological damage. (B) Likewise, the CA/CPR group

exhibited increased locomotor behavior and dysregulation of the diurnal
rhythm in activity, whereas locomotor activity and diurnal rhythmicity in
activity did not vary throughout the study among the ischemic control mice.
Data are collapsed across post-surgical days 1–7. The dark background
denotes lights off (animal’s active period). Data are presented as mean ± SD.

Frontiers in Physiology | Integrative Physiology May 2012 | Volume 3 | Article 131 | 4

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Integrative_Physiology
http://www.frontiersin.org/Integrative_Physiology/archive


Norman et al. Heart rate variability and cerebral ischemia

numerous structures included within the central autonomic net-
work; the central autonomic network includes the prefrontal cor-
tex, hypothalamus, amygdala, periaqueductal gray, the nucleus of
the solitary tract, the nucleus ambiguous, the ventral medulla, and
medullary tegmental field which together modulate the parasym-
pathetic nervous system (Thayer and Lane, 2007). Indeed, direct
hippocampal stimulation decreases heart rate,and respiratory rate,
a result blocked by methylatropine indicating vagally mediated
changes in heart rate may be partially mediated by the hippocam-
pus (Ruit and Neafsey, 1988). The ability of the hippocampus to
modify the central autonomic network provides a potential mech-
anism through which measurement of autonomic functioning can
provide rapid and reliable information on the extent of neuronal
damage following CA.

Monitoring the autonomic nervous system after cerebral
ischemia also may provide information regarding ongoing neu-
roinflammatory processes. Following CA, there is a significant
inverse correlation between heart rate variability and microglial
activation (Figure 2D). Microglia are resident immune cells of the
central nervous system that survey the environment and become
rapidly activated in response to CNS injury; microglial activa-
tion, which prompts the release of proinflammatory cytokines,
represents the first phase of the CNS inflammatory response to
cerebral ischemia (Yenari et al., 2010). Likewise, heart rate vari-
ability is inversely related to concentrations of proinflammatory
cytokines and other inflammatory markers in the blood of healthy
adults, as well as those with cardiovascular disease (Sloan et al.,
2007; Haensel et al., 2008). In the current study, it is not pos-
sible to determine whether a causal relationship exists between
CA-induced neuroinflammation and the reduction in heart rate
variability, although the literature supports effects in both direc-
tions. For example, inducing cytokine expression in healthy adults
via administration of an endotoxin results in a rapid reduction in
heart rate variability (Marsland et al., 2007; Kox et al., 2011). Sim-
ilarly, cytokine concentrations and mortality are inversely related
to heart rate variability in mice exposed to live bacteria (Fairchild
et al., 2011). Alternatively, diminished parasympathetic nervous

system activity can lead to “run away” inflammation (Tracey,
2009). Indeed, CA impairs turn diminishes the capacity of the
cholinergic anti-inflammatory pathway to control inflammation
after cerebral ischemia; pharmacological activation of α7 nico-
tinic acetylcholine receptors within 24 h of CA provides significant
protection against ischemia-related cell death and inflammation
(Norman et al., 2010b). Thus, in conjunction with its associa-
tion with pathophysiological responses to CA/CPR, diminished
parasympathetic output may directly influence health outcomes
through a diminished capacity to regulate cardiovascular and
inflammatory processes.

There are limitations to the present study that should be
acknowledged. Firstly, the present study analyzed histological out-
come at a single time point (7 days post surgery). While this time
point is commonly used in ischemia model research, future stud-
ies will need to determine whether the relationships described in
this manuscript are apparent at later time points. Furthermore,
one is not able to infer a causal relationship between heart rate
variability from the results presented in this manuscript. It will be
important for future studies to determine whether the neuronal
damage and inflammation presented here is causally related to
lower heart rate variability or whether lower heart rate variability
increases susceptibility to neuronal damage following CA/CPR.

In sum, HF heart rate variability is associated with the extent
of cell death and inflammation that occurs in the brain fol-
lowing CA, suggesting that non-invasive measurement of auto-
nomic functioning could serve as a functional marker of the
neural effects of cerebral ischemia. The inverse linear relation-
ships between heart rate variability and brain damage after CA also
may partially explain why low heart rate variability is associated
with increased morbidity and mortality in myocardial infarction
patients; patients with low heart rate variability may have more
extensive brain damage, which in turn compromises survival.
As more treatments become available for CA survivors, moni-
toring HF heart rate variability may be a rapid, non-invasive,
and inexpensive method for assessing efficacy in preserving the
brain.
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